第一篇:高二数学选修2-2第一章推理与证明单元测试题及答案
高中数学辅导网 http:///
《推理与证明》质量检测试题参赛试卷
陕棉十二厂中学(宏文中学)命题人:司琴霞
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至6页。考试结束后.只将第Ⅱ卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2.由>,,„若a>b>0且m>0,则与之间大小关
10811102521a+ma系为()
A.相等B.前者大 C.后者大D.不确定
3、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。
(A)假设三内角都不大于60度;(B)假设三内角都大于60度;
(C)假设三内角至多有一个大于60度;(D)假设三内角至多有两个大于60度。
5、用数学归纳法证明“(n1)(n2)(nn)212(2n1)”(nN)时,从 “nk到nk1”时,左边应增添的式子是
n
京翰教育网 http:///
A.2k1 D.
2k2k
1()B.2(2k1)
C
.
2k1k1
成立
8、在十进制中20044100010101022103,那么在5进制中数码2004折合成十进制为()
A.29B.254C.602D.20049、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●
○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是()
6、某个命题与正整数n有关,如果当nk(kN)时命题成立,那么可推得当nk1时命题也成立.现已知当n7时该命题不成立,那么可推得
7、已知n为正偶数,用数学归纳法证明1
121314
1n
12(1n
2
1n
4
12n)时,若已假
()
B.当n=6时该命题成立 D.当n=8时该命题成立
A.当n=6时该命题不成立 C.当n=8时该命题不成立
A.12B.13C.14D.1510、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=()A.
21
2()
n1n
设nk(k2为偶
数)时命题为真,则还需要用归纳假设再证
A.nk1时等式成立 C.n2k2时等式成立
n
1B.
212
n1
n
C.
n(n1)2
n
D.1-
B.nk2时等式成立 D.n2(k2)时等式
二、填空题(每小题5分,共4小题,满分20分)
京翰教育网 http:///
11、设等差数列{an}的前n项和为Sn ,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为
T16
Tn,则T4,________,________成等比数列.
T1212、设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则
f(4)=;
三、解答题(共6小题,满分80分)
15、(14分)观察以下各等式:
sin30cos60sin30cos60sin20
cos50sin20cos50
34343
4,sin15cos
45sin15cos45
202000
分析上述各式的共同特点,猜想出反映一般规律的等式,17、当n>4时,表示)。
f(n)=(用含n的数学表达式、从
1=
1,设
a,b,x,y∈R,且
31-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),„,推广到第n个等式为_________________________.18、(13分)已知正数a,b,c成等差数列,且公差d0,,不可能是等差数列。
111abc14、类比平面几何中的勾股定理:若直角三角形ABC中的两边
AB、AC互相垂直,则三角形三边长之间满足关系:
AB
AC
BC
。若三棱锥A-BCD的三个侧面ABC、ACD、ADB20、(14分)已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2,两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为
京翰教育网 http:///
a3,并推测an的表达式;
(2)用数学归纳法证明所得的结论。(14分)
京翰教育网 http:///
数学选修2-2质量检测题参考答案及评分标准
2011.03.10
一、选择题:
T8T1
21二、填空题:11、12、5;(n2)(n1)
T4T8213、14916...(1)
14、n
1.n
2ABD
(1)
n1
.(123...n)
S
2BCD
S
2ABC
S
2ACD
三、解答题:
22
15、猜想:sincos(30)sincos(30)
4………………4分
证明:
sincos(30)sincos(30)
1cos2
2
1cos(602)
sin(302)sin30
00
1
cos(602)cos2
2sin(302)sin30
[sin(302)
..]
