高二 数学 选修 推理与证明(文)(模版)

时间:2019-05-15 09:37:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高二 数学 选修 推理与证明(文)(模版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高二 数学 选修 推理与证明(文)(模版)》。

第一篇:高二 数学 选修 推理与证明(文)(模版)

高中数学(文)推理与证明

知识要点:

1、合情推理

根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比)。

类比推理的一般步骤:

(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;

(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。

2、演绎推理

分析上述推理过程,可以看出,推理的灭每一个步骤都是根据一般性命题(如“全等三角形”)推出特殊性命题的过程,这类根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理,叫做演绎推理。演绎推理的特征是:当前提为真时,结论必然为真。

3、证明方法

(1)反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。

反证法的步骤:1)假设命题的结论不成立,即假设结论的反面成立;2)从这个假设出发,通过推理论证,得出矛盾;3)由矛盾判定假设不正确,从而肯定命题的结论正确。

注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论。

(2)分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。

分析法的思维特点是:执果索因;

分析法的书写格式: 要证明命题B为真,只需要证明命题为真,从而有„„,这只需要证明命题为真,从而又有„„

这只需要证明命题A为真,而已知A为真,故命题B必为真。

(3)综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法,综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

典例分析:

例1:例5.(1)观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?

(2)把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立:

1)如果一条直线与两条平行直线中的一条相交,则必于另一条相交。

2)如果两条直线同时垂直与第三条直线,则这两条直线平行。

例2:(06年天津)如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱

1EF//BC。

2(1)证明FO//平面CDE;

(2)设BC,证明EO平

面CDF。

例3:(1)用反证法证明:如果a>b>0,那么

(2)用综合法证明:如果a>b>0,那么

; ;

例4:用分析法证明:如果ΔABC的三条边分别为a,b,c,那么:

abc 1ab1c

巩固练习:

1.如果数列an是等差数列,则

A.a1a8a4a5 B.a1a8a4a5 C.a1a8a4a5 D.a1a8a4a

52.下面使用类比推理正确的是

A.“若a3b3,则ab”类推出“若a0b0,则ab”

B.“若(ab)cacbc”类推出“(ab)cacbc”

abab(c≠0)” ccc

nn(ab)anbn” 类推出“(ab)anbn” D.“

3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

结论显然是错误的,是因为

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误C.“若(ab)cacbc” 类推出“

4.设f0(x)sinx,f1(x)f0(x),f2(x)f1'(x),,fn1(x)fn'(x),n∈N,则'

f2007(x)

A.sinx B.-sinx C.cosx D.-cosx

5.在十进制中20044100010101022103,那么在5进制中数码200

4折合成十进制为

A.29B.254C.602D.2004

6.函数yax21的图像与直线yx相切,则a= A.18 B.1 4C.12D.11;③47.下面的四个不等式:①a2b2c2abbcca;②a1a

ab2 ;④a2b2c2d2acbd2.其中不成立的有ba

A.1个B.2个C.3个D.4个

2f(x)(xN*),f(1)1 8.已知f(x1),猜想f(x)的表达式为f(x)2

4212A.f(x)xB.f(x)C.f(x)D.f(x) 22x1x12x1

9.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:AB2AC2BC2。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.23432,3+4+5+6+7=52中,可得到一般规律为10.从112,(用数学表达式表示)

11.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.12.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)

当n>4时,f(n)=(用含n的数学表达式表示)

第二篇:高二数学选修2-2第二章推理与证明

§2.1.1 合情推理

1.结合已学过的数学实例,了解归纳推理的含义;

.一、课前准备

(预习教材P70~ P77,找出疑惑之处)在日常生活中我们常常遇到这样的现象:

(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨;(2)八月十五云遮月,来年正月十五雪打灯.以上例子可以得出推理是的思维过程.二、新课导学

探究任务一:考察下列示例中的推理

问题:因为三角形的内角和是180(32),四边形的内角和是180(42),五边形的内角和是180(52)„„所以n边形的内角和是

新知1:从以上事例可一发现:叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。探究任务二:

问题1:在学习等差数列时,我们是怎么样推导首项为a1,公差为d的等差数列{an}的通项公式的?

