第一篇:C5高二文科数学选修1-2推理与证明训练
C5高二文科数学周末训练卷------选修1-2《推理与证明》
一、选择题
1.下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④; C.②④⑤; D.①③⑤.2.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线
b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 3.下列推理是归纳推理的是()
A.A、B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
22xy222
2C.由圆x+y=r的面积πr,猜出椭圆22=1的面积S=πab
ab
D.科学家利用鱼的沉浮原理制造潜艇
4.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知相同,也相同,下列正确的是:
A. l1与l2重合B. l1与l2一定平行C .l1与l2相交于点(,)D. 无法判断l1和l2是否相交 5.设x1,yx
10、把正整数按下图所示的规律排序,则从2003到2005 的箭头方向依次为
二、填空题
11.如图(1)有面积关系
SPA1B1SPABVPA1B1C1PA1PB
1,则图(2)有体积关系_______________
PAPBVPABC
4的最小值是()A2B3C4D5 x1
6.已知{bn}为等比数列,b52,则b1b2b929。若an为等差数列,a52,则an的类似结论为
A a1a2a929B a1a2a929C a1a2a929D a1a2a929
7.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为(A)-1(B)0(C)1(D)
2PA1A
图1图2 12、若f(ab)f(a)f(b)(a,bN),且f(1)2,则
13、已知数列an的通项公式an
C
A
f(2)f(4)f(2012)
f(1)f(3)f(2011)
(nN),记f(n)(1a1)(1a2)(1an),试
2(n1)
______.通过计算f(1),f(2),f(3)的值,推测出f(n)__________观察下列等式:
(11)2
1(21)(22)2213(31)(32)(33)2313
5x(xy)31
8.定义运算xy,例如344,则()(cos2sin)的最大值是()
24y(xy)
A4B3C2D19、对于直线m,n和平面、β,⊥β的一个充分条件是()A.m⊥n,m∥,n∥βB.m⊥n,∩β=m,n C.m∥n,n⊥β,mD.m∥n,m⊥,n⊥β
照此规律, 第n个等式可为________.15、若直线y=kx与曲线y=lnx相切,则k=.三、解答题
16、数列an的前n项和记为Sn,已知a11,an1证明:⑴数列
17、设f(x)
n
2sn(n1,2,3).n
18.已知函数f(x)x2xsinxcosx.(Ⅰ)若曲线yf(x)在点(a,f(a)))处与直线yb相切,求a与b的值.(Ⅱ)若曲线yf(x)与直线yb 有两个不同的交点,求b的取值范围.2x132
f(x)xeaxbx19、设函数,已知x2和x1为f(x)的极值点.
sn
是等比数列;⑵sn14an.n
122
x,先分别求得可求得f(0)f(1),f(1)f(2),f(2)f(3),然后归
(Ⅰ)求a和b的值;(Ⅱ)讨论f(x)的单调性;(Ⅲ)设大小.g(x)
xx23,试比较f(x)与g(x)的纳出一般性的结论,并给出证明.
第二篇:高二文科数学合情推理与证明训练
高二文科数学选修1-2《推理与证明》训练
1.下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④; C.②④⑤; D.①③⑤.2.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
3.下面使用类比推理正确的是().A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
C.“若(ab)cacbc” 类推出“ab
ca
cb
c平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为b平面,直线a(c≠0)”
nnnnnnD.“(ab)ab” 类推出“(ab)ab”
4.观察下列数的特点
1,2,2,3,3,3,4,4,4,4,„ 中,第100项是A.10B.13C.14D.100
5.否定“自然数a,b,c中恰有一个偶数”时正确的反设为A a,b,c都是奇数B a,b,c都是偶数Ca,b,c中至少有两个偶数Da,b,c都是奇数或至少有两个偶数 6.设x1,yx
4x1的最小值是()A2B3C4D
5b
aa
b227.下列命题:①a,b,cR,ab,则acbc;②a,bR,ab0,则③a,bR,ab,则a2;nb;n
④ab,cd,则a
cb
d.A0B1C2D
38.在十进制中20044100010101022103,那么在5进制中数码2004折合成十进制为()
A29B254C602D2004
