第一篇:证明与全等一
暑假辅导学案
辅导班级或学生:辅导时间:周学科:
证明
(一)证明:根据已知的定义、基本事实、定理(包过推论),一步一步推得结论成立,这样的推理过程叫做证明。外角:由△ABC的一条边的延长线和另一条相邻的边组成的角
外角定理:三角形的外角等于与它不相邻的两个内角的和。
证明几何命题时,表达格式是:首先按题意画出图形,分清命题的条件和结论,结合图形,在‘已知’中写出条件,在‘求证’中写出结论,然后在‘证明’中写出推理过程(添加辅助线要写入证明中)
例题1:证明命题:三角形不共顶点的三个外角的和等于360°
A
2:已知,如图,∠B+∠C+∠D=360°,求证:AB//DE
C
E
3:已知:如图,BC垂直AC于点C,CD垂直AB于点D,∠EBC=∠A,求证:BE//CD
4.命题‘若n是自然数,则代数式(3n+1)(3n+2)+1的值是3的倍数’是真命题还是假命题?如果你认为是假命题,请说明理由;然后认为是真命题,给出证明。
5.如图,在Rt△ABC中, ∠C=90°,∠A=30°(1)以直角边AC所在的直线为对称轴,将Rt△ABC作轴对称变换,请在原图上作出变换所得的像。(2)Rt△ABC和它的像组成了什么图形?最准确的判断是()
(3)利用上面的图形,你能找出直角边BC与斜边AB的数量关系吗?并请说明理由。
全等三角形及判定
(一)能完全的重合的图形称为全等图形
能够完全重合的两个三角形叫做全等三角形。两个全等三角形重合时(1)能互相重合的顶点叫做全等三角形的对应顶点;互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角;‘全等’可用符号‘≌’来表示,如△ABC和△DEF全等,记做‘△ABC≌△DEF’,读做三角形ABC全等于三角形DEF
1.能够完全重合的两个图形叫做
全等图形的特征:全等图形的和都相同. 2.全等三角形.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
(二)、全等三角形的对应元素及表示
1.平移翻折旋转
A
D
A
BC
B
C
甲
EF
乙
D
D
B
丙
E
C
启示:一个图形经过平移、翻折、旋转后,变化了,•但、都没有改变,所以平移、翻折、旋转前后的图形,这也是我们通过运动的方法寻全等的一种策略. 2.全等三角形的对应元素(说一说)
(1)对应顶点(三个)——重合的(2)对应边(三条)——重合的(3)对应角(三个)——重合的3.寻找对应元素的规律
(1)有公共边的,公共边是;(2)有公共角的,公共角是;(3)有对顶角的,对顶角是;
(4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.
简单记为:(1)大边对应大边,大角对应;
(2)公共边是对应边,公共角是4.“全等”用“”表示,读作“
如图甲记作:△ABC≌△DEF读作:△ABC全等于△DEF 如图乙记作:读作:如图丙记作:读作:
注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上.
(三)、全等三角形的性质
课堂探究
活动一:观察下列各组的两个全等三角形,并回答问题:
A
BDB
E E
BCE第(1)题图第(4)题图
B
DB
D
EC
4.如图:△ABC≌△DBF,找出图中的对应边,对应角.
B答:∠B的对应角是,∠C的对应角是,∠BAC的对应角是;DAB的对应边是,AC的对应边是,BC的对应边是 A
5.如下图,ABC≌CDA,并且BCAD,则下列结论错误的是()
A.12B.ABCDC.BDD.ACDC
6.如下图,ABC≌BAD,若AB6,AC4,BC5,则AD的长为()
C
A.4B.5C.6D.以上都不对
7.如下图,直角△ABC沿直角边BC所在直线向右平移得到DEF,下列结论错误的是()A.ABC≌DEFB.DEF90C.ACDFD.ECCF 8.在ABC中,BC,与ABC全等的三角形有一个角为100,则ABC中与这个100角对应相等的角是(A.AB.BC.CD.B或C
F)
第二篇:全等三角形定义与证明
全等三角形
能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的对应边相等,全等三角形的对应角相等。
三边对应相等的两个三角形全等,可以简写成“SSS”
两边和它们的夹角对应相等的两个三角形全等,可以简写成“SAS”
两角和它们的夹边对应相等的两个三角形全等,可以简写成“ASA”
两个角和其中一个角的对边对应相等的两个三角形全等,可以简写成“AAS” 斜边和一条直角边对应相等的两个直角三角形全等,可以简写成“HL”
角平分线的性质:角的平分线上的点到角的两边的距离相等,角的内部到角两边的距离相等的点在角平分线上。
轴对称
一个图形沿一条直线折叠,直线两旁的部分能够互相重合这个图形就叫做轴对称图形,这条直线就是它的对称轴,我们也说这个图形关于这条直线成轴对称。
能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重叠的点是对应点,叫做对称点。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线短两个端点距离相等的点,在这条线段的垂直平分线上。
点(X,Y)关于X轴对称的点的坐标为(X,-Y)
点(X,Y)关于Y轴对称的点的坐标为(-X,Y)
两条边是相等的三角形是等腰三角形。
等腰三角形的性质:等腰三角形的两个底角相等,简写成“等边对等角”。等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
如果一个三角形有两个角相等,那么这两个角所对的边也相等。
三条边都相等的三角形叫做等边三角形。
等边三角形的三个内角都相等,并且每一个角都等于60°,三个角都是相等的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
实数
如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为a,读作“根号a”,a叫做被开方数。
规定,0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方跟。这就是说如果x的平方等于a,那么x叫做a的平方根。求一个数a平方根的运算叫做开平方。