新知2 归纳推理就是根据一些事物的,推出该类事物的的推理归纳是的过程 例子:哥德巴赫猜想:

观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7, 16=13+3, 18=11+7, 20=13+7, ……,例2设f(n)nn41,nN计算f(1),f(2),f(3,)...f(10)的值,同时作出归纳推理,并用n=40验证猜想是否正确。

练1.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?

三、总结提升※ 学习小结1.归纳推理的定义.2.归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列关于归纳推理的说法错误的是().A.归纳推理是由一般到一般的一种推理过程B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论具有或然性,不一定正确D.归纳推理具有由具体到抽象的认识功能

2f(x),f(1)1(xN*)2.已知f(x1),猜想f(x)的表达式为().f(x)2421

2A.f(x)xB.f(x)C.f(x)D.f(x)

22x1x12x1111357

3.f(n)1(nN),经计算得f(2),f(4)2,f(8),f(16)3,f(32)

23n222

猜测当n2时,有__________________________.50=13+37, ……, 100=3+97,猜想:归纳推理的一般步骤。2。※ 典型例题

例1用推理的形式表示等差数列1,3,5,7„„2n-1,„„的前n项和Sn的归纳过程。已知1+2=3,1+2+3=6,1+2+3+4=10,„„1+2+3+„„+n=

n(n1),观察下列立方和:13,2

13+23,13+23+33,13+23+33+43,„„试归纳出上述求和的一般公式。

2.1.2演绎推理

2.通项公式为

an=cqncq0的数列

an

是等比数列。并分析证明过程中的三段论

【使用说明及学法指导】

1.先预习教材p78„--p81,然后开始做导学案

2.针对预习提纲,深化对演绎推理的一般形式—“三段论”的理解【学习目标】

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。

了解合情推理与演绎推理之间的联系与差别

【学习难点重点】

教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.1.如图。在ABC中,AC>BC,CD是AB

ACDBCD教学难点:分析证明过程中包含的“三段论”形式.证明:在ABC中【课前预习案 】教材p78„--p81,然后开始做导学案

CDAB,ACBC【自学提纲:(基本概念、公式及方法)】 ADBD

一.基础性知识点,于是ACDBCD.1.演绎推理的定义:_______________________________________________________2.演绎推理是由___________到___________的推理; 指出以上证明过程中的错误 3.“__________________”是演绎推理的一般模式;包括【提醒】:演绎推理错误的主要原因是

⑴____________---____________________;1.大前提不成立;2, 小前提不符合大前提的条件。⑵____________---____________________;

2、把下列推理恢复成完全的三段论:

⑶____________---_____________________. 4.三段论的基本格式

(1)因为ABC三边长依次为3,4,5,所以ABC是直角三角形;

M—P(M是P)(_________)S—M(S是M)(________)(2)函数y2x5的图象是一条直线.S—P(S是P)(_________)

用集合的观点来理解:______________________________________________________二.课前检测.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为()

A.大前提错误 B.小前提错误C.推理形式错误 D.非以上错误3.用三段论证明:在梯形ABCD中ADBC,ABDC,则BC

2、已知lg2m,计算lg0.8

1.把“函数yx2x1的图象是一条抛物线”恢复成完全三段论。

2.2.1综合法和分析法

【学习目标】

结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。【重点难点】

1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2.会用综合法证明问题;了解综合法的思考过程。

3.根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。【知识梳理】

复习1两类基本的证明方法:和。复习2 直接证明的两中方法:和。知识点一综合法的应用

一般地,利用,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法。

反思框图表示要点顺推证法;由因导果。例1 已知a,b,cR,abc1,求证:9

变式已知a,b,cR,abc1,求证(1)(1)(1)8。

小结用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明。知识点二分析法的应用

证明:基本不等式新知:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.反思:框图表示

要点:逆推证法;执果索因 ※ 典型例题

2变式:求证

小结:证明含有根式的不等式时,用综合法比较困难,所以我们常用分析法探索证明的途径.例2 设在四面体PABC中,ABC90,PAPBPC,D是AC的中点.求证:PD垂直于ABC所在的平面。