7.已知{bn}为等比数列,b52,则b1b2b929。若an为等差数列,a52,则an的类似结论为
A a1a2a929 B a1a2a929C a1a2a929 D a1a2a929
8.已知函a,b,c均大于1,且logaclogbc4,则下列等式一定正确的是()
AacbBabcCbcaDabc
9.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提是A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形 D.矩形都是对边平行且相等的四边形
x(xy)
y(xy)10.定义运算xy,例如344,则(3
2)(cos2sin
14)的最大值是()
A4B3C2D1
11.如图(1)有面积关系
P
SPA1B1SPAB
PA1PB1PAPB,则图(2)有体积关系
VPA1B1C1VPABC
_______________
C
A1
A
A
图1图
212.对于直线m,n和平面α、β,α⊥β的一个充分条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊆α
C.m∥n,n⊥β,m⊆αD.m∥n,m⊥α,n⊥β
13.命题“如果数列{an}的前n项和Sn=2n-3n,那么数列{an}一定是等差数列”是否成立 A.不成立B.成立C.不能断定D.能断定
14.把下面在平面内成立的结论类比地推广到空间,结论还正确的是(A)如果一条直线与两条平行线中的一条相交,则比与另一条相交(B)如果一条直线与两条平行线中的一条垂直,则比与另一条垂直.(C)如果两条直线同时与第三条直线相交,则这两条直线相交.(D)如果两条直线同时与第三条直线垂直,则这两条直线平行
15.观察下列各式:5=3125,5=15625,5=78125,…,则5A.3125B.5625C.0625D.8125 16 下列推理是归纳推理的是()
201
1的末四位数字为
A.A、B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆 B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
x2y
2C.由圆x+y=r的面积πr,2+21的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇
ab如图,把1,3,6,10,15,„这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形,则第七个三角形数是
A.27B.28C.29D.30
18.已知m、n是异面直线,m平面a,n平面,l,则l与()(A)与m、n都相交(B)与m、n中至少一条相交(C)与m、n都不相交(D)至多与m、n中一条相交 19.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为
(A)-1(B)0(C)1(D)
220.在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB+AC=BC”拓展到空间,类比平面几何的勾股定理,“设三棱锥A—BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”()
(A)AB+AC+ AD=BC+ CD+ BD
22222
2(B)S2ABCS2ACDS2ADBS2BCD
2222222222
(C)SSACDSADBSBCD(D)AB×AC×AD=BC ×CD ×BD ABC
21.已知a、b、c都为正数,那么对任意正数a、b、c,三个数a
1b,b
1c,c
1a
(A)都不大于2(B)都不小于2(C)至少有一个不大于2(D)至少有一个不小于2 22.比较大小
7
6
5,分析其结构特点,请你再写出一个类似的不等
式:;请写出一个更一般的不等式,使以上不等式为它的特殊情况,则该不等式可以是.
··
2123.无限循环小数为有理数,如:0.1,0.23,0.456,… 观察0.1=,0.2=,0.3=,…,则可归纳
3·
··
···
·
··
出0.23=________.24.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,„,第n次全行的数都为1的是第行;第61行中1的个数是. 第1行11 第2行101 第3行1111第4行10001第5行110011
„„„„„„„„„„„„„„„„„图1
25.已知椭圆具有性质:若M,N是椭圆上关于原点对称的两个点,点P是椭圆上的任意一点,当直线
xa
PM,PN的斜率都存在时,则kPMkPN是与点P位置无关的定值,试对双曲线
yb
1写出具有类似
特性的性质:_____
26、设函数f(x)是定义在R上的奇函数,且yf(x)的图像关于直线xf(1)f(2)f(3)f(4)f(5)______________.27.通过计算可得下列等式:
2222222
2212113222143231┅┅(n1)n2n1 将以上各式分别相加得:(n1)12(123n)n 即:123n
n(n1)
对称,则
类比上述求法:请你求出123n的值..
