第一篇:第七章《平行线的证明》单元测试题
《平行线的证明》单元测试题
一、选择题
1、下列语句是命题的是【】
(A)延长线段AB(B)你吃过午饭了吗?(C)直角都相等(D)连接A,B两点
2、如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是【】
(A)75º(B)45º(C)105º(D)135º
3、以下四个例子中,不能作为反例说明“一个角的余角大于这个角”
是假命题是【】
(A)设这个角是30º,它的余角是60°,但30°<60°
(B)设这个角是45°,它的余角是45°,但45°=45°
(C)设这个角是60°,它的余角是30°,但30°<60° 1))
A、0º<α<90º B、60º<α<90ºC、60º<α<180ºD、60º≤α<90º
13、下列命题中的真命题是()
A、锐角大于它的余角
C、钝角大于它的补角B、锐角大于它的补角D、锐角与钝角之和等于平角
14、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为()
A、0B、1个C、2个D、3个
二、填空题(每题4分,共32分)
15.在△ABC中,∠C=2(∠A+∠B),则∠C=________.AEB
16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分
∠BEF,若∠1=72º,则∠2=;
17.在△ABC中,∠BAC=90º,AD⊥BC于D,则∠B与∠DAC的大CF1
2GD
关系是________ 18.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 第16题
19、在△ABC中,∠ABC和∠ACB的平分线交于点I, 若
∠A=60°,则∠BIC=
20.把一张长方形纸片如图所示折叠后,再展开,如果∠1=55°,那么∠2等于。
三、解答题
21.如图,AD=CD,AC平分∠DAB,求证DC∥AB.小
22、已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系?试说明理由
.23、如图,已知BE、CE分别是△ABC的内角、外角的平分线,∠A=40°,求∠E的度数.
24、如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.(1)探求:∠F与∠B、∠D有何等量关系?
(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?
25.如图,已知点A在直线l外,点B、C在直线l上.
(1)点P是△ABC内一点,求证:∠P>∠A;
(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A?试证明你的结论.
26、已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.
(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;
(2)若∠ABC=,∠ACB=,用,的代数式表示∠BOC的度数.
(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用,的代数式表示∠BOC的度数.
第二篇:平行线的证明单元测试题
平行线单元测试卷
班级
一、选择题(每题4分,共40分)
1.下列各语句中命题有()
(1)你吃过午饭了吗?(2)同位角相等;(4)红扑扑的脸蛋;(3)若两直线被第三直线所截,同位角相等,则内错角一定相等.A.1个B.2个C.3个D.4个
2.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()
C
FA
DA
B
A
1E
B
A
1C
2B
D
D
C
C
DB
A1
2D
CB
F
3.如图所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2C.∠3=∠4D.∠BAC=∠ACD4.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()
A.63°
A
B.62°C.55°
D
D.118
3B
C
°
D
A
第3题第4题第5题
5.如图所示,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3无关
6.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.7B.22C.13D.17或22
7.在直角三角形中,其中一个锐角是另一个锐角的 2倍,则这个三角形中最小的角是()
A.15°B.30°C.60°D.90°
8.已知△ABC的三个内角,∠A、∠B、∠C满足关系式:∠B+∠C=2∠A,则此三
角形()
A.一定有一个内角是45°; B一定有一个内角是60°; C.一定是直角三角形;D.一定是钝角三角形。
9.(2013•安徽中考)如图,AB∥CD,∠A+∠E=75°,则∠C为()
A.60°B.65°C.75°D.80° 10.学习了平行线后,小敏想出了过已知直线外一点画 这条直线的平行线的新方法,她是通过折一张透明的纸 得到的,如图:
从图中可知,小敏化平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。()A.①②B.②③C.③④D.①④
二、填空题(每题4分,共32分)
第17题
C17、在△ABC中,∠ABC和∠ACB的平分线交于点I, 若 ∠A=60°,则∠
18.把一张长方形纸片如图所示折叠后,再展开,如果∠1=55°,那么∠2等于。
三、解答题
19、如图,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDO.20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
abc21、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.22.(6分)如图,已知AB∥CD,∠A =1000,CB平分∠ACD,求∠ACD、∠ABC的度数。
23.如图18,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?
24.如图19,AB∥CD,HP平分∠DHF,若∠AGH=80°,求∠DHP的度数.25.已知:如图22,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥AB.
第三篇:平行线的证明单元测试题(北师大版)-1.1
平行线单元测试卷1.1班级
一、选择题(每题4分,共40分)
1.下列各语句中命题有()
(1)你吃过午饭了吗?(2)同位角相等;(4)红扑扑的脸蛋;(3)若两直线被第三直线所截,同位角相等,则内错角一定相等.A.1个B.2个C.3个D.4个
2.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()
C
FA
2E
DA
B
A
1B
A
1C
2B
D
D
C
C
DB
A1
2D
CB
F
3.如图所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2C.∠3=∠4D.∠BAC=∠ACD4.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()
A.63°
A
B.62°C.55°
D
D.118
3B
C
°
D
A
第3题第4题第5题
5.如图所示,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3无关
6.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.7B.22C.13D.17或22
7.在直角三角形中,其中一个锐角是另一个锐角的 2倍,则这个三角形中最小的角是()
A.15°B.30°C.60°D.90°
8.已知△ABC的三个内角,∠A、∠B、∠C满足关系式:∠B+∠C=2∠A,则此三
角形()
A.一定有一个内角是45°; B一定有一个内角是60°; C.一定是直角三角形;D.一定是钝角三角形。
9.(2013•安徽中考)如图,AB∥CD,∠A+∠E=75°,则∠C为()
A.60°B.65°C.75°D.80° 10.学习了平行线后,小敏想出了过已知直线外一点画 这条直线的平行线的新方法,她是通过折一张透明的纸 得到的,如图:
从图中可知,小敏化平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。()A.①②B.②③C.③④D.①④
二、填空题(每题4分,共32分)
第17题
C17、在△ABC中,∠ABC和∠ACB的平分线交于点I, 若 ∠A=60°,则∠
18.把一张长方形纸片如图所示折叠后,再展开,如果∠1=55°,那么∠2等于。
三、解答题
19、如图,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDO.20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
abc21、(8分)随机抽取某城市一年(以365天计)中的30天的日平
(1)估计该城市年平均气温大约是多少?(2)写出该数据的中位数、众数;
(3)计算该城市一年中约有几天的日平均气温为26℃?
(4)若日平均气温在17℃~23℃为市民“满意温度”,则这组数据中达到市民“满意温度”的有几天?
21、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC22、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.4.(6分)如图,已知AB∥CD,∠A =1000,CB平分∠ACD,求∠ACD、∠ABC的度数。
第四篇:7、八年级数学上册平行线的证明单元测试题(北师大版)-
八年级数学上册平行线的证明单元测试题(北师大版)120分60分钟完卷姓名:________得分:________
一、选择题:将正确的答案直接填在表格中(本大题共10个小题,每小题4分,(1)动物都需要氧气;
(2)同位角相等;
(3)若两直线被第三直线所截,同位角相等,则内错角一定相等;
(4)平面内过一点只能作一条直线与已知直线平行。
A.1个B.2个C.3个D.4个
2.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()
BAABA1B A2EB
12CDC2DFC DDCFBCDA
3.如图所示,AB∥CD,AD∥BC,则下列各式中正确的是()
DC
A.∠1+∠2>∠3B.∠1+∠2=∠
3C.∠1+∠2<∠3D.∠1+∠2与∠3无关 134.如图所示:AB∥CD,MP∥AB,MN平分∠AMD,AB若∠A=40°,∠D=30°,则∠NMP为()
A.10°B.15°
C.5°D.7.5°
5.一个角的两边与另一个角的两边分别平行,那么这两个角()
A.相等B.互补
C.相等或互补D.不能确定
6.如图所示,△ABC中,∠1=∠2,∠3=∠4,若 ∠D=25°,则∠A=()
A.25°B.50°C.65°D.75°
7.在直角三角形中,其中一个锐角是另一个锐角的 2倍,则这个三角形中最小的角是()C A.15°B.30°C.60°D.90°
8.如图所示,∠
1、∠
2、∠
3、∠4恒满足的关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4-∠3
5C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2-∠