小结解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来。

1.已知a,b,c是全不相等的正实数,求证

2.在△ABC中,证明

cos2Acos2B1

1。2222

abab

bcaacbabc

3。abc

a1b1c

1a1b1c

ab

(a0,b0)2

2.2.2反证法

学习目标

(1)使学生了解反证法的基本原理;(2)掌握运用反证法的一般步骤;(3)学会用反证法证明一些典型问题.【概念形成】

反证法的思维方法:正难则反

反证法定义:一般地,由证明p

q与假设矛盾,或与某个真命题矛盾。从而判定为假,推出为真的方法,叫做反证法。

【例题分析例

1、已知a,b,cR,abc0,abc1.求证:a,b,c中至少有一个大于

(4结论为 “唯一”类命题;

课后练习与提高

一、选择题

1.用反证法证明命题:若整系数一元二次方程ax2bxc0(a0)有有理根,那么a,b,c中至少有一个是偶数时,下列假设中正确的是()

A.假设a,b,c都是偶数 B.假设a,b,c都不是偶数

C.假设a,b,c至多有一个是偶数 D.假设a,b,c至多有两个是偶数

2.(1)已知p3q32,求证pq≤2,用反证法证明时,可假设pq≥2,(2)已知a,bR,ab1,求证方程x2axb0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设x1≥1,以下结论正确的是()A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确

C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确

3.命题“三角形中最多只有一个内角是钝角”的结论的否定是()A.有两个内角是钝角B.有三个内角是钝角 C.至少有两个内角是钝角 D.没有一个内角是钝角

二、填空题

4..三角形ABC中,∠A,∠B,∠C至少有1个大于或等于60的反面为_______. 5.已知A为平面BCD外的一点,则AB、CD是异面直线的反面为_______.

三、解答题

6.

3。

2例2.设ab2,求证ab2.反思总结:

1.反证法的基本步骤:

(1)假设命题结论不成立,即假设结论的反面成立;(2)从这个假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,从而肯定命题的结论正确

2.归缪矛盾:

(1)与已知条件矛盾;

(2)与已有公理、定理、定义矛盾;(3)自相矛盾。

3.应用反证法的情形:

(1)直接证明困难;(2)需分成很多类进行讨论;

(3)结论为“至少”、“至多”、“有无穷多个” 类命题;

2.3数学归纳法

教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.1.教学数学归纳法概念:

给出定义:归纳法:由一些特殊事例推出一般结论的推理方法.特点:由特殊→一般.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.2、典例分析

题型

一、用数学归纳法证明恒等式

1、例1数学归纳法证明13+23+33+„+n3=

题型

二、用数学归纳法证明不等式 例

2、归纳法证明

题型

三、用数学归纳法证明几何问题 例3.平面内有n(nN*)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成nn2个部分.题型

四、用数学归纳法证明整除问题

4、用数学归纳法证明32n2-8 n-9nN能被64整除.

用数学归纳法证明(3n1)7n1(nN)能被9整除

2n(n+1)2

4题型五 归纳、猜想、证明 例5.是否存在常数a,b,c使等式

1·222·323·42„nn1

11119…>(n>1,且nN). n1n2n33n10

并证明你的结论。

nn11

2an

bnc对一切自然数n都成立,

六、强化训练

1.用数学归纳法证明“1+x+x2+„+xn1=

第二章 推理与证明知识点:

1、归纳推理:把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。归纳推理的一般步骤:

通过观察个别情况发现某些相同的性质;

从已知的相同性质中推出一个明确表述的一般命题(猜想); 证明(视题目要求,可有可无).2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:

找出两类对象之间可以确切表述的相似特征;

用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; 检验猜想。

3、合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.4、演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理. 简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括:⑴大前提-----已知的一般原理;⑵小前提-----所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.

