铜拉深冲压容易开裂原因浅析(5篇)

时间:2019-05-14 21:49:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《铜拉深冲压容易开裂原因浅析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《铜拉深冲压容易开裂原因浅析》。

第一篇:铜拉深冲压容易开裂原因浅析

铜合金分类与牌号普通黄铜的相组成及各相的特性 Cu-Zn 二元系相图中的相有α、β、γ、δ、ε、η。黄铜 普通黄铜 37.5 32.5 36.8 α相:以铜为基的固溶体。α晶格常数随锌含量增加而增大,锌在铜中的溶解度与一般合金相反,随温度降低而增加,在456℃时固溶度达最大值(39%Zn);之后,锌在铜中的溶解度随温度的降低而减少。含锌25%左右合金,存在Cu 3 Zn化合物的两种有序化转变: 450℃左右:α无序固溶体→α l 有序固溶体 217℃左右:α l 有序固溶体→α 2 有序固溶体。α相塑性良好,可进行冷热加工,并具有良好焊接性能。β相:以电子化合物CuZn为基的体心立方晶格固溶体。冷却时:468~456℃,无序相β→成有序相β??。β??塑性低,硬而脆,冷加工困难,所以含有β??相的合金不适宜冷加工。但加热到有序化温度以上,β??→β后,又具有良好塑性。β相高温塑性好,可进行热加工。γ相:以电子化合物Cu 5 Zn 8 为基的复杂立方晶格固溶体。硬而脆,难以压力加工,无法应用。工业用黄铜的锌含量均小于46%,避免出现γ相。H70黄铜的铸态组织及变形后退火组织按退火组织,工业用黄铜分为α黄铜和α+β两相黄铜。w Zn <36%的α黄铜:H96~H65为单相α黄铜,α黄铜的铸态组织中存在树枝状偏析,枝轴部分含铜较高,不易腐蚀;呈亮色,枝间部分含锌较多,易腐蚀,故呈暗色。变形及再结晶退火后,得到等轴的α晶粒,而且出现很多退火孪晶,这是铜合金形变后退火组织的特点。H62双相黄铜 退火 α 白 +β' 黑 α+β黄铜:36~46%Zn,如H62至H59。凝固时发生包晶反应形成β相,凝固后的合金为单相β组织;冷至α+β两相区时,自β相中析出 α相,残留的β相冷至有序转变温度时(456℃),β 无序相转变为β??有序相,室温下合金为α+β??两相组织。铸态α+β??黄铜,α相呈亮色(因含锌少,腐蚀浅), β??相呈黑色(因含锌多,腐蚀深)。经变形和再结晶退火后,α相具有挛晶特征。普通黄铜性能变化与锌含量的关系物理性能:普通黄铜密度随w Zn 增加而下降,而线膨胀系数随w Zn 增加而上升。电导率、热导率在α区随w Zn 增加而下降;w Zn ≥39%,合金中出现β,电导率又上升,w Zn 为50%时达峰值。力学性能:w Zn <30%时,随w Zn 增加,Rm和A同时增大,对固溶强化的合金来说,这种情况是极少有的,w Zn 在30~32%时,A达最大值。之后,随β??相的出现、增多,塑性急剧下降;Rm 则一直增加,并当w Zn ≈45%时,Rm 值达最大。w Zn >45%,α相全部消失,组织为硬脆的β??相,导致Rm急剧下降。变形和退火后的性能:α相随w Zn 增加,其强度、塑性均增加;当 w Zn 为30%时,塑性最好,适于深冲压和冷拉,大量用于制造炮弹壳,H70黄铜又称为“炮弹黄铜”。β相强度更高,但室温下呈有序状态,塑性很低。γ相在室温下则更硬而脆。α黄铜在200~600℃温度范围内均存在中温低塑性区。这是微量杂质(铅、锑、铋等)所致,这些杂质与铜生成低熔点共晶并凝聚在晶界上,形成低熔点共晶薄膜,从而造成热加工过程的“热脆”。黄铜的塑性会随温度升高而重新显著增加,因这些杂质在高温时的溶解度明显增加。脆性区温度范围与锌含量有关。加入微量混合稀土或锂、钙、锆、铈等可与杂质形成高熔点化合物的元素,均有效减轻或消除杂质的有害影响,从而消除热脆性。如铈与铅、铋形成Pb 2 Ce及Bi 2 Ce等高熔点化合物。黄铜的热加工应在高于脆性区的温度下进行;α+β黄铜室温塑性较低,只能热变形、要加热到β相区热轧,但温度不能太高,因β相长大得快,以保留少量α相为宜,利用残留α相限制β晶粒长大。所以,热变形温度通常选择在(α+β)/β相变温度附近。黄铜在大气、淡水或蒸汽中耐蚀性好,腐蚀速度约为0.0025~ 0.025mm/a;在海水中的腐蚀速度为0.0075~0.1mm/a。脱锌和应力腐蚀破坏(季裂)是黄铜最常见的两种腐蚀形式。脱锌:出现在含锌较高的α黄铜、特别是α+β黄铜中。锌电极电位远低于铜,在中性盐水溶液中锌首先被溶解,铜呈多孔薄膜残留在表面,并与表面下的黄铜组成微电池,使黄铜成为阳极而被加速腐蚀。加入0.02~0.06%As可防止脱锌。应力腐蚀:即“季裂”或“自裂”,指黄铜产品存放期间产生自动破裂的现象。它是产品内残余应力与腐蚀介质氨、SO 2 及潮湿空气的联合作用产生的。黄铜含Zn量越高,越易自裂。为避免黄铜自裂,所有黄铜冷加工制品或半制品,均需进行低温(260~300℃)退火来消除制品在冷加工时产生的残留内应力。此外,在黄铜中加人0.02~0.06%As或1.0~1.5%Si也能明显降低其自裂倾向。普通黄铜中杂质: 铅、铋、锑、磷、砷和铁等。铅:在α单相黄铜中是有害杂质,由于它熔点低,几乎不溶于黄铜 中,所以它主要分布在晶界上。铅含量大于0.03%时,黄铜在热加工时出现热脆;但对冷加工性能无明显影响。在α+β两相黄铜中,铅的允许含量可比α黄铜高一些,因为两相黄铜在加热和冷却过程中,会发生固态相变,使铅大部分转入晶内,减轻有害影响。少量铅可提高两相黄铜的切屑性能,使加工件表面获得高的光洁度。铋:呈连续脆性薄膜分布在黄铜晶界上,既产生热脆性,又产生冷脆性,对黄铜的危害性远比铅为大,在α及α+β黄铜中要求 ≯0.002%Bi。减轻Pb和Bi有害影响的有效途径是加入能与这些杂质形成弥散的高熔点金属化合物的元素,如Zr可分别与Pb、Bi形成高熔点稳定化合物ZrxPby(2000℃)和ZrxBiy。(熔点2200℃)。锑:随温度下降,锑在α黄铜中溶解度急剧减小;在锑含量小于0.1%时,就会析出脆性化合物Cu 2 Sb,呈网状分布在晶界上,严重损害黄铜的冷加工性能。锑还促使黄铜产生热脆性,因锑在固态铜中的共晶温度为645℃,所以,锑是 黄铜中的有害杂质。加入微量锂可与锑形成高熔点的 Li 3 Sb(熔点1145℃),从而减轻锑对黄铜塑性的有害影响。砷:室温时砷在黄铜中的溶解度<0.1%,过量的砷则产生脆性化合物Cu 3 As,分布在晶界上,降低黄铜塑性。黄铜中加入0.02~0.05%As,可防止黄铜脱锌。砷使黄铜制品表面形成坚固的保护膜,提高黄铜对海水的耐蚀性。普通黄铜性能变化规律其导电、导热性随Zn含量的增加而下降,而机械性能(抗拉强度、硬度)则随Zn含量的增加而上升;二元黄铜在工业上的应用,主要根据其性能来选择。H96、H90和H85:良好的电导率、热导率和耐蚀性,有足够的强度和良好的冷、热加工性能,被大量采用来制作冷凝管、散热管、散热片、冷却设备及导电零件等。H70、H68:高的塑性和较高的强度,冷成型性能特别好,适于用冷冲压或深拉法制造各种形状复杂的零件。H62:α+β黄铜,高的强度,在热态下塑性良好;冷态下塑性也比较好,切削加工性好,耐蚀,易焊接,以板材,棒材、管材、线材等供工业大量使用,应用广,有“商业黄铜”之称。H59:强度高;含锌量高,能承受热态压力加工,有一般的耐蚀性,多以棒材和型材应用于机械制造业。代号化学成分, % 机械性能 Cu Zn 加工状态 Rm MPa A % HB H96 95~97 余量 退火 250 35 - H80 79~81 余量 退火 270 50 - H68 67~70 余量 退火 300 40 - H59 57~60 余量退火变形 300 420 25 5 - 103 铜锌合金中加入少量锡、铝、锰、铁、硅、镍、铅等元素,构成多元合金,即为复杂黄铜。加入的合金元素使铜锌系中的α/(α+β)相界向左移动(缩小α区)或向右移动(扩大α区)。即:“复杂黄铜组织=增加或减少锌含量的简单黄铜组织”。铜锌合金中加入1%硅后的组织,即相当于铜锌合金中增加10 %锌的组织,即称硅的“锌当量系数”为10。硅的锌当量系数为正值,急剧缩小α区。若在铜锌合金中加入1%镍,则合金的组织相当于合金中减少1.5%锌的合金组织,故镍的“锌当量系数”为-1.5,镍的锌当量系数是负值,使α区扩大。铜锌合金加入其它元素后产生的相区变化,可根据“虚拟锌含量”来推算。如:HAl66-6-3-2(66Cu-6Al-3Fe-2Mn,余为锌)的 “虚拟锌含量”为48.6%,48.6%Zn的合金具有单相β组织。复杂黄铜 复杂黄铜中的α相及β相是多元复杂固溶体,其强化效果较大,而普通黄铜中的α及β相是简单的Cu-Zn固溶体,其强化效果较低。锌当量相同,多元固溶体与简单二元固溶体的性质不同。⑴铅的作用及铅黄铜:铅提高黄铜的切削性能,使零件获得高的光洁度,同时提高合金的耐磨性。单相α铅黄铜可冷轧或热挤,而(α+β)两相铅黄铜只能热轧、热挤。为了改善热脆性,HPb59-1中加入0.005%稀土,可细化晶粒,使Pb分布均匀,或加入0.1%Al,可显著改善热脆性,提高热轧温度上限,使铅黄铜可在720~750℃进行热轧。铅黄铜有极好的切削性能,耐磨、高强、耐蚀、导电性好,它以棒材,扁材、带材等广泛供应汽车、拖拉机、钟表、电器等工业,用以制作各种螺丝、螺母、电器插座、钟表零件等。复杂黄铜的性能 ⑵锡的作用及锡黄铜:锡抑制黄铜脱锌,提高黄铜耐蚀性。锡黄铜在淡水及海水中均耐蚀,故称“海军黄铜”。加入0.02~0.05%As可进一步提高耐蚀性。锡还能提高合金的强度和硬度,常用锡黄铜含1%Sn,含锡量过多会降低塑性。锡黄铜热、冷压力加工性能好。但HSn70-1在热压力加工时易裂,需要严格控制杂质含量(如Pb≯0.03%),铜取上限(71%),锡取下限(1.0~l.2%),这样,在700~720℃热轧或670~720℃热挤,可获得良好效果。锡黄铜主要用于海轮、热电厂制作高强,耐蚀冷凝管、热交换器,船舶零件等。⑶铝的作用及铝黄铜 黄铜中加入少量铝能在合金表面形成坚固的氧化膜,提高合金对气体、溶液、高速海水的耐蚀性;铝的锌当量系数高,形成β相的趋势大,强化效果高,能显著提高合金的强度和硬度。铝含量增高时,将出现γ相,剧烈降低塑性,使晶粒粗化。为了使合金能进行冷变形,铝含量应低于4%。含2%Al、20%Zn的铝黄铜,其热塑性最高。加入0.05 %As及0.01%Be或0.4%Sb及0.01%Be可进一步提高铝黄铜 的抗脱锌腐蚀能力。HAl77-2用量最大,主要是制成高强、耐蚀的管材,广泛用做海船和发电站的冷凝器等。铝黄铜的颜色随成分而变化,通过调整成分,可获得金黄色的铝黄铜,作为金粉涂料的代用品。⑷锰的作用及锰黄铜:锰起固溶强化作用,少量的锰可提高黄铜的强度、硬度。锰黄铜能较好地承受热、冷压力加工。