349.学习了平行线后,小敏想出了过已知直线外一点画 这条直线的平行线的新方法,她是通过折一张透明的纸
得到的,如图:
从图中可知,小敏化平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。()
A.①②B.②③C.③④D.①④
10.已知△ABC的三个内角,∠A、∠B、∠C满足关系式:∠B+∠C=2∠A,则此
三角形()
A.一定有一个内角是45°;
B一定有一个内角是60°;
C.一定是直角三角形;
D.一定是钝角三角形。
二、填空题(本大题共8个小题,每小题4分,共32分)
11.命题“邻补角的平分线互相垂直”的条件是____________________,结论
是,这个命题是真命题还是假命题:。
12.一名道路勘测员从A点出发向北偏东60°方向走到B点,再从B点出发向
南偏西15°方向走到C点,则∠ABC的度数是。
13.把命题“相似多边形的面积比等于相似比的平方”改写成如果
14.若一个三角形的三个内角之比为4︰3︰2,则这个三角形的最大内角为A15.如图,BE平分∠ABC,DE∥BC,图中相等的角共 DE有
16.把一张长方形纸片如图所示折叠后,再展开,BC
如果∠1=55°,那么∠2等于。
17.三角形的第二个角是第一个角的1.5倍,第三个角
比这两个角的和大30°,则最大角的度数为。
18.如图所示,三角形的两内角平分线的交角
∠BOC=;两外角平分线的交角∠BO′C=。
三、解答题(本大题共5个小题,共48分)
19.(8分)如图,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDO.20.(8分)如图所示,∠1=∠2,∠3=∠B,FG⊥AC于G,猜想CD与AB的关系,并证明你的猜想。
21.(10分)如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行证明。
22.(10分)如图所示,∠xOy=90°,点A、B分别在坐标轴Ox、Oy上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线交于点C。试问:
∠ACB的大小是否随B、B的移动发生变化?如果保持不变,请给出证明;如
果随A、B的移动发生变化,请给出变化范围。
23.(12分)我们知道:“在三角形的每个顶角处各取一个外角,它们的和就是
这个三角形的外角和”。
(1)猜想三角形的外角和是多少度?证明你的结论。
(2)如果将三角形三条边都向两边延长,并且在每条线上任取两点连接起来,那么在原三角形外又得到三个新三角形,如图所示,猜想:∠A、∠B、∠C、∠
D、∠E、∠G的和是多少?并用(1)的结论证明你的猜想。
第五篇:平行线测试题
性质的有()A、①和②B、③C、④D、③和④
一、填空题
11、如图,L//Q,∠=105°,∠2=140°则∠3=()
1、如图AB∥CE,∠B=42°,∠2=35°,则∠1=()。∠A=()A、55°B、60°C、65°D、70°
2、两条平行线被第三条直线所截,同旁内角的比是4∶5,则这两个角分别是LBA()和()。平行线测试题
3、如图,已知AD//BC,∠1=∠2,说明BD平分∠ABC的道理是:∵AD//BC(),∴∠1=∠3(),又∵∠1=∠2(),∴∠2=∠3,(),∴BD平分∠ABC()。
三、解答题
4、在同一平面内三条直线a、b、c,若a⊥b,b//c,则a()c。
5、如一个角的两边与另一个角的两边互相平行,则这两个角的关系是()。
6、如图,AB//CD,则∠B、∠D、∠E应满足的关系是()。BAAB7、如图,AB//CD//EF,∠ABE=28°,∠DCE=140°,则∠BEC=()。
8、如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=133°31ˊ,则∠1+∠2-∠3=()B
二、选择题、9、若两条平行线被第三条直线所截,则一组内错角的平分线()A、垂直B、平行C、重合D、相交但不垂直 明理由。
10、下列说法:①同位角相等,两直线平行;②内错角相等,两直线平行;③ 两直线平行,同旁内角互补;④平行于同一直线的两直线平行。其中属于平行线
12、如图,AB//CD//EF,那么∠A+∠ACE+∠E等于()A、180°B、270°C、360°D、540°
13、一个人从A点出发向北偏东60°方向走了4米到B点,再从B电向南
偏西15°方向走了3米到C点,那么,∠ABC等于()A、45°B、75°C、105°D、135°
14、完成下列过程:如图,DE//BC,EF//BC,EF//AB,求证:∠1=∠2证明:∵DE//BC(已知)
∴∠1=___________()∵EF//AB(已知)∴∠1=∠2()。
15、如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1,那么,AD平分∠试说明理由。DEAC
BG,DCCGB16、如图,如果∠A=∠C,∠1与∠2互补,那么,AB//CD,试说明理由。B
17、如图,AC⊥BC,DE⊥AC,CD⊥AB,∠1=∠2,判别GF与A B的位置关系?为什么?EDC18、如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系,并说
。BAC,