5、直接证明与间接证明

⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法.反证法法证明一个命题的一般步骤:

(1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止;(3)(归谬)断言假设不成立;(4)(结论)肯定原命题的结论成立.6、数学归纳法

数学归纳法是证明关于正整数n的命题的一种方法.用数学归纳法证明命题的步骤;

*

(1)(归纳奠基)证明当n取第一个值n0(n0N)时命题成立;

*

(2)(归纳递推)假设nk(kn0,kN)时命题成立,推证当nk1时命题也成立.只要完成了这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.1x1x

n2

x1,nN”成立时,验证n=1的过

程中左边的式子是()(A)1(B)1+x(C)1+x+x2(D)1+x+x2+x3+„+x2

6.用数学归纳法证明

11111111

(nN),则从k到k+1时,1-+-

2342n12nn1n22n左边应添加的项为

111111

(A)(B)(C)-(D)-

2k12k22k12k22k22k4

8.如果命题p(n)对nk成立,那么它对nk2也成立,又若p(n)对n2成立,则下列

结论正确的是()

A.p(n)对所有自然数n成立B.p(n)对所有正偶数n成立 C.p(n)对所有正奇数n成立D.p(n)对所有大于1的自然数n成立

1222

10.证明

1335

n2n(n1)

,nN*(2n1)(2n1)2(2n1)

15.用数学归纳法证明:(3n1)71(nN)能被9整除

16.是否存在常数a,b,c使等式1(n1)2(n2)n(nn)anbnc 对一切正整数n都成立?证明你的结论。

17.数列

n

an的前n项和Sn2nan,先计算数列的前4项,后猜想an并证明之.

第三篇:高二数学选修2-2《推理与证明测试题》

-202000

sin30cos60sin30cos60

202000

sin20cos50sin20cos50

3,sin15cos45sin15cos45

17、(10分)已知正数a,b,c成等差数列,且公差d0,求证:,不可能是等差数列。

abc18、(14分)已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。

15、猜想:sin2cos2(30)sincos(30)证明:4

1cos21cos(6002)sin(3002)sin300

sincos(30)sincos(30)

222

cos(6002)cos2112sin(3002)sin30011 00

1[sin(302)]1[sin(302)]

222222

3113 00

sin(302)sin(302)

第四篇:高二文科数学选修1-2《推理与证明》测试题

高二数学选修1-2《推理与证明》测试题

一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)

1.如果数列an是等差数列,则A.a1a8a4a5 B.a1a8a4a5 C.a1a8a4a5 D.a1a8a4a

52.下面使用类比推理正确的是

A.“若a3b3,则ab”类推出“若a0b0,则ab”

B.“若(ab)cacbc”类推出“(ab)cacbc”

abab(c≠0)” ccc

nn(ab)anbn” 类推出“(ab)anbn” D.“C.“若(ab)cacbc” 类推出“

3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

4.设f0(x)sinx,f1(x)f0(x),f2(x)f1'(x),,fn1(x)fn'(x),n∈N,则f2007(x)

A.sinx B.-sinx

01'C.cosx 23D.-cosx 5.在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为

A.29B.254C.602D.200

41D.1

21ab2222 ;④7.下面的四个不等式:①abcabbcca;②a1a;③4ba6.函数yax21的图像与直线yx相切,则a=A.C.11 B.84

a22b2c2d2acbd.其中不成立的有A.1个B.2个C.3个D.4个 

8.抛物线x24y上一点A的纵坐标为4,则点A与抛物线焦点的距离为A.2B.3C.4D.5

9.设 f(x)|x1||x|, 则f[f()]A.