1
[sin(302)]22
1
sin(302)
sin(302)
………………………..14分
17、设a=cos,b=sin,x=cos,y=sin,„„„„„4分 则axbycoscossinsin=cos()1„„13分
京翰教育网 http:///
∴2ac=b(c+a)=2b„„„„„5分∴ac=b„„„„„7分∴(b-d)(b+d)= b„„„„„9分∴b+bd-bd-d∴ d
=b„„„„„10分
=0即 d=0这与已知d0矛盾„„„„„11分
2116
故 假设错误,原命题成立。„„„„„13分
19、(1)当n=1时,左=1,右=1,左=右,当n=2时,左=1+
+=,右=2,边
左<右,所以命题成立;„„„„„3分
((1
k))(k
当
k1
nk1)k
时,左
21221
1111k
(k
kk)k2kk1=右边,所以当2222
„„„7分
„„10分
2项
所以nk1时命题正确„„„„„12分
+
京翰教育网 http:///
第二篇:高二数学选修1-2推理与证明测试题及答案
推理与证明
本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分.测试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分)
1.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直
线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
2.下面使用类比推理,得到正确结论的是()
A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
abab(c≠0)” ccc
nn(ab)anbn” 类推出“(ab)anbn” D.“C.“若(ab)cacbc” 类推出“
3.在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为
()
A.29B.254C.602D.2004 012
34.设f0(x)sinx,f1(x)f0(x),f2(x)f1(x),„,fn1(x)fn(x),nN,则f2010(x)=()
A.cosxB.-cosxC.sinxD-sinx
5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
6.下面几种推理是类比推理的是()
A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=1800B.由平面三角形的性质,推测空间四边形的性质
C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D.一切偶数都能被2整除,2100是偶数,所以2100能被2整除.7.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖()块.A.21B.22C.20D.23
8.用反证法证明命题“若整系数一元二次方程ax2bxc0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设中正确的是()
(A)假设a,b,c不都是偶数(B)假设a,b,c都不是偶数(C)假设a,b,c至多有一个是偶数(D)假设a,b,c至多有两个是偶数
9.如果f(ab)f(a)f(b)且f(1)2,则
A.
2f(2)f(4)f(6)
(). f(1)f(3)f(5)
B.
5C.6 D.8
x(xy)3110、定义运算:xy例如344,则()(cos2sin)的最大值为()
24y(xy),A.4B.3C.2D.122
211.下面的四个不等式:①abcabbcca;②a1a
1ab
;③2 ;④4ba
a
b2c2d2acbd.其中不成立的有
A.1个B.2个C.3个D.4个 12.已知f(x1)
2f(x)
(xN*),f(1)1,猜想f(x)的表达式为()
f(x)2
A.f(x)
4212
f(x)f(x)f(x)B.C.D.2x2x1x12x1
二、填空题(本大题共6小题,每小题5分,共30分)
13.已知一列数1,-5,9,-13,17,„„,根据其规律,下一个数应为. 14.下列表述正确的是
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。
15.在数列an中,a11,an1
2an
nN*,猜想这个数列的通项公式是. an
216.平面内2条相交直线最多有1个交点;3条相交直线最多有3个交点;试猜想:n条相交直线最多把
有____________个交点
2343,3+4+5+6+7=5中,可得到一般规律为(用数学表达式17.从11,表示)。
222
18.将全体正整数排成一个三角形数阵:23 456 78910 . . . . . . .
按照以上排列的规律,第n 行(n3)从左向右的第3个数为.
三、解答题(本大题共3小题,共60分.解答应写出文字说明、演算步骤或推证过程)19.(1)求证:当a、b、c为正数时,(abc)(11
1)9.abc
(2)已知n0,试用分析法证明n2n1n1n