锰能显著升高黄铜在海水、氯化物和过热蒸汽中的耐蚀性。锰黄铜、特别是同时加有铝、锡或铁的锰黄铜广泛用于造船及军工等部门。Cu-Zn-Mn系合金的颜色与含锰量有关,随Mn量的增加,其颜色逐靳由红变黄,由黄变白,含63.5%Cu,24.5%Zn,12%Mn的黄铜,具有良好的机械性能、工艺性能和耐蚀性,已部分地代含镍白铜应用于工业上。组 别 代 号主要化学成分, % 机械性能(变形)Cu 其它 Rm MPa A % HB Pb黄铜 HPb 63-3 HPb 60-1 62.0~65.0 59.0~61.0 Pb 2.4~3.0 Pb 0.6~1.0 600 610 5 4 -- Sn黄铜 HSn 90-1 HSn 62-1 88.0~91.0 61.0~63.0 Sn 0.25~0.75 Sn 0.7~1.1 520 700 5 4 148 - Al黄铜 HAl77-2 76.0~79.0 Al 1.8~2.6 650 12 170 Si黄铜 HSi 65-1.5-3 63.5~66.5 Si 1.0~2.0 Pb 2.5~3.5 600 8 160 Mn黄铜 Fe黄铜 HMn 58-2 HFe 59-1-1 57.0~60.0 57.0~60.0 Mn 1.0~1.2 Fe 0.6~1.2 700 700 10 10 175 160 Ni黄铜 HNi 65-5 64.0~67.0 Ni 5.0~6.5 700 4 -除黄铜、白铜之外的铜合金统称青铜,是由Sn、Al、Be、Si、Mn、Cr、Cd、Zr、Ti等与铜组成的铜合金。锡青铜:其主要合金成分是锡。特殊青铜(无锡青铜):其主要成分为除锡外的其它合金元素。青铜按主添元素(如Sn、Al、Be等)分别命名为锡青铜、铝青铜、铍青铜等。以“Q+主加元素符号+除铜外的成分数字组”表示。QSn6.5-0.l:6.5%Sn、0.1%P,余为铜的锡青铜 QAl10-3-1.5:10%A1、3%Fe、1.5%Mn,余为铜的铝青铜。青 铜最古老的铜合金。用于鼎、钟、武器、铜镜等。耐蚀、耐磨、弹性好和铸件体积收缩率小等。锡青铜有三大用途: ⑴高强、弹性材料:如弹簧、弹片、弹性元件。⑵耐磨材料:如滑动轴承的轴套、齿轮等耐磨零件。⑶铸件体积收缩小、耐蚀,用来制作艺术铸件,如铜像等。二元锡青铜的组织铜锡相图中有两个包晶反应和三个共析反应。δ相:γ相在520℃时的共析分解产物。δ在350℃分解成α+ε相。β、γ为高温相,随温度降低而分解,因此,在一般条件下它们实际上不可能出现。δ相分解速度慢,即使在20%锡以下的合金中,不存在ε相。锡青铜实际存在的组织为: ⑴低锡合金(QSn4-0.3和QSn4-3),变形和退火后为α固溶体组织。⑵高锡合金,由α固溶体和共析体α+δ组成。锡青铜 ZQSn-10 铸态 α +(α+δ)共析富锡α相富铜α相二元锡青铜的性能 ⑴铸造性能:铜锡合金结晶温度间隔可达150~160℃,流动性差;锡在铜中扩散慢,熔点相差大,枝晶偏析严重,枝晶轴富铜,呈黑色;基底富锡,呈亮色。铸锭在进行压力加工前要进行均匀化退火,并经多次压力加工和退火后,才基本上消除枝晶偏析。锡青铜凝固时不形成集中缩孔,只形成沿铸件断面均匀分布在枝晶间的分散缩孔,所以,铸件致密性差,在高压下容易渗漏,不适于铸造密度和气密性要求高的零件。锡青铜线收缩率为1.45~1.5%,热裂倾向小,利于获得断面厚薄不均、尺寸要求精确的复杂铸件和花纹清晰的工艺美术品。锡青铜存在“反偏析”:凝固时铸件富锡的易熔组分在体积收缩和析出气体的作用下,由中心向表面移动,使铸件心部锡含量低于表面的现象。“反偏析”明显时,铸件表面出现灰白色斑点或析出物形状的所谓“锡汗”。这些脆性析出物含锡15~18%,由δ相组成。⑵机械性能:锡青铜的性能与含锡量及组织有关。在α相区,Sn含量增加,Rm及塑性均增大,在大约10%Sn附近,塑性最好,在21~23%Sn 附近Rm最大。δ相(Cu 3l Sn 8)硬而脆,随着δ相增多,Rm升高,其后急剧下降。工业用合金中,锡的含量为3~14%;变形合金含锡<8%,且含磷、锌或铅等。⑶抗蚀性能:锡青铜在大气、水蒸气和海水中具有很高的化学稳定性,在海水中的耐蚀性比紫铜、黄铜优良。所以,对暴露在海水、海风和大气中的船舶和矿山机械,广泛应用锡青铜铸件。但盐酸、硝酸、钠碱溶液、氨溶液及甲醇溶液强烈腐蚀锡青铜。二元锡青铜易偏析,不致密,机械性能得不到保证,故很少应用。为了改善二元锡青铜的工艺和使用性能,工业用锡青铜都分别加有锌、磷、铅、镍等元素,组成多元锡青铜。①磷的作用及锡磷青铜锡青铜熔炼时用磷脱氧,微量磷(0.3%)能有效地提高合金的机械性能。压力加工锡磷青铜,含磷量不超过0.4%,此时锡青铜力学和工艺性能最好,有高的弹性极限、弹性模量和疲劳极限(100×10 6 次循环时达250~280MPa),用于制作弹簧、弹片及弹性元件。磷在锡青铜中溶解度小,且随锡含量增加、温度降低,溶解度显著减小;室温时磷在锡青铜中的极限溶解度为0.2%左右。含磷过多将形成628℃的三元共晶α+δ+Cu 3 P,在热轧时磷化物共晶处于液态,造成热脆。磷增加流动性,但加大反偏析程度。磷化物硬度高,耐磨。磷化物+δ相作硬质相,为轴承合金创造了所必需的条件,所以在铸造耐磨锡青铜中,磷含量可达1.2%。合金元素的作用及各种锡青铜的性能 ②锌的作用及锡锌青铜:锌缩小锡青铜的结晶温度间隔,减少偏析,提高流动性,促进脱氧除气,提高铸件密度。锌能大量溶入α固溶体中,改善合金的机械性能。含锌加工锡青铜均具有单相α固溶体组织(如QSn4-3);锡锌青铜的含锌量在2~4%时,具有良好的机械性能和抗蚀性能,用于制造弹簧、弹片等弹性元件、化工器械、耐磨零件和抗磁零件等。③铅的作用及锡铅青铜:铅不固溶于青铜,以纯组元存在,呈黑色夹杂物分布在枝晶之间,可改善切削和耐磨性。含铅低时(如1~2%)主要改善切削性,含铅高时(4~5%)用作轴承材料,降低摩擦系数。所以锡铅青铜用以制造耐蚀、耐磨、易切削零件或轴套、轴承内衬等零件。微量Zr、B、Ti可细化晶粒,改善锡青铜的机械性能和冷热加工性能。As、Sb、Bi降低锡青铜塑性,对冷热加工有害。简单铝青铜:只含铝的为简单铝青铜。复杂铝青铜:除铝外另含铁、镍、锰等其它元素的多元合金。含Al小于7%的合金在所有温度下均具有单相α固溶体组织。α相塑性好,易加工。实际生产条件下,7~8%Al的合金组织中便有α+γ 2 共析体。γ 2 是硬脆相(520HV),它使硬度、强度升高,塑性下降。含9.4~ 15.6%Al的合金缓慢冷却到565℃时,发生β→α+γ 2 转变,形成共析体组织。(α+γ 2)共析体组织与退火钢中的珠光体相似,具有明显的片层状特征。β单相区快速淬火时,共析转变受阻,此时的相变过程为:无序β→有序β 1 →β 1 ??。Cu-Al系的马氏体是热弹性马氏体,具有形状记忆效应。但在 Al浓度高的Cu-Al二元系合金中,即使快速淬火也不能阻止γ 2 相的析出,不出现热弹性马氏体相变,所以添加Ni抑制Cu或A1的扩散,使β相稳定,以便通过淬火获得热弹性马氏体。铝青铜二元铝青铜的性能(1)机械性能:其强度和塑性随铝含量的增加而升高,塑性在铝含量4%左右达最大值,其后下降,而强度在10%Al左右达最大值。工业铝青铜含铝量在5~11%范围内。铝青铜具有机械性能高、耐蚀、耐磨、冲击时不发生火花等优点。α单相合金塑性好,能进行冷热压力加工。(α+β)合金能承受热压力加工,但主要用挤压法获得制品,不能进行冷变形。(2)铸造性能:铝青铜结晶温度间隔仅10~80℃,流动性好,不形成分散缩孔,易得致密铸件,成分偏析也不严重。但易生成集中缩孔,易形成粗大柱状晶,使压力加工变得困难。为防止铝青铜晶粒粗大,除严格控制铝含量外,还用复合变质剂(如Ti+V+B 等)细化晶粒。加Ti和Mn能有效改善其冷、热变形性能。(3)耐蚀性:铝青铜的耐蚀性比黄铜、锡青铜好,在大气、海水和大多数有机酸(柠檬酸、醋酸、乳酸等)溶液中均有很高的耐蚀性J在某些硫酸盐,苛性碱、酒石酸等溶液中的耐蚀性也较好。QAL10 铸态 α(白色)+(α+γ 2)共析(黑色)QAL10 固溶处理930℃淬火 β 1 '(相当于M)合金元素的影响(1)锰: 显著降低铝青铜β相的共析转变温度和速度,稳定β相,推迟β→(α+γ 2),避免“自发回火”脆性。溶解于铝青铜中的锰,可提高机械性能和耐蚀性。0.3~0.5%Mn能减少热轧开裂,提高成品率,改善冷、热变形能力。(2)铁: 少量铁能溶于锡青铜α固溶体中,显著提高机械性能;含量高时以Fe 3 Al析出,使机械性能变坏,抗蚀性恶化,铝青铜中Fe 加入量不超过5%。Fe能细化晶粒,阻碍再结晶,加入0.5~1%的 Fe就能使单相或两相铝青铜的晶粒变细。Fe能使铝青铜中的原子扩散速度减慢,增加β相的稳定性,抑制引起合金变脆的 β→(α+γ 2)自行回火现象,显著减少合金的脆性。(3)镍:显著提高铝青铜的强度、硬度、热稳定性、耐蚀性和再结晶温度。加Ni的铝青铜可热处理强化,Cu-14Al-4Ni(重量%)为具有形状记忆效应的合金。铝青铜中同时添加镍和铁,能获得更佳的性能。含8~ 12%Al,4~6 %Ni,4~6%Fe的Cu-Al-Ni-Fe四元合金,其组织中会出现K相:当w Ni >w Fe 时,K相呈层状析出;当w Ni <w Fe 时,K相呈块状;当w Ni ≈w Fe 时,K相为均匀分散细粒状,有利于得到很好的机械性能。工业铝青铜QAl10-4-4中Fe、Ni含量相等,在500℃的抗拉强度比锡青铜在室温的强度还高。改变时效温度可以调整其强度和塑性之间的配合。含镍和铁的铝青铜作为高强度合金在航空工业中广泛用来制造阀座和导向套筒,也在其它机器制造部门中用来制造齿轮和其它重要用途的零件。镀青铜即含1.5~2.5%Be的铜合金。淬火时效强度高,Rm达1250~1500MPa,硬度350~ 400 HB。弹性极限高(700~780MPa),弹性稳定性好,弹性滞后小,耐蚀、耐磨、耐寒、耐疲劳,无磁性,冲击不发生火花,导电、导热性能好,所以,铍青铜的综合性能优良。铍青铜用作高级弹性元件(如弹簧、膜片,手表的游丝),特殊要求的耐磨元件,高速,高压下工作的轴承、衬套、齿轮等。CuBe为基的有序固溶体,低温稳定相,室温硬而脆。铍青铜相组成及其特性 α、γ l、γ 2 三个单相区 α:以铜为基的臵换固溶体,面心立方晶格,有良好的塑性,可冷热变形。铍原子半径(111.3pm)比铜(127.8pm)小,造成严重晶格歪扭。α相有明显溶解度变化,866℃(2.7%),605℃(1.55%),室温(0.16%)。有强烈的时效强化效应。γ 1 :以电子化合物Cu 2 Be为基的无序固溶体,体心立方结构,高温塑性好,淬火到室温,塑性好,可冷变形。γ 1 相在缓冷时发生共析分解。γ 2 :电子化合物。铍青铜的淬火和时效在760~790℃固溶处理,保温时间为8~15min。为防止固溶体冷却时分解,常用水淬。淬火后冷变形30~40%再进行时效。