1212B.0 C.1 2 D.110.已知向量a(x5,3), b(2,x),且ab, 则由x的值构成的集合是

A.{2,3}B.{-1, 6}C.{2}D.{6}

11.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 

2f(x)(xN*),f(1)1,猜想f(x)的表达式为f(x)2

4212A.f(x)xB.f(x)C.f(x)D.f(x) 22x1x12x112.已知f(x1)

二.解答题:本大题共5小题,每小题8分,共40分.13.证明:2,不能为同一等差数列的三项.14.在△ABC中,sinAsinBsinC,判断△ABC的形状.cosBcosC

15.已知:空间四边形ABCD中,E,F分别为BC,CD的中点,判断直线EF与平面ABD的关系,并证明你的结论.1x)x,求f(x)的最大值.16.已知函数f(x)ln(17.△ABC三边长a,b,c的倒数成等差数列,求证:角B90.三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。

18.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:

AB2AC2BC2。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之

间满足的关系为.2343,3+4+5+6+7=5中,可得到一般规律为(用数学表达式表示)19.从11,20.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.21.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用含n的数学表达式表示)

四.解答题.(每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)

21122.在各项为正的数列an中,数列的前n项和Sn满足Snan 2an

(1)求a1,a2,a3;(2)由(1)猜想数列an的通项公式;(3)求Sn

23.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用xn表示某鱼群在第n年年初的总量,nN,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn成正比,这些比例系数依次为正常数a,b,c.(Ⅰ)求xn1与xn的关系式;(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)24.设函数f(x)xsinx(xR).(1)证明:f(x2k)f(x)2ksinx,kZ;

x0

(2)设x0为f(x)的一个极值点,证明[f(x0)].2

1x0

五.解答题.(共8分.从下列题中选答1题,多选按所做的前1题记分)25.通过计算可得下列等式:

221221132222214232231┅┅(n1)2n22n

1将以上各式分别相加得:(n1)12(123n)n即:123n类比上述求法:请你求出123n的值.26.直角三角形的两条直角边的和为a,求斜边的高的最大值 27.已知f(x)(xR)恒不为0,对于任意x1,x2R 等式fx1fx22f

n(n1)

x1x2



2xx2f1恒成立.求证:f(x)是偶函数.2

abc

1ab1c

28.已知ΔABC的三条边分别为a,b,c求证:

高二数学选修1-2 推理与证明测试题答案

一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)

二.解答题:本大题共5小题,每小题8分,共40分.13.证明:假设

2、、为同一等差数列的三项,则存在整数m,n满足

3=2+md①=2+nd②

①n-②m得:n-m=2(n-m)两边平方得: 3n+5m-2mn=2(n-m)

左边为无理数,右边为有理数,且有理数无理数 所以,假设不正确。即

2、、不能为同一等差数列的三项 14.ABC是直角三角形; 因为sinA=

sinBsinC

cosBcosC

据正、余弦定理得 :(b+c)(a-b-c)=0; 又因为a,b,c为ABC的三边,所以 b+c0

222

所以 a=b+c 即ABC为直角三角形.15.平行;提示:连接BD,因为E,F分别为BC,CD的中点,EF∥BD.16.提示:用求导的方法可求得f(x)的最大值为0

a2c2b22acb2b2b2b

117.证明:cosB=1 1

2ac2ac2acb(ac)aca,b,c为△ABC三边,acb,1

b

0cosB0 B900.ac

三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。

2222

18.SBCDSABCSACDSADB.19.n(n1)(n2)......(3n2)(2n1)2

20.f(2.5)>f(1)>f(3.5)21.5; n+1)(n-2).