42222
28.设0 < a, b, c < 1,求证:(1 a)b,(1 b)c,(1 c)a,不可能同时大于
29.求证:(1)a2
b3ab
ab);(2)
6+7>22+5。
30.用分析法证明:若a>0,则31. 在DEF中有余弦定理:DE
1a22-≥a+2.(13分)
aa
DF
EF
2DFEFcosDFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱ABC-A1B1C1的3个侧面面积与其中两个侧面所成二面角之间的关系式,并予以证明.32.已知函数y=x++∞)上是增函数.(1)如果函数y=x+
b
ax
有如下性质:如果常数a>0,那么该函数在(0,a]上是减函数,在[a,x
(x>0)的值域为[6,+∞),求b的值;(2)研究函数y=x2+
ax
cx
(常
数c>0)在定义域内的单调性,并说明理由; 3)对函数y=x+和y=x2+
ax
(常数a>0)作出
推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),33.数列an的前n项和记为sn,已知a11,an1证明:⑴数列
sn
是等比数列;⑵sn14an n
1(n1)
n2n
sn(n1,2,3).34.已知数列an的通项公式an
(nN),记f(n)(1a1)(1a2)(1an),试通
过计算f(1),f(2),f(3)的值,推测出f(n)________________.35.设f(x)
12
x,利用课本中推导等差数列前n项和公式的方法,可求得2
54,求证:14x
154x
-2。
f(5)f(4)f(0)f(5)f(6)的值是______ 17.若x
s
36.设{an}是集合{2t2|0st且,st,Z
中的所有的数从小到大排成的数列,即
a13,a25,a36,a49,a510,a612,,将数列{an}各项按照上小下大,左小右大的原则写成如下三角形数表:56
91012
__________________ ⑴写出这个三角形数表的第四行、第五行各数;⑵求a100.37、已知正数a、b、c成等差数列,且公差不为0,求证:
1a2n
an
411
1,不可能成等差数列。abc1438、设数列{an}的首项a1a
14,且an1
n为偶数n为奇数,记bna2n1,n1,2,3,,(1)
求a2,a3;(2)判断数列{bn}是否为等比数列并证明。
第三篇:高二文科数学选修1-2《推理与证明》测试题
高二数学选修1-2《推理与证明》测试题
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)
1.如果数列an是等差数列,则A.a1a8a4a5 B.a1a8a4a5 C.a1a8a4a5 D.a1a8a4a
52.下面使用类比推理正确的是
A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
abab(c≠0)” ccc
nn(ab)anbn” 类推出“(ab)anbn” D.“C.“若(ab)cacbc” 类推出“
3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
4.设f0(x)sinx,f1(x)f0(x),f2(x)f1'(x),,fn1(x)fn'(x),n∈N,则f2007(x)
A.sinx B.-sinx
01'C.cosx 23D.-cosx 5.在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为
A.29B.254C.602D.200
41D.1
21ab2222 ;④7.下面的四个不等式:①abcabbcca;②a1a;③4ba6.函数yax21的图像与直线yx相切,则a=A.C.11 B.84
a22b2c2d2acbd.其中不成立的有A.1个B.2个C.3个D.4个
8.抛物线x24y上一点A的纵坐标为4,则点A与抛物线焦点的距离为A.2B.3C.4D.5
9.设 f(x)|x1||x|, 则f[f()]A.
1212B.0 C.1 2 D.110.已知向量a(x5,3), b(2,x),且ab, 则由x的值构成的集合是
A.{2,3}B.{-1, 6}C.{2}D.{6}
11.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
2f(x)(xN*),f(1)1,猜想f(x)的表达式为f(x)2
4212A.f(x)xB.f(x)C.f(x)D.f(x) 22x1x12x112.已知f(x1)
二.解答题:本大题共5小题,每小题8分,共40分.13.证明:2,不能为同一等差数列的三项.14.在△ABC中,sinAsinBsinC,判断△ABC的形状.cosBcosC
15.已知:空间四边形ABCD中,E,F分别为BC,CD的中点,判断直线EF与平面ABD的关系,并证明你的结论.1x)x,求f(x)的最大值.16.已知函数f(x)ln(17.△ABC三边长a,b,c的倒数成等差数列,求证:角B90.三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
18.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:
AB2AC2BC2。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之
间满足的关系为.2343,3+4+5+6+7=5中,可得到一般规律为(用数学表达式表示)19.从11,20.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.21.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用含n的数学表达式表示)
四.解答题.(每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)
21122.在各项为正的数列an中,数列的前n项和Sn满足Snan 2an
(1)求a1,a2,a3;(2)由(1)猜想数列an的通项公式;(3)求Sn
23.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用xn表示某鱼群在第n年年初的总量,nN,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn成正比,这些比例系数依次为正常数a,b,c.(Ⅰ)求xn1与xn的关系式;(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)24.设函数f(x)xsinx(xR).(1)证明:f(x2k)f(x)2ksinx,kZ;