第二篇:冲压缺陷产生原因

一、图片展示

常见的缺陷有9类,分别是:开裂、叠料、波浪、拉毛、变形、毛刺、缺料、尺寸不符、坑、包以及压伤。

二、冲压件缺陷原因及预防 1.冲压废品 1)原因:

o o o o o o 原材料质量低劣;

冲模的安装调整、使用不当;

操作者没有把条料正确的沿着定位送料或者没有保证条料按一定的间隙送料; 冲模由于长期使用,发生间隙变化或本身工作零件及导向零件磨损; 冲模由于受冲击振动时间过长紧固零件松动使冲模各安装位置发生相对变化; 操作者的疏忽,没有按操作规程进行操作。

2)对策:

o 原材料必须与规定的技术条件相符合(严格检查原材料的规格与牌号,在有条件的情况下对尺寸精度和表面质量要求高的工件进行化验检查。); 对于工艺规程中所规定的各个环节应全面的严格的遵守;

所使用的压力机和冲模等工装设备,应保证在正常的工作状态下工作; 生产过程中建立起严格的检验制度,冲压件首件一定要全面检查,检查合格后才能投入生产,同时加强巡检,当发生意外时要及时处理;>前沿数控技术微信不错,记得关注。o o o

o 坚持文明生产制度,如工件和坯件的传送一定要用合适的工位器具,否则会压伤和擦伤工件表面影响到工件的表面质量;

在冲压过程中要保证模具腔内的清洁,工作场所要整理的有条理加工后的工件要摆放整齐。

2.冲裁件毛刺 1)原因: o

o o o 冲裁间隙太大、太小或不均匀; 冲模工作部分刃口变钝;

凸模和凹模由于长期的受振动冲击而中心线发生变化,轴线不重合,产生单面毛刺。

2)对策:

o 保证凸凹模的加工精度和装配质量,保证凸模的垂直度和承受侧压力及整个冲模要有足够的刚性;

在安装凸模时一定要保证凸凹模的正确间隙并使凸凹模在模具固定板上安装牢固,上下模的端面要与压力机的工作台面保持相互平行;

要求压力机的刚性要好,弹性变形小,道轨的精度以及垫板与滑块的平行度等要求要高;

要求压力机要有足够的冲裁力; 冲裁件剪裂断面允许毛刺的高度

冲裁板材厚度>0.3>0.3-0.5>0.5-1.0>1.0-1.5>1.5-2.0 新试模毛刺高度≤0.015≤0.02≤0.03≤0.04≤0.05 生产时允许的毛刺高度≤0.05≤0.08≤0.10≤0.13≤0.15 3.冲裁件产生翘曲变形 1)原因: o

o

o o o 有间隙作用力和反作用力不在一条线上产生力矩。(凸凹模间隙过大及凹模刃口带有反锥度时,或顶出器与工件接触面积太小时产生翘曲变形)。

2)对策:

o o o o 冲裁间隙要选择合理;

在模具结构上应增加压料板(或托料板)板材与压料板平面接触并有一定的压力; 检查凹模刃口如发现有反锥度则必须将冲模刃口修整合适;

如是由于冲裁件形状复杂且内孔较多时剪切力不均匀增大压料力,冲裁前就压紧条料或者采用高精度的压力机冲裁;

板材在冲裁前应进行校平,如仍无法消除翘曲变形时可将冲裁后工件通过校平模再次校平;