(3)已知xR,ax1,b2x2。求证a,b中至少有一个不少于0。
20.在ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列,求证:ABC为等边三角形。
21.已知:0bae,其中e是自然对数的底数。(1)试猜想a与b的大小关系;(2)证明你的结论
b
a
推理与证明测试题参考答案
一、选择题(本大题共12小题,每小题5分,共60分)
二、填空题13.-2114)①③⑤15)
2n(n1)16)n1
2n2n6
17.n(n1)(n2)......(3n2)(2n1)18.三、解答题(本大题共3小题,共60分)19(本大题30分)(1)证明:左边=3
abcbac
…………5分 babcca
因为:a、b、c为正数 所以:左边3
2abcbac22 babcca
32229…………8分
111
…………10分 abc9
abc
(2)证明:要证上式成立,需证n2n2n1…………2分需证(n2n)2(2n1)2需证n1
n22n…………6分
需证(n1)n2n需证n2n1n2n,只需证1>0…………8分
因为1>0显然成立,所以原命题成立…………10分(3)证明:假设a,b中没有一个不少于0,即a0,b0则:ab0…………3分
又abx212x2x22x1(x1)20…………8分 这与假设所得结论矛盾,故假设不成立
所以a,b中至少有一个不少于0…………10分 20(15分)
证明:A、B、C成等差数列
A+C=2B
由A+B+C=1800得:B=600…………4分
2a2c2b2
1即:
2ac2222
baba c①…………8分
又 a、b、c成等比数列
b2ac②…………10分
由①②得:acabac
即:(ac)0ac
ABC是等腰三角形………13分 又 B=600
ABC是等边三角形…………15分 COSB
21.(15分)
解:(1)取a2,b1可知:ab,又当a1,b
b
b
a
1ba
时,ab 2
a
由此猜测ab对一切0bae成立„„„„5分
(2)证明:
要证ab对一切0bae成立
需证lnalnb 需证blnaalnb
b
a
b
a
lnalnb
„„„„10分 ab
lnx
x(0,e)设函数f(x)x
1lnx
f(x),当x(0,e)时,f(x)0恒成立 2
x
需证
f(x)
lnx
在(0,e)上单调递增„„„„13分 x
lnalnb
f(a)f(b)即
ab
„„„„15分
abba
第三篇:高二数学选修2-2《推理与证明测试题》
-202000
sin30cos60sin30cos60
202000
sin20cos50sin20cos50
3,sin15cos45sin15cos45
17、(10分)已知正数a,b,c成等差数列,且公差d0,求证:,不可能是等差数列。
abc18、(14分)已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。
15、猜想:sin2cos2(30)sincos(30)证明:4
1cos21cos(6002)sin(3002)sin300
sincos(30)sincos(30)
222
cos(6002)cos2112sin(3002)sin30011 00
1[sin(302)]1[sin(302)]
222222
3113 00
sin(302)sin(302)
第四篇:高二数学选修1-2《推理与证明测试题》(范文)
高二数学选修1-2《推理与证明测试题》
班级姓名学号得分
一、选择题:
1、与函数yx为相同函数的是()A.yx2B.yx
2xC.yelnxD.ylog2x22、下面使用类比推理正确的是().A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
C.“若(ab)cacbc” 类推出“ab
ca
cb
c(c≠0)”
nnnnnnD.“(ab)ab” 类推出“(ab)ab”
3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。
A.假设三内角都不大于60度;B.假设三内角都大于60度;
C.假设三内角至多有一个大于60度;D.假设三内角至多有两个大于60度。
5、当n1,2,3,4,5,6时,比较2n和n2的大小并猜想()
A.n1时,2nn2B.n3时,2nn
2n2n2C.n4时,2nD.n5时,2n6、已知x,yR,则“xy1”是“xy1”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
7、在下列表格中,每格填上一个数字后,使每一行成等差数
列,每一列成等比数列,则a+b+c的值是()
A.1B.2C.3D.41 228、对“a,b,c是不全相等的正数”,给出两个判断:
①(ab)2(bc)2(ca)20;②ab,bc,ca不能同时成立,下列说法正确的是()
A.①对②错 C.①对②对
B.①错②对
D.①错②错
axcy
()
9、设a,b,c三数成等比数列,而x,y分别为a,b和b,c的等差中项,则
A.1B.2C.3D.不确定
10、定义运算:xy
xy
(xy)(xy),的是()例如344,则下列等式不能成立....