x0
(2)设x0为f(x)的一个极值点,证明[f(x0)].2
1x0
五.解答题.(共8分.从下列题中选答1题,多选按所做的前1题记分)25.通过计算可得下列等式:
221221132222214232231┅┅(n1)2n22n
1将以上各式分别相加得:(n1)12(123n)n即:123n类比上述求法:请你求出123n的值.26.直角三角形的两条直角边的和为a,求斜边的高的最大值 27.已知f(x)(xR)恒不为0,对于任意x1,x2R 等式fx1fx22f
n(n1)
x1x2
2xx2f1恒成立.求证:f(x)是偶函数.2
abc
1ab1c
28.已知ΔABC的三条边分别为a,b,c求证:
高二数学选修1-2 推理与证明测试题答案
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)
二.解答题:本大题共5小题,每小题8分,共40分.13.证明:假设
2、、为同一等差数列的三项,则存在整数m,n满足
3=2+md①=2+nd②
①n-②m得:n-m=2(n-m)两边平方得: 3n+5m-2mn=2(n-m)
左边为无理数,右边为有理数,且有理数无理数 所以,假设不正确。即
2、、不能为同一等差数列的三项 14.ABC是直角三角形; 因为sinA=
sinBsinC
cosBcosC
据正、余弦定理得 :(b+c)(a-b-c)=0; 又因为a,b,c为ABC的三边,所以 b+c0
222
所以 a=b+c 即ABC为直角三角形.15.平行;提示:连接BD,因为E,F分别为BC,CD的中点,EF∥BD.16.提示:用求导的方法可求得f(x)的最大值为0
a2c2b22acb2b2b2b
117.证明:cosB=1 1
2ac2ac2acb(ac)aca,b,c为△ABC三边,acb,1
b
0cosB0 B900.ac
三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
2222
18.SBCDSABCSACDSADB.19.n(n1)(n2)......(3n2)(2n1)2
20.f(2.5)>f(1)>f(3.5)21.5; n+1)(n-2).
四.解答题.(每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分)22.(1)a11,a2
(2)annn1;(3)Snn.21,a332;
23.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为
22cxn,因此xn1xnaxnbxncxn,nN*.(*)即xn1xn(ab1cxn),nN*.(**)
(II)若每年年初鱼群总量保持不变,则xn恒等于x1,n∈N*,从而由(*)式得xn(abcxn)恒等于0,nN*,所以abcx10.即x1且仅当a>b,且x1
ab
.因为x1>0,所以a>b.猜测:当c
ab
时,每年年初鱼群的总量保持不变.c
24.证明:1)f(x2k)f(x)(x2k)sin(x2k)-xsinx
(x2k)sinx-xsinx=2ksinx=
2)f(x)sinxxcosx
f(x0)sinx0x0cosx00①又sin2x0cos2x01②
x02x02x042222由①②知sinx0=所以[f(x0)]x0sinx0x0 222
1x01x01x0
五.解答题.(共8分.从下列题中选答1题,多选按所做的前1题记分)25.[解] 21313113232321
4333332331┅┅
(n1)3n33n23n1
将以上各式分别相加得:(n1)3133(122232n2)3(123n)n 所以: 123n
11n
[(n1)31n3n] 32
n(n1)(2n1)
26.a 4
27.简证:令x1x2,则有f01,再令x1x2x即可 28.证明:设f(x)
x,x(0,)1x
设x1,x2是(0,)上的任意两个实数,且x2x10,f(x1)f(x2)
x1xx1x2
2
1x11x2(1x1)(1x2)
x
在(0,)上是增函数。1x
因为x2x10,所以f(x1)f(x2)。所以f(x)由abc0知f(ab)f(c)即
abc
.1ab1c
第四篇:高二 数学 选修 推理与证明(文)(模版)
高中数学(文)推理与证明
知识要点:
1、合情推理
根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比)。
类比推理的一般步骤:
(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;
(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。
2、演绎推理
分析上述推理过程,可以看出,推理的灭每一个步骤都是根据一般性命题(如“全等三角形”)推出特殊性命题的过程,这类根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理,叫做演绎推理。演绎推理的特征是:当前提为真时,结论必然为真。
3、证明方法
(1)反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。
反证法的步骤:1)假设命题的结论不成立,即假设结论的反面成立;2)从这个假设出发,通过推理论证,得出矛盾;3)由矛盾判定假设不正确,从而肯定命题的结论正确。
注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论。
(2)分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。
分析法的思维特点是:执果索因;
分析法的书写格式: 要证明命题B为真,只需要证明命题为真,从而有„„,这只需要证明命题为真,从而又有„„
这只需要证明命题A为真,而已知A为真,故命题B必为真。
(3)综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法,综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。
典例分析:
例1:例5.(1)观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?