定时清除模具腔内的赃物,薄板料表面进行润滑,并在模具结构上设有通油气孔。4.冲裁时,冲裁件的外缘和内孔精度降低尺寸发生变化 1)原因: o

o

o o o 定位销,挡料销等位置发生变化或磨损太大; 操作者的疏忽大意送料时左右前后偏移;

条料的尺寸精度较低过窄过宽送料困难使其难以送到指定地点,条料会在导料板内前后偏移则冲出的工件内孔与外形前后位置偏差较大。5.零件弯曲时,尺寸和形状不合格 1)原因:

o o o 材料的回弹造成产品不合格;

定位器发生磨损变形,而使条料定位不准,必须更换新的定位器;

在无导向的弯曲模中,在压力机上调整时,压力机滑块下死点位置调整不当,也会造成弯曲件形状及尺寸不合格;

模具的压料装置失灵或根本不起压料作用,必须重新调整压料力或更换压力弹簧使其工作正常。2)减少回弹的措施: o

o o o o 选用弹性模数大屈服点小的力学性能较稳定的冲压材料; 增加校正工序,采用校正弯曲代替自由弯曲;

弯曲前材料要进行退火,使冷作硬化材料预先软化后再弯曲成形;

若在冲压过程中发生形状变形而难以消除;则应更换或修整凸模与凹模的斜度,并且使凸凹模间隙等于最小料厚;

增大凹模与工件的接触面积,减小凸模与工件的接触面积; 采用“矫枉过正”的办法减少回弹的影响。o o 6.弯曲件弯曲部位产生裂纹 1)对策:

o 消除弯曲区外侧的毛刺,毛刺会造成该区域的应力集中,减小弯曲变形量;清除此区域的毛刺;

有毛刺的一侧放在弯曲区的内侧;

弯曲工件时最好使弯曲方向和材料的纤维方向(辗轧方向)垂直; 弯曲半径不能太小,在质量允许的情况下尽量使圆角半径加大; 弯曲坯件表面要光洁,无明显的凸起及疤痕;

弯曲时采用中间退火工序,使其消除内应力,经软化后的弯曲很少产生裂纹; 弯曲时对于大型弯曲件一定要涂以润滑剂,以减少弯曲过程中的摩擦。7.弯曲件在弯曲过程中的偏移 1)原因:

在弯曲过程中坯件沿着凹模表面滑动时,会受到摩擦阻力,若坯料两侧的摩擦阻力相差较大时,坯件会向摩擦阻力较大的一侧偏移。>前沿数控技术微信不错,记得关注。

2)对策: o o o o o o

o 形状不对称的弯曲件,采用对称弯曲成形(单面弯曲件采用两件对称弯曲后再切开)。

在弯曲模上增加弹性压料装置,以便在弯曲时能压住坯料防止移动; 采用内孔及外形定位形式使其定位准确。8.弯曲件表面擦伤 1)原因及对策: o o

o 对于铜、铝合金等软材料进行连续作业压弯时,金属微粒或渣滓易附在工作部位的表面,使制件出现较大的擦伤,这时应认真分析研究工作部位的形状、润滑油等情况使坯件最好不要出现微粒及渣滓,以至产生划痕;

o 弯曲方向和材料的轧制方向平行时,制件表面会产生裂纹,使工件表面质量降低。在两个以上的部位进行弯曲时,应尽可能的保证弯曲方向与轧制方向有一定的角度;

o 毛刺面作为外表面进行弯曲时,制件易产生裂纹和擦伤;故在弯曲时应将毛刺面作为弯曲内表面;

凹模圆角半径太小,弯曲部位出现冲击痕迹。对凹模进行抛光,加大凹模圆角半径,可以避免弯曲件擦伤;

凸凹模间隙不应太小,间隙太小会引起变薄擦伤。在冲压过程中要时刻检查模具的间隙的变化情况; o

o o 凸模进入凹模的深度太大时会产生零件表面擦伤,因此在保证不受回弹的影响的情况下,应适当的减少凸模进入凹模的深度;

为了使制件符合精度的要求往往使用在底部压料的弯曲模,则在弯曲时压料板上的弹簧,定位销孔、托板和退料孔等都会压制成压痕,故应给予调整。

9.弯曲时坯件孔的位置发生变化 1)原因: o

o o o 孔的位置尺寸不对,(弯曲受拉变薄);

孔不同心(弯曲高度不够、毛坯发生滑动、回弹、弯曲平面上出现起伏现象); 弯曲线和两孔中心线不平行弯曲高度小于最小弯曲高度的部位在弯曲后呈现出向外张口形状;

靠近弯曲线的孔容易产生变形。2)对策:

孔的位置尺寸不对严格控制弯曲半径,弯曲角度以及材料厚度;对材料的中性层进行修整和凸模进入凹模的深度以及凸凹模适当均匀; 孔不同心原因的措施; 确保左右弯曲高度正确; 修正磨损后的定位销和定位板;

减少回弹保证两弯曲面的平行度和平面度; 改变工艺路线,先弯曲校正后进行冲孔。o

o

o

o 呈现出向外张口形状对策

弯曲时应保证最小弯曲高度H(H≥R+2t t材料厚度R弯曲半径);

改变加工零件的外形,在不影响使用的情况下去掉小于最小弯曲高度的那部分。

o 靠近弯曲线的孔容易产生变形措施

在设计弯曲件时要保证从弯曲部位到孔边距X大于一定值 X≥(1.5—2.0)t t弯曲板料厚度;

在弯曲部位设计一个辅助孔来吸收弯曲变形应力,可以预防临近弯曲线的孔变形,一般采用先弯曲后冲孔的方案。

10.零件在弯曲后,弯曲部位产生明显的变薄 1)对策:

o o o 弯曲半径相对于板厚值太小(r/t>3直角弯曲)一般采用增大弯曲半径;

多角弯曲使弯曲部位变薄加大,为了减少变薄尽量采用单角多工序的压弯办法; 采用尖角凸模时凸模进入凹模太深使弯曲部位厚度明显减少。11.拉深件凸缘在拉深过程中起皱 1)原因:

o 凸缘部位压边力太小,无法抵制过大的切向压应力;而引起切向变形,因而失去稳定后形成皱纹。材料较薄也较易形成皱纹。

2)对策:

o 加大压边圈的压边力和适当的加大材料的厚度。12.拉深件壁部被拉裂的原因及预防 1)原因:

o o o o 材料在拉深时承受的径向拉应力太大; 凹模圆角半径太小; 拉深润滑不良; 原材料塑性较差。

2)对策:

o o o o 减小压边力; 加大凹模圆角半径; 正确使用润滑剂;

选用素行较好的材料或增加工间退火工序。13.拉深件底部被拉裂 1)原因:

o 凹模圆角半径太小,使材料处于被切割状态。

2)对策:

o(一般发生在拉深初始阶段)增大凹模的圆角半径,并使其圆滑过度表面粗糙度要小一般Ra<0.2µm。

14.拉深零件边缘高低不平及有褶皱 1)原因:

o 毛坯与凸凹模中心不合或材料厚度不均匀,以及凹模圆角半径和凸凹模间隙不均匀(凹模圆角半径太大,在拉深的最后阶段脱离了压边圈,使尚未越过圆角的材料压边圈压不到起皱后被拉入凹模形成口缘褶皱。

2)对策:

o 冲模重新定位,校正凹模圆角半径和凸凹模间隙使其大小均匀后再投入生产(减少凹模圆角半径或采用弧形压边圈装置即可消除褶皱)。15.锥形零件或半球形零件拉深时腰部起皱 1)原因: o 在拉深开始时大部分材料处于悬空状态,加之压边力太小,凹模圆角半径又太大或者使用的润滑剂太多。使得径向拉应力变小使得材料在切向压应力的作用下失去稳定而起皱。2)对策:

o 增大压边力或采用压延筋结构,减小凹模圆角半径或使材料厚度稍微加大。16.拉深件表面产生拉痕的原因及预防措施 1)原因及对策:

o 凸模或凹模表面有尖利的压伤,致使工件表面相应的产生拉痕,此时应将压伤表面进行修磨或抛光即可;

凸凹模间隙过小或者间隙不均匀,使其在啦深时工件表面被刮伤,此时应修整凸凹模间隙直至合适为止;

凹模圆角表面粗糙,拉深时工件表面被刮伤,此时应将凹模圆角半径进行修磨打光;

冲压时由于冲模工作表面或材料表面不清洁而混进杂物从而压伤了工件表面,因此在拉料时一定要始终保持凸凹模表面的清洁,坯料拉深前一定要擦拭; 当凸凹模硬度低时,其表面附有金属废屑后,也使得拉深工件表面产生拉痕,因此除了增加凸凹模表面的硬度外在拉深时还要时常检查凸凹模表面即使清除其遗留下的金属废屑; o

o

o

o

o 润滑剂质量差,也会使拉深工件表面粗糙度加大,这时应使用适合于拉深工艺使用的润滑剂,必要时应将润滑剂过滤后再使用。以防止杂质混入而损伤工件表面。17.拉深件拉深直壁部分不平整 1)原因及对策:

o 凸模上没有设计和制造出通气孔,使其表面因压缩空气而变形,出现不平整现象,此时必须增加通气孔;

材料的回弹作用也会使拉深工件表面不平,最后应增加整形工序; 凸凹模间隙过大致使拉深难以被拉平,此时必须将间隙调整均匀。

o

第三篇:抹灰层开裂原因及控制

近年来随着烧结粘土砖的逐渐淘汰,越来越多的新型墙体材料被应用在框架填充墙上,但随之而来的是工程竣工后,框架填充墙抹灰层裂缝大量出现,既影响了建筑物的美观,又可能减少了建筑物的使用寿命。为确保工程质量达到规范要求,有必要对裂缝产生的原因进行分析并采取相应的控制措施。