正数有两个平方根,它们互为相反数,零的平方根是零,负数没有平方根。
如果一个数的平方等于a,那么这个数叫做a的立方根或三次方根,这就是说,如果x³=a,那么x叫做a的立方根。求一个数的立方根运算,叫做开立方。
正数的立方根是正数,负数的立方根是负数,0的立方根是0.类似于平方根,一个数的a的立方根,用符号“3a”表示,读作“三次根号a”。其中a是开方数,3是根指数。
很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做无理数。有理数和无理数统称实数。
实数有理数有限小数或无限循环小
无理数无限不循环小数数
数a的相反数是-a,一个正实数的绝对值是本身,一个负实数的绝对值是它的相反数,0的绝对值是0.一次函数
我们称数值发生变化的量为变量,有些量的数值是始终不变的,我们称它们为常量。
在一个变化对象中,如果有两个变量x和y,并且对于x每一个确定的值,y都有唯一的值与其对应,那么我们就说a是自变量,y是x的函数。当x=a时y=b,那么b叫做当自变量的值为a是的函数值。
对于一个函数,如果把自变量与函数的每队对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。
正比例函数
形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
正比例函数y=kx(k是常数,k≠0)的图像是一条经过原点的直线,我们称它为y=kx。当k>0时,直线y=kx经过三、一象限,从左向右上升,即随着X的增大y也增大,当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小。
一次函数
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。当b=0时,y=kx+b,即y=kx,所以说正比例函数是一种特殊的一次函数。当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。
函数解析式ykxb选取
解出满足条件的两定点(x1,y1)与(x2,y2)画出取数一次函数的图像
任何一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以借一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。
由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当函数值大(小)于0时,求自变量相应的取值范围。每个二元一次方程都对应两个一次函数,于是也就对应两条直线。从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程相当于确定两条直线交点的坐标。
整式的乘法
am
同底数幂相乘,底数不变,指数相加。
幂的乘方,底数不变,指数相乘。乘anamn(m,n都是正整数)amnamn(m,n都是正整数)
n积的乘方,等于我们把积的每一个因式分别乘方,再把所得的幂相乘。abanbn(n为
正整数)
单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加。两个数的和与这两个数差的积,等与这两个数的平方差。ababab 22
两数和(或差)的平方,等于它们的平方和,加,(或减)它们的积的2倍。ab2
2aaba22abb2abb222
添括号时,如果括号前面是正号,扩到括号里的各项都不变符号;如果括号前面是负号,扩到括号里的各项都改变符号。
同底数幂相除,底数不变,指数相减。aamnamn(a≠0,m,n都是正整数,并且m
>n)
任何不等于0的数的0次幂都等于一。a1(a0)
单项式相除,把系数与同底数分别相乘作为商的因式,对于只在被除数里含有的之母,则连同它的指数作为商的一个因式。
多项式除以多项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
因式分解
我们把一个多项式化成几个整式的积的形式,叫因式分解。即整式乘法的逆运算。两个数的平方差,等于这个数的和与这个数的差的积。ababab
两个数的平方加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。220ab2
2aaba22abb2abb222
第三篇:全等三角形证明
全等三角形的证明
1.翻折
如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;
旋转
如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;
平移
如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。
2.判定三角形全等的方法:
(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理
(2)推论:角角边定理
3.注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
一、全等三角形知识的应用
(1)证明线段(或角)相等
例1:如图,已知AD=AE,AB=AC.求证:BF=FC
(2)证明线段平行
例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等
例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE
例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.
.
例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。
N
M
FE
C
A B
第四篇:全等三角形证明
全等三角形证明
1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。
F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由。
4、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?