A.xyyxB.(xy)zx(yz)
C.(xy)2x2y2D.c(xy)(cx)(cy)(其中c0)
二、填空题:
11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是。
12、类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:ABAC
BC。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两
两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.13、从11,14(12),149123,14916(1234),„,推广到第n个等式为_________________________.14、已知a13,an1
3anan
3,试通过计算a2,a3,a4,a5的值,推测出an=
三、解答题:
15、在△ABC中,证明:
16、设a,b,x,yR,且a2b21,x2y21,试证:axby1。
17、用反证法证明:如果x
cos2Aa
cos2Bb
1a
1b。
2,那么x22x10。
18、已知数列a1,a2,,a30,其中a1,a2,,a10是首项为1,公差为1的等差数列;
(d0).a10,a11,,a20是公差为d的等差数列;a20,a21,,a30是公差为d的等差数列
(1)若a2040,求d;
(2)试写出a30关于d的关系式,并求a30的取值范围;
(3)续写已知数列,使得a30,a31,,a40是公差为d3的等差数列,„„,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
高二数学选修1-2《推理与证明测试题》答案提示
1——
10、DCABDBAABC11、____14__________
12、SBCD
SABC
SACD
SABD13、1223242„(1)n1n2(1)n1(123n)
14、________
3n
______
cos2Bb15、证明:
cos2Aa
12sin
a
A
12sin
b
B
1a
1bB
sin2Asin2B
2a2b2
由正弦定理得:
cos2Aa
sina
2A
sinb
cos2Bb
1b
a16、证明: 1(a2b2)(x2y2)a2x2a2y2b2x2b2y
2a2x22aybxb2y2(axby)2故axby
117、假设x2x10,则x1
2
2容易看出1要证:1
223212
12,下面证明1。,只需证:2只需证:2
4,2
上式显然成立,故有1综上,x1
2
12。
。而这与已知条件x相矛盾,因此假设不成立,也即原命题成立。
18、解:(1)a1010.a201010d40,d3.(2)a30a2010d2101dd2(d0),a30
1310d,24
当d(,0)(0,)时,a307.5,
.(3)所给数列可推广为无穷数列an,其中a1,a2,,a10是首项为1,公差为1的等差数列,当n1时,数列a10n,a10n1,,a10(n1)是公差为dn的等差数列.研究的问题可以是:
试写出a10(n1)关于d的关系式,并求a10(n1)的取值范围.研究的结论可以是:由a40a3010d3101dd2d3,依次类推可得
a10(n1)101dd
n
n1
1d10,1d10(n1),d1, d1.当d0时,a10(n1)的取值范围为(10,)等.
第五篇:高二文科数学选修1-2《推理与证明》测试题
高二数学选修1-2《推理与证明》测试题
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)
1.如果数列an是等差数列,则A.a1a8a4a5 B.a1a8a4a5 C.a1a8a4a5 D.a1a8a4a
52.下面使用类比推理正确的是
A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
abab(c≠0)” ccc
nn(ab)anbn” 类推出“(ab)anbn” D.“C.“若(ab)cacbc” 类推出“
3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
4.设f0(x)sinx,f1(x)f0(x),f2(x)f1'(x),,fn1(x)fn'(x),n∈N,则f2007(x)
A.sinx B.-sinx
01'C.cosx 23D.-cosx 5.在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为
A.29B.254C.602D.200
41D.1
21ab2222 ;④7.下面的四个不等式:①abcabbcca;②a1a;③4ba6.函数yax21的图像与直线yx相切,则a=A.C.11 B.84
a22b2c2d2acbd.其中不成立的有A.1个B.2个C.3个D.4个
8.抛物线x24y上一点A的纵坐标为4,则点A与抛物线焦点的距离为A.2B.3C.4D.5
9.设 f(x)|x1||x|, 则f[f()]A.