一、裂缝产生的原因

分析裂缝产生的因素很多,既有沉降、温度、干缩,也有设计上的疏忽、施工质量、材料不合格、缺乏经验及施工管理人员意识差等。最为常见的裂缝有五大类,一是地基不均匀沉降;二是温度裂缝,温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。三是干燥收缩裂缝,简称干缩裂缝,对于加气砼砌块、粉煤灰砌块等砌体,随着含水量的降低,材料会产生较大的干缩变形。干缩变形的特征是早期发展比较快,如砌块出厂后放置28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。可现在砌块需求量是供不应求的,往往是刚出产就拉到工地,根本达不到规范规定的龄期28d的要求就用于工程。有的不按要求设置拉结筋,甚至一次性把墙体砌至顶,另外不同材料和构件的差异变形也会导致墙面开裂。如框架填充墙或柱间墙不同材料的差异变形出现的裂缝。四是由温度和干缩共同产生的裂缝。加气砼砌块、粉煤灰砌块等砌体,同时存在温度和干缩共同作用下的裂缝,其在建筑物墙体上的分布一般可为这两种裂缝的组合,或因具体条件不同而呈现出不同的裂缝现象,而其裂缝的后果往往较单一因素更严重。五是抹灰一次成活,使每层抹灰厚度过厚。另外设计上的疏忽、不按规范要求设分格条、无针对性防裂措施、材料质量不合格、施工质量差、违反设计施工规程、砌体强度达不到设计要求,以及缺乏经验也是造成墙体裂缝的重要原因之一。如对加气砼砌块等新型墙体材料,没有针对材料的特殊性,采用适合的砌筑砂浆和相应的构造措施,仍沿用粘土砖使用的砂浆和相应的抗裂措施,局部墙体仍有混砌现象,必然造成墙体出现较严重的裂缝。

二、墙面裂缝的控制措施

根据裂缝的性质及影响因素,采用“防”、“放”、“抗” 相结合的构想提出一些预防和控制裂缝的措施,以供参考。

1、首先是设计单位要重视抗裂构造措施的设计,从设计角度上去根除裂纹的发生,如在窗台下设一道通长钢筋混凝土扁梁,以根除窗台下裂纹的发生;在梁、板、柱与墙体交接处设钢板网,来减少框架梁底的裂缝;设置分隔缝,递减温度变化产生的力。

2、施工单位要从思想上重视裂纹的产生,从所有能产生裂纹的原因中,一一制定相应的预防措施,来减少或杜绝裂纹的产生。

(1)基础施工时,严格按施工规范的要求进行地基处理,保证地基的均匀性,特别是需要采用集水坑降水的工程,排水沟距基础垫层边缘的距离不小于600mm,保证不了时,可采取盲沟排水。回填土施工时,确保土的含水率附合最优含水率的要求,必须分层回填,每层虚铺厚度不得超过300mm,且室内回填土严禁采用机械回填和机械碾压;严格取样制度,上一层回填土必须待下一层回填土送样试验结果出来,并且达到设计要求后,方准施工。(2)主体施工时,严格控制轴线、标高,保证钢筋混凝土的施工质量,防止出现结构裂纹;在进行加气砼砌块墙体施工时,应注意以下几点:1)确保加气砼砌块在使用前达到稳定期。一般刚出厂的加气砼砌块稳定性较差。由于砌体的干缩变形较大,干缩变形的特征是早期发展比较快,以后逐步变慢。因此,使用前应确保材料已达到使用龄期,体积已基本稳定,干缩变形较小的情况下。2)要严格控制含水率:加气砼砌块使用前对含水率有苛刻的要求,要严格控制上墙时含水率。要选用含水率符合标准的产品外,在砌块上墙前必须要做好防水措施,尽量避免雨期施工淋湿砌块,造成墙体因收缩开裂。3)采用正确的施工方法:必须根据加气砼砌块干缩变形相对较大特点,采取正确的施工方法和控制措施。重点是砌块的砌筑方法及洞口处理两方面,主要有以下一些要点:① 施工现场的砌块应按规格堆放,堆放高度不宜过高(一般不超过2m),并应采取防雨措施以防雨淋,砌筑前,砌块宜适当洒水淋湿,深度确保20mm,以保证粘结良好。② 砌筑时应尽量采用主规格砌块,并应清除砌块表面污物,砌体的灰缝应横平竖直,灰缝应饱满,以确保墙体质量。③不能随意砍凿砌块,禁止采用不同材料混砌,否则容易造成墙体开裂。④砌块与混凝土柱连接处及施工留洞后填塞部位增加拉结钢筋,锚固钢筋必须要展平砌入水平灰缝,长度应满足要求。⑤严格控制墙体孔洞预留及开槽的处理,避免削弱了墙体强度。⑥上部斜砌砖必须保证在下部墙体砌完7日后进行,斜砌砖应保持600左右,砌筑时应在墙体两侧同时用皮锤敲实,且灰浆饱满。(3)抹灰施工时应注意以下几点: 1)基层处理:

抹灰前,应纵横通线,确保抹灰厚度,墙面凹凸不平之处应补好,清扫墙面,除去粘结灰浆。在墙体与梁、柱、剪力墙结合处钉挂直径1.6网格20×20的钢板网,宽度应大于300,用钢钉和射钉每200~300加铁片固定,挂网应做到平整、牢固。提前1~2天浇水湿润,保证墙体表面的吸水深度控制在20左右,勾缝、堵洞口、架眼、灰缝修补等砂浆应与砌体砂浆强度一致。表面的砂浆污垢、油污等应事先用10%碱水清除干净,为解决抹灰开裂现象,在抹灰墙面上用MST界面剂、水泥、过筛细砂制作水泥浆液,配合比为MST界面剂:水泥:砂=1:1:1.5,用扫帚蘸满水泥浆液甩成蘑菇状,使墙面布点均匀,不应过厚或过薄。浇水养护24小时,待墙面的水泥浆液达到一定强度后抹灰。

2)抹灰时,每层抹灰厚度不超过8mm,不得一次成活,下一层抹灰必须在上一层抹灰凝固后,且通过监理验收签字后,方可抹下一层灰。外墙水泥砂浆压光分项工程必须设分格缝,分格缝位置在窗口的上下各界一道通长横向分格条,纵向分格条应按规范要求,在适宜部位设置,以减少外墙裂纹的发生。

第四篇:楼板开裂原因及处理方案(汇总)[范文]

钢筋混凝土结构破坏倒塌的工程质量事故,绝大多数是从裂缝的扩展开始的;其实,只要仔细观察不难发现,普通的钢筋混凝土结构又一般都是带裂缝受力工作的,假如借助仪器,甚至还可以发现裂缝是时刻发生变化的,随着裂缝的发展变化,结构构件的耐久性和适用性会不同程度的降低,严重的甚至会导致结构构件的破坏;所以研究裂缝的形态、分析裂缝产生的原因和裂缝对结构功能的影响并加以控制是一个十分重要的。

一、混凝土裂缝种类:

外荷载引起的裂缝: 外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分析就可以读出正确的结论。如:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成十字或米字集中于跨中;转角阳台或挑檐板裂缝位于板面起始于墙板交界以角点为中心成米字形向外延伸。受力裂缝,其裂缝与荷载有关,预示结构承载力可能不足或存在严重问题。

温度收缩裂缝:温度收缩裂缝是一种建筑最常见的裂缝,主要是由于结构的温度变形及材料的收缩变形受阻及应力超标所致。现浇板收缩裂缝主要集中在房屋的中部和房屋四周阳角处,裂缝成枣核状止于梁边。房屋四周阳角处的房间在离开阳角1米左右,即在楼板的分离式配筋的负弯矩筋以及角部放射筋未端或外侧发生45度左右的楼地面斜角裂缝。其原因主要是砼的收缩特性和温差双重作用所引起的,并且愈靠近屋面处的楼层裂缝往往愈大。从设计角度看,现行设计规范侧重于按强度考虑,未充分按温差和混凝土收缩特性等多种因素作综合考虑,配筋量因而达不到要求。而房屋的四周阳角由于受到纵、横二个方向剪力墙或刚度相对较大的楼面梁约束,限制了楼面板砼的自由变形,因此在温差和砼收缩变化时,板面在配筋薄弱处(即在分离式配筋的负弯矩筋和放射筋的未端结束处)首先开裂,产生45度左右的斜角裂缝。虽然楼地面斜角裂缝对结构安全使用没有影响,但在有水的情况下会发生渗漏,影响正常使用。

地基不均匀沉降产生的裂缝:由于地基沉降不均匀使上部结构产生附加应力,导致楼板裂缝。不均匀沉降产生的裂缝多属贯穿性裂缝,其走向与沉降情况有关。

使用商品混凝土引起的收缩裂缝:商品混凝土由于采用泵送,混凝土的流动性要好,因此一般商品混凝土的坍落度都较大,水灰比较大,如保证水灰比则要增加水泥用量,这样就使混凝土在硬化阶段出现收缩裂缝。裂缝的产生大多在砼浇筑初期,即浇捣后4~6小时左右,裂缝形状不规则且长短不一,互不连贯,产生裂缝部分大多为水泥浮浆层和砂浆层。有于砼坍落度偏大,表面经过振捣形成一层水泥含量较多,收缩性较大的水泥浮浆层及砂浆层一方面由于砼初凝时表面游离水分蒸发过快产生急剧的体积收缩,而此时砼早期强度较低(面层为砂浆层 强度更低),不能抵抗这种变形应力而导致砼表面开裂,另一方面由于面层浮浆或砂浆的收缩值比基层砼大许多,而造成变形值不同导致面层开裂。