A B
C
第五篇:全等三角形证明检测题班级一
全等三角形证明检测题
班级姓名
1、已知:如图,∠1=∠2,∠B=∠D。求证;△ABC≌△ADC(本题10分)解:∵∠1=∠2,∠B=∠D A
在△ABC和△ADC中,∠1=∠
2AC=AC
∠B=∠D
∴△ABC≌△ADC(ASA)
B DC。求证:△ADC≌△CBA(本题10分)
2、已知:如图,AB=CD,DA⊥CA,AC⊥BC
B AB=CD,DA⊥CA,AC⊥BC A 在△ADC和△CBA中,AB=CD
D C DA⊥CA
AC⊥BC
∴△ADC≌△CBA(SSS)
4、已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。
求证:(1)AB=CE;解:∵AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E
在△ABC和△ACE中,AB=CE
AD=CD
AC=AC
∴△ABC≌△ACE(SSS)
(2)AD
∴AD1(AB + AC)(本题15分)解:∵△ABC≌△ACE(SSS)21(AB + AC)
2B5、已知:AB=AC,BD=CD解:∵AB=AC,BD=CD
∴BE=CF
又∵在△ABE和△ACF中,AB=AC ∠B=∠C BE=CF
∴△ABE≌△ACF(SAS)
求证:(1)∠B=∠C
(2)DE=DF(本题15分)
∴DE=DF
FE
D
C6、小明作业本上画的三角形被墨迹污染,他想画出一个与原来完全一样的三角形,请帮助小明想办法用尺规作图法画一个出来,并说明你的理由。(本题15分)
7、已知:如图,AE=CF,∠DAF=∠BCE,AD=CB。解:∵AE=CF,∠DAF=∠BCE,AD=CB...
问:△ADF与△CBE全等吗?请说明理由。(本题25分)
AD
解:∵在△ADF和△CBE中,AD=CB
F CE=Df
AF=BE
∴△ADF≌△CBE(sss)B C
如果将△BEC沿CA边方向平行移动,可有下列3幅图,如上面的条件不变,结论仍成立吗?请说明理由。EA
D C(A)A(E)D E
B
F
C B B C(F)F
第五章考試卷
班級_________ 學號________ 得分_______
一、填空題:(50分)
1、(1)三角形任意两边之和_________第三边。(2)三角形任意两边之差_________第三边。(3)三角形三内角的和等于_________。
(4)直角三角形的两个锐角_________。(5)全等图形的_________和_________都相等。(6)全等三角形的_________相等,对应角________。(7)三角形全等的四种判定方法是_________,_________,_________,_________,另外直角三角形还有一种是__________。
2、如右图,在⊿ABC中∠ABC 和∠ACB的角平分线相交于O,∠BOC=116度,求∠A的度数_________。
3、AD是⊿ABC的中线。⊿ABD的周长比⊿ADC的周长大4,则AB与AC的差为_________。
4、如图,a,b,c分别表示⊿ABC的三边,那么a,b的夹角是
b,c的夹角是B是a是和的夹边。
5、如图,已知∠A =∠C,要证明⊿AOB≌⊿COD,根据“ASA”还要一个条件__________。
6、如图2,沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm,∠DAM=300,则AN=cm,NM=cm,∠NAM=;
A7、如图,∠D=∠B,∠DAC =∠BAC 解:∵在⊿ABC和⊿ADC中
D=∠B
B∠DAC =∠BAC
AC=AC
∴⊿DAC≌⊿BAC()∴BC = DC()
二、選擇題:(20分)
1、下列4组线段能组成三角形的是()A、3,3,6B、3.1,3,6C、1,2,1D、3,2,12、三角形的高()A、在边上B、在三角形内C、在三角形外D、以上均可
如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形
4、若⊿ABC≌⊿DEF那AC的对应边是()A、DEB、DFC、EFD、BC5、如图加条件能满足AAS来判断⊿ACD≌⊿ABE的条件是()A、∠AEB =∠ADC∠C=∠D
B、∠AEB=∠ADCCD=BEC、AC = ABAD = AED、AC = AB∠C =∠B6、下列由几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()
ABCD7、两个直角三角形全等的条件是()A、一个锐角对应相等B、两个锐角对应相等C、D
M
N
C
图
2③
一条边对应相等D、两条边对应相等
8、如图,某人不小心把一块三角形的玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A带①去B带②去C带③去D带①和②去
9、如图,AB=CD,AD=BC,AC和BD交于点M,那么图中全等三角形有()A、2对B、3对C、4对D、5对 C
10、下列各组图形中,哪一组图形中AD是△ABC 的高()B11、与图1所示图形不全等的图形是()
B
A B
D
(A)
D C
A
(B)
C B A
D
(图1)AB
D
三、画一画:(9分)
1、利用尺规,用三种不同的方法作一个三角形与已知直角三角形ABC全等,并简要说明理由。(同种理由视为是同一种方法)
四、證明解答題:(21分)
1、如图,图中的两个三角形全等,A和B,C和D是对应顶点。
C(1)用符号表示两个三角形全等。
E
(2)写出它们的对应角、对应边。
(3)用等号表示各对应角,对应边之间的关系。
OB
CBA
A图572、已知:如图57,DC⊥CA,EA⊥CA,CD=AB,CB=AE
求证:△BCD≌△EAB
证明:∵DC⊥CA,EA⊥CA(已知)
∴∠C=∠A=90°(垂直定义)
在△BCD与△EAB中 CD=AB(已知)∠C=(已证)
∴△BCD≌△EAB()
3、如图,已知DB⊥AB,DC⊥AC,B,C分别为垂足,DB=DC。求证:DA平分∠BDC。(5分)
D
C
4如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,(5分)
(1)两个滑梯的倾斜角∠ABC和∠DFE大小有什么关系?(2)两个滑梯BC,EF所在的位置关系如何?