(2)把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立:
1)如果一条直线与两条平行直线中的一条相交,则必于另一条相交。
2)如果两条直线同时垂直与第三条直线,则这两条直线平行。
例2:(06年天津)如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱
1EF//BC。
2(1)证明FO//平面CDE;
(2)设BC,证明EO平
面CDF。
例3:(1)用反证法证明:如果a>b>0,那么
(2)用综合法证明:如果a>b>0,那么
; ;
例4:用分析法证明:如果ΔABC的三条边分别为a,b,c,那么:
abc 1ab1c
巩固练习:
1.如果数列an是等差数列,则
A.a1a8a4a5 B.a1a8a4a5 C.a1a8a4a5 D.a1a8a4a
52.下面使用类比推理正确的是
A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
abab(c≠0)” ccc
nn(ab)anbn” 类推出“(ab)anbn” D.“
3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误C.“若(ab)cacbc” 类推出“
4.设f0(x)sinx,f1(x)f0(x),f2(x)f1'(x),,fn1(x)fn'(x),n∈N,则'
f2007(x)
A.sinx B.-sinx C.cosx D.-cosx
5.在十进制中20044100010101022103,那么在5进制中数码200
4折合成十进制为
A.29B.254C.602D.2004
6.函数yax21的图像与直线yx相切,则a= A.18 B.1 4C.12D.11;③47.下面的四个不等式:①a2b2c2abbcca;②a1a
ab2 ;④a2b2c2d2acbd2.其中不成立的有ba
A.1个B.2个C.3个D.4个
2f(x)(xN*),f(1)1 8.已知f(x1),猜想f(x)的表达式为f(x)2
4212A.f(x)xB.f(x)C.f(x)D.f(x) 22x1x12x1
9.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:AB2AC2BC2。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.23432,3+4+5+6+7=52中,可得到一般规律为10.从112,(用数学表达式表示)
11.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.12.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)
当n>4时,f(n)=(用含n的数学表达式表示)
第五篇:数学《推理与证明(文科)
!
文科数学《推理与证明》练习题
2013-5-10
1.归纳推理和类比推理的相似之处为()
A、都是从一般到一般B、都是从一般到特殊C、都是从特殊到特殊D、都不一定正确
2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了()
A.归纳推理B.类比推理C. “三段论”,但大前提错误D.“三段论”,但小前提错误
3.三角形的面积为S1abcr,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,2可得出四面体的体积为()
111abcB、VShC、VS1S2S3S4r(S1,S2,S3,S4分别为四面体的四33
31个面的面积,r为四面体内切球的半径)D、V(abbcac)h,(h为四面体的高)3A、V
4.当n1,2,3,4,5,6时,比较2和n的大小并猜想()
n2n2n2n2A.n1时,2nB.n3时,2nC.n4时,2nD.n5时,2n n
25.已知数列an的前n项和为Sn,且a11,Snn2an nN,试归纳猜想出Sn的表达式为()*
A、2n2n12n12nB、C、D、n1n1n1n
26.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密规则为:明文a,b,c,d对应密文a2b,2bc,2c3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为().
A. 4,6,1,7B. 7,6,1,4C. 6,4,1,7D. 1,6,4,7
7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为
()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
8.下面使用类比推理恰当的是.①“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”
②“(a+b)c=ac+bc”类推出“abab=+” ccc
abab=+(c≠0)” ccc
nnn③“(a+b)c=ac+bc”类推出“nnn④“(ab)=ab”类推出“(a+b)=a+b”
9.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。
10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是。
11.补充下列推理的三段论:
(1)因为互为相反数的两个数的和为0,又因为a与b互为相反数且所以b=8.(2)因为又因为e2.71828是无限不循环小数,所以e是无理数.