预埋管线引起的楼板裂缝:预埋线管处沿管线方向出现表面裂缝;局部出现呈发散状或龟裂状的不规则裂缝。预埋线管,特别是多根线管的集散处是截面砼受到较多削弱,从而引起应力集中,容易导致裂缝发生的薄弱部位。当预理线管的直径较小,并且房屋的开间宽度也较小,同时线管的敷设走向又不垂直于砼的收缩和受拉方向时,一般不会发生楼面裂缝。反之,当预埋线管的直径较大,开间宽度也较大,并且线管的敷设走向又垂直于砼的收缩和受拉力向时,就很容易发生楼面裂缝。因此对于较粗的管线或多根线管的集散处,应按要求增设垂直于线管的短钢筋网加强。

施工原因引起混凝土楼板裂缝:养护不到位,强制性规范要求混凝土养护要覆盖并浇水,现在大多数不覆盖,浇水也不能保证经常性湿润;施工速度过快,上荷早,特别是砖混住宅楼板,前一天浇筑完楼板,第二天即上砖、走车,造成早期混凝土受损;拆模过早或模板支撑系统刚度不够;施工时楼板混凝土盖筋被踩弯、踩倒,保护层过厚,承载力下降。

图片来源:百度

二、混凝土裂缝产生的原因:

1、钢筋混凝土现浇板裂缝原因的分析 通常情况下,现浇板裂缝一般表现为:不规则、不连贯表面微裂缝;表面龟裂、纵向、横向裂缝以及斜向裂缝。究其原因,主要有施工、设计及混凝土原材料等方面的原因,以下将逐一具体分析。

1.1混凝土原材料质量方面

1.1.1水泥凝结或膨胀不正常,如水泥安定性不稳定,水泥中含有生石灰或氧化镁,这些成分在和水化合后产生体积膨胀,产生裂缝。

1.1.2如果骨料中含泥量过多,则随着混凝土的干燥,会产生不规则的网状裂缝。

1.1.3碱-骨料反应:蛋白质、安山岩、玄武岩、辉绿岩、千枚岩等碱性骨料有可能与碱性很强的水泥起化学反应,生成有膨胀能力的碱-硅凝胶而引起混凝土膨胀破坏,产生裂缝。

1.1.4水灰比、坍落度过大,或使用过量粉砂混凝土强度值对水灰比变化十分敏感,基本上是水和水泥计量变动对强度影响的叠加。因此,水、水泥、外渗混合材料外加剂溶液的计量偏差,将直接影响混凝土的强度。而采用含泥量大的粉砂配置的混凝土收缩大,抗拉强度低,容易因塑性收缩而产生裂缝,泵送混凝土为了满足泵送条件,坍落度大,流动性好,易产生局部粗骨料少、砂浆多的现象,此时,混凝土脱水干缩时,就会产生表面裂缝。

1.2施工质量方面

1.2.1混凝土施工过分振捣,模板、垫层过于干燥的混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝上之间洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。

1.2.2混凝土浇捣后过分抹干压光会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧化碳作用生成碳酸钙,引起表面体积碳水化收缩,导致混凝土板表面龟裂。

1.2.3施工工艺不当引起:在施工过程中由于施工工艺不当,致使支座处负筋下陷,保护层过大,固定支座变成塑性铰支座,使板上部沿梁支座处产生裂缝。楼板的弹性变形及支座处的负弯矩施工中在混凝土未达到规定强度,过早拆模,或者在混凝土未达到终凝时间就上荷载,造成混凝土楼板的弹性变形,致使砼早期强度低或无强度时,承受弯、压、拉应力,导致楼板产生内伤或断裂;大梁两侧的楼板不均匀沉降也会使支座产生负弯矩造成横向裂缝。

1.2.4后浇带施工不慎而造成的板面裂缝:为了解决钢筋混凝土收缩变形和温度应力,规范要求采用施工后浇带法,有些施工后浇带不完全按设计要求施工,例如施工未留好施工缝;板的后浇带不支模板,造成斜坡槎;疏松混凝土未彻底凿除等都可能造成板面的裂缝。

1.2.5楼面垫层铺设的暗装水管、电线套管铺设不当,如水管、电线套管铺设不够牢靠、集中铺设、上下交叠铺设致使水管、电线套管上皮在垫层厚度1/3以内,保护层厚度不足都可能造成板面沿管线长度方向产生裂缝。

1.2.6混凝土的收缩(温度裂缝):众所周知,混凝土引起收缩的原因,在硬化初期主要是由于水泥的水化作用,形成一种新的水泥结晶体,这种结晶体化合物较原材料体积小,因而引起混凝土体积的收缩,即所谓的凝缩,后期主要是混凝土内自由水蒸发而引起的干缩。而且,如果混凝土处在一个温度变化较大的环境下,将会使其收缩更为加剧。如施工发生的夏季炎热气温下,石子表面温度升高,使石子体积膨胀,拌制成混凝土后,石子受冷收缩,使混凝土表面出现发丝裂缝;混凝土浇捣后未及时浇水养护,混凝土在较高温度下失水收缩,水化热释放量较大,而又未及时得到水分的补充,因而在硬化过程中,现浇板受到支座的约束,势必产生温度应力而出现裂缝,这些裂缝也首先产生在较薄弱的部位,即板角处。另外,室内外温差变化较大,也要引起一定的裂缝。

1.2.7目前在主体结构的施工过程中,普遍存在着质量与工期之间的较大矛盾。一般主体结构的楼层施工速度平均为5-7天左右一层,最快时甚至不足5天一层。因此在楼层混凝土浇筑完毕后不足24小时的养护时间,就忙着进行钢筋绑扎、材料吊运等施工活动,这就给大开间部位的房间雪上加霜。除了大开间的混凝土总收缩值较小开间要大的不利因素外,更容易在强度不足的情况下受材料吊卸冲击振动荷载的作用而引起不规则的受力裂缝。并且这些裂缝一旦形成,就难于闭合,形成永久性裂缝。

1.3设计方面

1.3.1地基的不均匀沉降:在住宅建设中,有相当一部分的钢筋混凝土现浇板的裂缝,是由于地基不均匀沉降的原因而造成的。如在软土地基下采用扩展基础,则对于那些相对较长的条式楼来说,要想保证它们沉降均匀是相当困难的,因此,在这种情况下,有时也会由于基础的不均匀沉降,而引起楼房的拉裂和钢筋混凝土现浇板的开裂。1.3.2荷载的作用:近代国际上结构的设计原则是,整个建筑结构的功能必须满足两种状态的要求:①承载力极限状态,以保证结构不产生破坏,不失去平衡,不产生破坏时过大变形,不失去稳定。②正常使用极限状态,以确保结构不产生超过正常使用状态的变形、裂缝及耐久性、振动及其它影响使用的极限状态。目前人们对第一极限状态已给于足够重视并严格执行,而对第二种极限状态却经常被忽视。在住宅建设中,也有少部分钢筋混凝土现浇板的裂缝,是由于荷载作用方面的原因引起的。由于设计人员在进行现浇板的配筋计算过程中,通常只是根据其承载能力来确定配筋量的,而往往忽略了对板在正常使用阶段由其承受的荷载而引起的挠度及裂缝宽度的验算,由此而引起裂缝的产生,这些裂缝有时也会超过规范的最大允许值,这也应当引起足够的重视。

1.3.3结构体型突变及未设置必要的伸缩缝:房屋长度过长,而又未考虑设置伸缩缝,当房屋的自由伸缩达到应设置伸缩缝要求的间距时,就要引起裂缝的产生。另外,平面布局凹凸较多,即转角也越多,这些转角处由于应力集中形成薄弱部位,一受到混凝土收缩及温差变化易于产生裂缝。

1.3.4在楼房的设计中,结构设计对板内布线引起裂缝的构造考虑不够。住宅电器、电信快速发展的今日,现浇楼板内暗敷PVC电线管越来越多,甚至有些部位三根交错叠放,两根管交错叠放更为普遍。PVC管错叠处板的抗弯高度大大降低,从而减弱了板的抗弯性能。尤其是设备电气专业,大多将照明、有线电视、通讯等所需的管线直接敷设于现浇板中,而且有时集中于某一处现浇板中的管线多达7-8根,并且这些管线的走私多为2-3cm,由此就会使该处现浇板厚度大大削弱,从而引起现浇板在该处开裂。

1.3.5 从钢筋混凝土现浇楼板各种受力体系分析,无论是按单向板设计还是按双向板设计,是单跨还是多跨连续板设计;无论是板端支承在砖墙上还是支承在过梁或剪力墙内,受力状态考虑都是局限于楼板平面的应力变化(按弯矩配置抵抗正、负弯矩的受力钢筋)、板平面的受剪变形。即使是考虑板端嵌固端节点产生弯矩,也只是考虑板平面弯曲或屈曲所产生的应力。在楼板受力体系分析时,对于现浇结构构件之间在三维空间中如何分配内力、协调变形,根本没有考虑。

1.3.5 目前不少设计人员只按单向板计算方法来设计配置楼板钢筋,支座处仅设置分离式负弯矩钢筋。由于计算受力与实际受力情况不符,单向高强钢筋或粗钢筋使混凝土楼面抗拉能力不均,局部较弱处易产生裂缝。部分设计人员对构造配筋,放射筋设置不重视或不合理,薄弱环节无加强筋。