四.解答题.(每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)22.(1)a11,a2

(2)annn1;(3)Snn.21,a332;

23.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为

22cxn,因此xn1xnaxnbxncxn,nN*.(*)即xn1xn(ab1cxn),nN*.(**)

(II)若每年年初鱼群总量保持不变,则xn恒等于x1,n∈N*,从而由(*)式得xn(abcxn)恒等于0,nN*,所以abcx10.即x1且仅当a>b,且x1

ab

.因为x1>0,所以a>b.猜测:当c

ab

时,每年年初鱼群的总量保持不变.c

24.证明:1)f(x2k)f(x)(x2k)sin(x2k)-xsinx

(x2k)sinx-xsinx=2ksinx=

2)f(x)sinxxcosx

f(x0)sinx0x0cosx00①又sin2x0cos2x01②

x02x02x042222由①②知sinx0=所以[f(x0)]x0sinx0x0 222

1x01x01x0

五.解答题.(共8分.从下列题中选答1题,多选按所做的前1题记分)25.[解] 21313113232321

4333332331┅┅

(n1)3n33n23n1

将以上各式分别相加得:(n1)3133(122232n2)3(123n)n 所以: 123n

11n

[(n1)31n3n] 32

n(n1)(2n1)

26.a 4

27.简证:令x1x2,则有f01,再令x1x2x即可 28.证明:设f(x)

x,x(0,)1x

设x1,x2是(0,)上的任意两个实数,且x2x10,f(x1)f(x2)

x1xx1x2

2

1x11x2(1x1)(1x2)

x

在(0,)上是增函数。1x

因为x2x10,所以f(x1)f(x2)。所以f(x)由abc0知f(ab)f(c)即

abc

.1ab1c

第五篇:高二数学选修1-2《推理与证明测试题》(范文)

高二数学选修1-2《推理与证明测试题》

班级姓名学号得分

一、选择题:

1、与函数yx为相同函数的是()A.yx2B.yx

2xC.yelnxD.ylog2x22、下面使用类比推理正确的是().A.“若a3b3,则ab”类推出“若a0b0,则ab”

B.“若(ab)cacbc”类推出“(ab)cacbc”

C.“若(ab)cacbc” 类推出“ab

ca

cb

c(c≠0)”

nnnnnnD.“(ab)ab” 类推出“(ab)ab”

3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。

A.假设三内角都不大于60度;B.假设三内角都大于60度;

C.假设三内角至多有一个大于60度;D.假设三内角至多有两个大于60度。

5、当n1,2,3,4,5,6时,比较2n和n2的大小并猜想()

A.n1时,2nn2B.n3时,2nn

2n2n2C.n4时,2nD.n5时,2n6、已知x,yR,则“xy1”是“xy1”的()

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

7、在下列表格中,每格填上一个数字后,使每一行成等差数

列,每一列成等比数列,则a+b+c的值是()

A.1B.2C.3D.41 228、对“a,b,c是不全相等的正数”,给出两个判断:

①(ab)2(bc)2(ca)20;②ab,bc,ca不能同时成立,下列说法正确的是()

A.①对②错 C.①对②对

B.①错②对

D.①错②错

axcy

()

9、设a,b,c三数成等比数列,而x,y分别为a,b和b,c的等差中项,则

A.1B.2C.3D.不确定

10、定义运算:xy

xy

(xy)(xy),的是()例如344,则下列等式不能成立....

A.xyyxB.(xy)zx(yz)

C.(xy)2x2y2D.c(xy)(cx)(cy)(其中c0)

二、填空题:

11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是。

12、类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:ABAC

BC。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两

两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.13、从11,14(12),149123,14916(1234),„,推广到第n个等式为_________________________.14、已知a13,an1

3anan

3,试通过计算a2,a3,a4,a5的值,推测出an=

三、解答题:

15、在△ABC中,证明:

16、设a,b,x,yR,且a2b21,x2y21,试证:axby1。

17、用反证法证明:如果x

cos2Aa

cos2Bb

1a

1b。

2,那么x22x10。

18、已知数列a1,a2,,a30,其中a1,a2,,a10是首项为1,公差为1的等差数列;

(d0).a10,a11,,a20是公差为d的等差数列;a20,a21,,a30是公差为d的等差数列

(1)若a2040,求d;

(2)试写出a30关于d的关系式,并求a30的取值范围;

(3)续写已知数列,使得a30,a31,,a40是公差为d3的等差数列,„„,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?