1212B.0 C.1 2 D.110.已知向量a(x5,3), b(2,x),且ab, 则由x的值构成的集合是
A.{2,3}B.{-1, 6}C.{2}D.{6}
11.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
2f(x)(xN*),f(1)1,猜想f(x)的表达式为f(x)2
4212A.f(x)xB.f(x)C.f(x)D.f(x) 22x1x12x112.已知f(x1)
二.解答题:本大题共5小题,每小题8分,共40分.13.证明:2,不能为同一等差数列的三项.14.在△ABC中,sinAsinBsinC,判断△ABC的形状.cosBcosC
15.已知:空间四边形ABCD中,E,F分别为BC,CD的中点,判断直线EF与平面ABD的关系,并证明你的结论.1x)x,求f(x)的最大值.16.已知函数f(x)ln(17.△ABC三边长a,b,c的倒数成等差数列,求证:角B90.三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
18.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:
AB2AC2BC2。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之
间满足的关系为.2343,3+4+5+6+7=5中,可得到一般规律为(用数学表达式表示)19.从11,20.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.21.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用含n的数学表达式表示)
四.解答题.(每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)
21122.在各项为正的数列an中,数列的前n项和Sn满足Snan 2an
(1)求a1,a2,a3;(2)由(1)猜想数列an的通项公式;(3)求Sn
23.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用xn表示某鱼群在第n年年初的总量,nN,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn成正比,这些比例系数依次为正常数a,b,c.(Ⅰ)求xn1与xn的关系式;(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)24.设函数f(x)xsinx(xR).(1)证明:f(x2k)f(x)2ksinx,kZ;
x0
(2)设x0为f(x)的一个极值点,证明[f(x0)].2
1x0
五.解答题.(共8分.从下列题中选答1题,多选按所做的前1题记分)25.通过计算可得下列等式:
221221132222214232231┅┅(n1)2n22n
1将以上各式分别相加得:(n1)12(123n)n即:123n类比上述求法:请你求出123n的值.26.直角三角形的两条直角边的和为a,求斜边的高的最大值 27.已知f(x)(xR)恒不为0,对于任意x1,x2R 等式fx1fx22f
n(n1)
x1x2
2xx2f1恒成立.求证:f(x)是偶函数.2
abc
1ab1c
28.已知ΔABC的三条边分别为a,b,c求证:
高二数学选修1-2 推理与证明测试题答案
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)
二.解答题:本大题共5小题,每小题8分,共40分.13.证明:假设
2、、为同一等差数列的三项,则存在整数m,n满足
3=2+md①=2+nd②
①n-②m得:n-m=2(n-m)两边平方得: 3n+5m-2mn=2(n-m)
左边为无理数,右边为有理数,且有理数无理数 所以,假设不正确。即
2、、不能为同一等差数列的三项 14.ABC是直角三角形; 因为sinA=
sinBsinC
cosBcosC
据正、余弦定理得 :(b+c)(a-b-c)=0; 又因为a,b,c为ABC的三边,所以 b+c0
222
所以 a=b+c 即ABC为直角三角形.15.平行;提示:连接BD,因为E,F分别为BC,CD的中点,EF∥BD.16.提示:用求导的方法可求得f(x)的最大值为0
a2c2b22acb2b2b2b
117.证明:cosB=1 1
2ac2ac2acb(ac)aca,b,c为△ABC三边,acb,1
b
0cosB0 B900.ac
三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
2222
18.SBCDSABCSACDSADB.19.n(n1)(n2)......(3n2)(2n1)2
20.f(2.5)>f(1)>f(3.5)21.5; n+1)(n-2).
四.解答题.(每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)22.(1)a11,a2
(2)annn1;(3)Snn.21,a332;
23.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为
22cxn,因此xn1xnaxnbxncxn,nN*.(*)即xn1xn(ab1cxn),nN*.(**)
(II)若每年年初鱼群总量保持不变,则xn恒等于x1,n∈N*,从而由(*)式得xn(abcxn)恒等于0,nN*,所以abcx10.即x1且仅当a>b,且x1
ab
.因为x1>0,所以a>b.猜测:当c
ab
时,每年年初鱼群的总量保持不变.c
24.证明:1)f(x2k)f(x)(x2k)sin(x2k)-xsinx
(x2k)sinx-xsinx=2ksinx=
2)f(x)sinxxcosx
f(x0)sinx0x0cosx00①又sin2x0cos2x01②
x02x02x042222由①②知sinx0=所以[f(x0)]x0sinx0x0 222
1x01x01x0
五.解答题.(共8分.从下列题中选答1题,多选按所做的前1题记分)25.[解] 21313113232321
4333332331┅┅
(n1)3n33n23n1
将以上各式分别相加得:(n1)3133(122232n2)3(123n)n 所以: 123n
11n
[(n1)31n3n] 32
n(n1)(2n1)
26.a 4
27.简证:令x1x2,则有f01,再令x1x2x即可 28.证明:设f(x)
x,x(0,)1x
设x1,x2是(0,)上的任意两个实数,且x2x10,f(x1)f(x2)
x1xx1x2
2
1x11x2(1x1)(1x2)
x
在(0,)上是增函数。1x
因为x2x10,所以f(x1)f(x2)。所以f(x)由abc0知f(ab)f(c)即
abc
.1ab1c