1.3.6 对开口楼板,特别是开洞口比较大的双向板,设计时往往只考虑楼板在竖向荷载作用下的洞口四周加强配筋。由于纵向的受力钢筋被切断,而忽视了板与墙体或板与梁的变形协调问题。这时如墙或梁的刚度较大,板的孔边凹角处未必出现应力集中现象,开洞板易发生翘曲。1.3.7 与温度有关的裂缝计算公式有:

连续式约束条件下楼板、长板、剪力墙、大底板等最大约束应力计算公式:

ζ*xmax=-EaT1-1chβL2H(t,η)(1)

或按时间增量的计算公式:

ζ*xmax=∑ni=1Δζi=-a1-u∑ni=11-1chβiL2ΔTiεi(t)H(t,η)(2)

当应力超过混凝土的抗拉强度时,可求出裂缝间距:

Lmax=2EHCxarcchaTaT-εp(3)

L=1.5EHCxarcchaTaT-εp(4)

Lmin=12Lmax(5)

式中,T-包含水化热、气温差及收缩当量温差。同号叠加,异号取差,由此可见,夏天炎热季节浇筑混凝土到秋冬冷缩都是叠加的,拉应力较大;

H(t,η)-松弛系数。在保温保湿养护条件下(缓慢降温即缓慢收缩),松弛系数取0.3或0.5,当寒潮袭击或激烈干燥时,松弛系数取0.8,应力接近弹性应力,容易开裂;

T=T1 T2 T3(T1为水化热温差、T2为气温差、T3为收缩当量差,取代数和);

εp-混凝土的极限拉伸。级配不良,养护不佳,取0.5×10-4~0.8×10-4;正常级配,一般养护,取1.0×10-4~1.5×10-4;级配良好,养护优良,取2×10-4;配筋合理(细一些,密一些),可提高极限拉伸20%~40%。构造配筋宜为0.3%~0.5%;

H-均拉层厚度(强约束区);

E-混凝土弹性模量;

Cx-水平约束系数; ch、arcch-双曲余弦及双曲余弦反函数;

a-线膨胀系数,一般情况εp≤|aT|,当εp≥|aT|时取εp=|aT|,[L]→∞。

裂缝开展宽度:

δf=2ψEHCxaTthβL2(6)

δfmax=2ψEHCxaTthβLmax2(7)

δf=2ψEHCxaTthβLmin2(8)

β=CxEH(9)

式中,ψ-裂缝宽度经验系数;Cx-约束系数。

图片来源:百度

三、裂缝的预防措施

1.建筑设计控制措施 1.1 屋面与外墙采取保温措施按照国外建筑设计常规的做法,屋面设保温隔热层,使屋面的传热系数≤1.0W/m2•K;外墙外表面或内表面相应设置保温隔热层,同时外墙面宜采用浅色装饰材料,增强热反射,减少对日照热量吸收。根据具体情况,屋面和外墙的保温设计应通过热工计算,在不同季节均应能达到《夏热冬冷地区居住建筑节能设计标准》和《江苏省民用建筑热环境与节能设计标准》要求,彻底解决温度应力对屋面和墙体的破坏。

1.2 适当控制建筑物长度根据《混凝土结构设计规范》(GB50010-2002)和《砌体结构设计规范》(GB50003-2001),为避免结构由于温度收缩应力引起的开裂,宜采取设置伸缩缝,伸缩缝间距为30m~50m。多层住宅建筑控制长度建议不大于50m,高层应控制在45m以内。如果超过此长度,应设置伸缩缝。超长量不大时,可采用设置后浇带的方法,以减少混凝土楼板收缩开裂。

1.3 住宅平面形状控制住宅平面宜规则,避免平面形状突变。当楼板平面形状不规则时,宜设置梁使之形成较规则平面。当平面有凹口时,凹口周边楼板的配筋宜适当加强。结构设计控制措施

2.1、严格控制混凝土施工配合比。根据混凝土强度等级和质量检验以及混凝土和易性的要求确配合比。严格控制水灰和水泥用量。选择级配良好的石子,减小、空隙率和砂率以减少收缩量,提高混凝土抗裂强度。值得注意的是近十几年来,我国一些城市为实现文明施工,提高设备利用率,节约能源,都采用商品混凝土。因此加强对商品混凝土进行塌落度的检查是保证施工质量的重要因素。

2.2、在混凝土浇捣前,应先将基层和模板浇水湿透,避免过多吸收水分,浇捣过程中应尽量做到既振捣充分又避免过度。

2.3、混凝土楼板浇筑完毕后,表面刮抹应限制到最小程度,防止在混凝土表面撒干水泥刮抹,并加强混凝土早期养护。楼板浇筑后,对板面应及时用材料覆盖、保温,认真养护,防止强风和烈日曝晒。

2.4、严格施工操作程序,不盲目赶工。杜绝过早上传、上荷载和过早拆模。在楼板浇捣过程中更要派专人护筋,避免踩弯面负筋的现象发生。通过在大梁两侧的面层内配置通长的钢筋网片,承受支座负弯矩,避免因不均匀沉降而产生的裂缝。2.5 工程裂缝产生的主要原因是混凝土的变形。如温度变形、收缩变形、基础不均匀沉降变形等,此类因变形引起的裂缝几乎占到全部裂缝的80%以上。在变形作用下,结构抗力取决于混凝土的抗拉性能,当抗拉应力超过设计强度时,应验算裂缝间距,再根据裂缝间距验算裂缝宽度。

2.6 现浇板板厚宜控制在跨度的1/30,最小板厚不宜小于110mm(厨房、浴厕、阳台板最小厚度不小于90mm)。有交叉管线时板厚不宜小于120mm。

2.7 楼板宜采用热轧带肋钢筋以增加其握裹力,不宜采用光圆钢筋。分布钢筋与构造钢筋宜采用变形钢筋来增加与现浇混凝土的握裹力,对控制楼板裂缝的效果较好。

2.8 设计时注意构造钢筋的布置十分重要,它对构造抗裂影响很大。对连续板不宜采用分离式配筋,应采用上、下两层连续式配筋;洞口处配加强筋;对混凝土梁的腰部增配构造筋,其直径为8mm~14mm,间距约200mm。

2.9 屋面层阳角处、东西单元房间和跨度≥3.9m时,应设置双层双向钢筋,阳角处钢筋间距不宜大于100mm,跨度≥3.9m的楼板钢筋间距不宜大于150mm。跨度<3.9m的现浇楼板上面负弯矩钢筋应一隔一拉通。外墙转角处应设置放射钢筋,配筋范围应大于板跨的1/3,且长度不小于2.0m,每一转角处放射钢筋数量不少于7根,钢筋间距不宜大于100mm。

2.10 现浇楼板的混凝土强度等级不宜大于C30,特殊情况须采用高强度等级混凝土或高强度等级水泥时,要考虑采用低水化热的水泥和加强浇水养护,便于混凝土凝固时的水化热释放。

2.11 在预埋PVC电线管时,必须有一定的措施,PVC管要有支架固定,严禁两根管线交叉叠放,确须交叉时应采用专门设计的塑料接线盒,以防止塑料管在管线交叉对混凝土厚度削弱过多。在预埋电线管上部应配置钢筋网片,(4@100mm宽度600mm)。若用铁管作为预埋管时,宜采用内壁涂塑黑铁管,一方面既能保证黑铁管(不镀锌钢管)与混凝土的粘结力,同时也有利于穿线和不影响混凝土的计算高度。

2.12 后浇带处理

(1)后浇带应设置在对结构受力影响较小部位,一般应从梁、板的1/3跨部位通过或从纵横相交部位或门洞口的连梁处通过。后浇带间距不宜超过30m。

(2)后浇带宽度为700mm~1000mm,板和墙钢筋搭接长度应不低于45d,且同一截面受力筋搭接不超过50%。梁、板主筋不宜断开,使其保持一定联系性。(3)后浇带浇筑时间不宜过早,以能将混凝土总降温及收缩变形完成一半以上时间为佳。从目前混凝土的收缩量来看,估计3~6月方能取得明显效果,最短不少于45天。在苏州这样软土地区,后浇带浇筑时间应在主体封顶以后,方可有效地释放沉降的应力。

(4)后浇带中垃圾应清理干净,接缝应密实,新老混凝土界面用1:1水泥砂浆接浆。后浇带混凝土强度等级比原混凝土强度等级提高一级,且采用微膨胀混凝土,以防止新老混凝土界面产生裂缝。

(5)后浇带混凝土接缝宜设置企口缝,混凝土浇筑温度尽量与原老混凝土浇筑时温度一致。

(6)施工后浇带的施工应认真领会设计意图,制定施工方案,杜绝在后浇处出现混凝土不密实、不按图纸要求留企口缝,以及施工中钢筋被踩弯等现象。同时更要杜绝在未浇注混凝土前就将部分模板,支柱拆除而导致梁板形成悬臂,造成变形。

四、裂缝的处理方法

1、表面修补法

适用于对承载能力没有影响的表面裂缝的处理,也适用于大面积细裂缝防渗、防漏的处理。

1)表面涂抹水泥砂浆:将裂缝附近的混凝土表面凿毛,或沿裂缝凿成深15~20mm,宽150~200mm的凹槽,扫净并洒水湿润,先刷水泥净浆一层,然后用1:2的水泥砂浆分2~3层涂抹,总厚度控制在10~20mm左右,并用铁抹抹平压光。有防水要求时应用2mm厚水泥净浆及5mm厚1:2的水泥砂浆交替抹压4~5层,刚性防水层涂抹3~4小时后进行覆盖,洒水养护。在水泥砂浆中掺入占水泥重量1~3%的氯化铁防水剂,可起到促凝和提高防水性能的效果。为了使砂浆与混凝土表面结合良好,抹光后的砂浆面应覆盖塑料薄膜,并用支撑模板顶紧加压。