12.在平面直角坐标系中,直线一般方程为AxByC0,圆心在(x0,y0)的圆的一般方程为(xx0)2(yy0)2r2;则类似的,在空间直角坐标系中,平面的一般方程为________________,球心在(x0,y0,z0)的球的一般方程为_______________________.13.在平面几何里,有勾股定理:“设ABC的两边AB、AC互相垂直,则ABACBC。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得妯的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则”.14.从1=1,14(12),149123,14916(1234)„,概括出第n个式子为.
15.对函数f(n),nN*,若满足f(n)222n100n3,试由f104,f103和ffn5n100
f99,f98,f97和f96的值,猜测f2f3116.若函数f(n)k,其中nN,k是3.1415926535......的小数点后第n位数字,例
如f(2)4,则f{f.....f[f(7)]}(共2007个f)17.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).18.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边
形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数.则
f(4)=_____;f(n)=_____________.
19.在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式.:
20.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○„,按这种规律往下排,那么第36个圆的颜色应是.21.求垂直于直线2x6y10并且与曲线yx3x5相切的直线方程
32322.已知函数f(x)ax3(a2)x26x3 2
(1)当a2时,求函数f(x)极小值;
(2)试讨论曲线yf(x)与x轴公共点的个数。
《2.1合情推理与演绎推理》知识要点梳理
知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.
知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。其中归纳推理和类比推理是最常见的合情推理。
1.归纳推理
(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。
(2)一般模式:部分整体,个体一般
(3)一般步骤:
①通过观察个别情况发现某些相同性质;
②从已知的相同的性质中猜想出一个明确表述的一般性命题;
③检验猜想.(4)归纳推理的结论可真可假
2.类比推理
(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊
(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:
①找出两类对象之间的相似性或一致性;
②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);
③检验猜想.(5)类比推理的结论可真可假
知识点三:演绎推理
(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理.简言之,演绎推理是由一般到特殊的推理.
(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式
① 大前提——已知的一般原理;
② 小前提——所研究的特殊情况;
③ 结论——根据一般原理,对特殊情况作出的结论.(3)用集合的观点理解“三段论”若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质
(4)演绎推理的结论一定正确
演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。
合情推理与演绎推理(文科)答案
1——7.D C C D A C A8.③
9.菱形对角线互相垂直且平分。10.②③①。11.(1)a=-8;(2)无限不循环小数都是无理数
12.AxByCzD0;(xx0)2(yy0)2(zz0)2r2;
13.SBCDSABCSACDSABD;
14.122222223242(1)n1n2(123n);
18.【解题思路】找出f(n)f(n1)的关系式 15.97,98;16.1;17.5; n+1)(n-2);
[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837
f(n)1612186(n1)3n23n1
【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系.19.【解析】:在等差数列an中,由a100,得a1a19a2a18ana20n
an1a19n2a100
所以a1a2ana190即a1a2ana19a18an1
又a1a19,a2a18,a19nan1
a1a2ana19a18an1a1a2a19n
若a90,同理可得a1a2ana1a2a17n
相应地等比数列bn中,则可得:b1b2bnb1b2b17nn17,nN*
【点评】已知性质成立的理由是应用了“等距和”性质,故类比等比数列中,相应的“等距积”性质,即可求解。
20.白色
21.解:设切点为P(a,b),函数yx33x25的导数为y'3x26x
切线的斜率ky'|xa3a26a3,得a1,代入到yx3x5
得b3,即P(1,3),y33(x1),3xy6032
22.解:(1)a2f'(x)3ax23(a2)x63a(x)(x1),f(x)极小值为f(1) 2a
2(2)①若a0,则f(x)3(x1),f(x)的图像与x轴只有一个交点;
②若a0,f(x)极大值为f(1)a20,f(x)的极小值为f()0,2a
f(x)的图像与x轴有三个交点;
③若0a2,f(x)的图像与x轴只有一个交点;
'2④若a2,则f(x)6(x1)0,f(x)的图像与x轴只有一个交点;
⑤若a2,由(1)知f(x)的极大值为f()4(点; 2a1323)0,f(x)的图像与x轴只有一个交a44
综上知,若a0,f(x)的图像与x轴只有一个交点;若a0,f(x)的图像与x轴有三个交点。