高二数学选修1-2《推理与证明测试题》答案提示

1——

10、DCABDBAABC11、____14__________

12、SBCD

SABC

SACD

SABD13、1223242„(1)n1n2(1)n1(123n)

14、________

3n

______

cos2Bb15、证明:

cos2Aa



12sin

a

A

12sin

b

B

1a

1bB

sin2Asin2B

2a2b2



由正弦定理得:

cos2Aa

sina

2A

sinb



cos2Bb

1b

a16、证明: 1(a2b2)(x2y2)a2x2a2y2b2x2b2y

2a2x22aybxb2y2(axby)2故axby

117、假设x2x10,则x1

2

2容易看出1要证:1

223212

12,下面证明1。,只需证:2只需证:2

4,2

上式显然成立,故有1综上,x1

2

12。

。而这与已知条件x相矛盾,因此假设不成立,也即原命题成立。

18、解:(1)a1010.a201010d40,d3.(2)a30a2010d2101dd2(d0),a30

1310d,24

当d(,0)(0,)时,a307.5,

.(3)所给数列可推广为无穷数列an,其中a1,a2,,a10是首项为1,公差为1的等差数列,当n1时,数列a10n,a10n1,,a10(n1)是公差为dn的等差数列.研究的问题可以是:

试写出a10(n1)关于d的关系式,并求a10(n1)的取值范围.研究的结论可以是:由a40a3010d3101dd2d3,依次类推可得

a10(n1)101dd

n

n1

1d10,1d10(n1),d1, d1.当d0时,a10(n1)的取值范围为(10,)等.

下载高二 数学 选修 推理与证明(文)(模版)word格式文档
下载高二 数学 选修 推理与证明(文)(模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    C5高二文科数学选修1-2推理与证明训练

    C5高二文科数学周末训练卷------选修1-2《推理与证明》一、选择题1. 下列表述正确的是.①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般......

    证明文(精选五篇)

    证明位于X市X街道X村楼下组X号厂房,所有权属X所有,系非城镇房屋,不属违法、违章建筑,因在办理相关手续,暂无办理房产证。特此证明!(盖章) 2013年月日......

    高二数学选修1-2推理与证明测试题及答案 [合集五篇]

    推理与证明本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分.测试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分)1. 有一段演绎推理是这样的:“直线平行于平面,......

    丰县民族中学高二数学选修1-2推理与证明测试题(汇编)

    lzh 第 1 页 2013-5-3丰县民族中学高二文科数学选修1-2《推理与证明测试题》班级姓名学号得分一、填空题:1、数列1,3,6,10,的一个通项公式是an2、已知a13,an13an,试通过计算a2,a......

    高二数学选修2-2第一章推理与证明单元测试题及答案

    高中数学辅导网 http:///《推理与证明》质量检测试题参赛试卷陕棉十二厂中学(宏文中学)命题人:司琴霞本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至6......

    高二数学单元练习(推理与证明)

    高二数学单元练习(推理与证明)一.选择题:1、 下列表述正确的是.①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由......

    高二数学1-2推理与证明测试题

    高二数学选修1-2推理与证明测试题一.选择题:1.如果数列an是等差数列,则A.a1a8a4a5 B. a1a8a4a5 C.a1a8a4a5 D.a1a8a4a52.下面使用类比推理正确的是A.“若a3b3,则ab”类推出“......

    数学选修2-2_推理与证明例题1

    知识要点分析:1. 推理根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设),叫做前提,一部分是由已知推出的判断......