2)表面涂抹环氧胶泥:涂抹环氧胶泥前,先将裂缝附近80~100mm宽度范围内的灰尘、浮渣用压缩空气吹净,或用钢丝刷、砂纸、毛刷清除干净并洗净,油污可用二甲苯或丙酮擦洗一遍,如表面潮湿,应用喷灯烘烤干燥、预热,以保证环氧胶泥与混凝土粘结良好。若基层难以干燥,则用环氧煤焦油胶泥涂抹。涂抹时,用毛刷或刮板均匀蘸取胶泥,并涂刮在裂缝表面。

3)采用环氧粘贴玻璃布:玻璃布使用前应在碱水中煮沸30~60分钟,然后用清水漂净并晾干,以除去油脂,保证粘结。一般贴1~2层玻璃布。第二层玻璃布的周边应比下面一层宽10~12mm,以便压边。4)表面涂刷油漆、沥青:涂刷前混凝土表面应干燥。

5)表面凿槽嵌补:沿混凝土裂缝凿一条深槽,槽内嵌水泥砂浆或环氧胶泥、聚氯乙烯胶泥、沥青油膏等,表面作砂浆保护层。槽内混凝土面应修理平整并清洗干净,不平处用水泥砂浆填补,保持槽内干燥,否则应先导渗、烘干,待槽内干燥后再行嵌补。环氧煤焦油胶泥可在潮湿情况下填补,但不能有淌水现象。嵌补前先用素水泥浆或稀胶泥在基层刷一层,然后用抹子或刮刀将砂浆或环氧胶泥、聚氯乙烯胶泥嵌入槽内压实,最后用1:2水泥砂浆抹平压光。在侧面或顶面嵌填时,应使用封槽托板逐段嵌托并压紧,待凝固后再将托板去掉。

2、内部修补法

内部修补法是用压浆泵将胶结料压入裂缝中,由于其凝结、硬化而起到补缝作用,以恢复结构的整体性。这种方法适用于对结构整体性有影响,或有防水、防渗要求的裂缝修补。常用的灌浆材料有水泥和化学材料,可按裂缝的性质、宽度、施工条件等具体情况选用。一般对宽度大于0.5mm的裂缝,可采用水泥灌浆,对宽度小于0.5mm的裂缝,或较大的温度收缩裂缝,宜采用化学灌浆。

1)水泥灌浆:一般用于大体积混凝土结构的修补,主要施工程序是钻孔、冲洗、止浆、堵漏、埋管、试水、灌浆。钻孔采用风钻或打眼机进行,孔距l~1.5m,除浅孔采用骑缝孔外,—般钻孔轴线与裂缝呈30~45度斜角,孔深应穿过裂缝面0.5m以上,当有两排或两排以上的孔时,宜交错或呈梅花形布置,但应注意防止沿裂缝钻孔。冲洗在每条裂缝钻孔完毕后进行,其顺序按竖向排列自上而下逐孔冲洗。止浆及堵漏待缝面冲洗干净后,在裂缝表面用1:2的水泥砂浆或用环氧胶泥涂抹。埋管(一般用直径19~38mm的钢管作灌浆管,钢管上部加工丝扣)安装前应在外壁裹上旧棉絮并用麻丝缠紧,然后旋入孔中,孔口管壁周围的孔隙用旧棉絮或其它材料塞紧,并用水泥砂浆或硫磺砂浆封堵,防止冒浆或灌浆管从孔口脱出。试水是用0.098~0.196MPa压力水作渗水试验,采取灌浆孔压水、排气孔排水的方法,检查裂缝和管路畅通情况,然后关闭排气孔,检查止浆堵漏效果,并湿润缝面以利于粘结。灌浆应采用425号以上的普通水泥,细度要求经6400孔/cm2的标准筛过筛,筛余量在2%以下,可使用2:

1、1:

1、0.5:1等几种水灰比的水泥净浆或1:0.54:0.3(即水泥:粉煤灰:水)的水泥粉煤灰浆,灌浆压力一般为0.294~0.491MPa,压浆完毕时浆孔内应充满灰浆,并填入湿净砂,用棒捣实,每条裂缝应按压浆顺序依次进行,当出现大量渗漏情况时,应立即停泵堵漏,然后继续压浆。

2)化学灌浆:化学灌浆能控制凝结时间,有较高粘结强度和一定的弹性,恢复结构整体性效果较好,适用于各种情况下的裂缝修补及堵漏、防渗处理。灌浆材料应根据裂缝性质、裂缝宽度和干燥情况选用。常用的灌浆材料有环氧树脂浆液(能修补缝宽0.2mm以下的干燥裂缝)、甲凝(能灌0.03~0.1mm的干燥细微裂缝)、丙凝(用于堵水、止漏及渗水裂缝的修补,能灌0.1mm以下的细裂缝)等。环氧树脂浆液具有粘结强度高、施工操作方便、成本低等优点,应用最广。灌浆操作主要工序是表面处理(布置灌浆嘴和试气)、灌浆、封孔,一般采取骑缝直接用灌浆嘴施灌,不用另外钻孔。配制环氧浆液时,应根据气温控制材料温度和浆液的初凝时间(1小时左右)。灌浆时,操作人员要戴上防毒口罩,以防中毒。

3、结构加固法

钢筋混凝土结构的加固,应在结构评定的基础上进行,加固的目的有结构强度加固、稳定性加固、刚度加固、抗裂性能加固四种。这四种加固之间既有联系又有区别,最常遇到的是结构强度加固(即结构补强)。结构加固可分为不改变结构受力图形和改变结构受力图形的两种方法,亦可分为非预应力加固和预应力加固两类。对结构或构件存在的强度(拉、压、弯、剪、扭、疲劳)、刚度(挠曲)、裂缝(由受力、温度、沉降、安装引起的)、稳定(由倾斜、偏歪、长细比过小、支撑不妥引起的)、沉降(由不均匀荷重或不均匀地基、淤泥层、大孔土地基、回填土等引起的)、使用(净空尺寸不够、吊车卡轨、振动、钢筋锈蚀,结构腐蚀)等方面的问题,要区分局部性还是全局性的,关键部位还是次要部位的,在分析了问题产生的主要原因后,分别根据处理的原则和界限,视工程具体情况和条件,有针对性地采取适当加固方法。

五、裂缝控制设计原则与措施

钢筋混凝土结构的裂缝是不可避免的,但其有害程度是可以控制的,有害与无害的界限由结构使用功能决定的。裂缝控制的主要方法是通过设计、施工、材料等方面综合技术措施将裂缝控制在无害范围内。综合技术措施包括:合理选择结构形式,降低结构约束程度,对与水平构件梁、板、墙等采用中低强度级混凝土,加强构造配筋,如板顶部的受压区连续配筋,板的阳角及阴角配置放射筋,增加梁的腰筋间距200mm。优选有利于抗拉性能的混凝土级配,尽力减小水灰比、减少坍落度、降低砂率增加骨料粒径,降低含泥量及杂质含量。选用影响收缩和水化热较小的外加剂和掺合料。采取保温保湿的养护技术,尽量利用混凝土后期强度(60天)。对于超长结构可采取跳仓浇灌或后浇带方法施工。对于复杂的结构难免出现少量裂缝影响正常使用和耐久性.裂缝分为表面裂缝,浅层裂缝,纵深裂缝(深层裂缝),贯穿裂缝等。少量有害裂缝采用近代化学灌浆技术处理,满足设计使用和耐久性要求,不应因此降低工程质量评定标准。

随着钢筋混凝土现浇板在房屋建设中的大量推广与应用,“住宅楼现浇楼板裂缝问题”也成为了居民住宅质量投拆热点。本文主要从施工方面、兼顾设计和材料原因方面分析楼面裂缝的综合性防治措施。

楼屋面裂缝的分析和防治措施

一、钢筋混凝土现浇板裂缝原因的分析

一般情况下,楼屋面裂缝表现为:表面龟裂,纵向、横向裂缝以及斜向裂缝。究其原因,主要有施工、设计及混凝土原材料等三方面的原因,以下将逐一具体分析。

(一)混凝土原材料质量方面

1、水泥凝结或膨胀不正常,如水泥安定性不稳定,水泥中含有生石灰或氧化镁,这些成分在和水化合后产生体积膨胀,产生裂缝。

2、如果骨料中含泥量过大,细骨料太细,则达不到设计强度,随着混凝土的干燥,会产生不规则的网状裂缝。

3、碱----骨料反应:蛋白质、安山岩、玄武岩、辉绿岩、千枚岩等碱性骨料有可能与碱性很强的水泥起化学反应,生成有膨胀能力的碱--硅凝胶而引起混凝土膨胀破坏,产生裂缝。

4、水灰比、塌落度过大,或使用过量粉砂混凝上强度值对水灰比的变化十分敏感,基本上是水和水泥计量变动对强度影响的叠加。因此,水、水泥、外渗混合材料外加剂溶液的计量偏差,将直接影响混凝土的强度。而采用含泥量大的粉砂配制的混凝土收缩大,抗拉强度低,容易因塑性收缩而产生裂缝,泵送砼为了满足泵送条件:坍落度大,流动性好,易产生局部粗骨料少、砂浆多的现象,此时,砼脱水干缩时,就会产生表面裂缝。

(二)施工质量方面

1、混凝土施工过分振捣,模板、垫层过于干燥混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝上之间洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。

2、混凝土浇捣后过分抹干压光会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧化碳作用生成碳酸钙,引起表面体积碳水化收缩,导致混凝土板表面龟裂。

3、施工工艺不当引起:在施工过程中由于施工工艺不当,致使支座处负筋下陷,保护层过大,固定支座变成塑性铰支座,使板上部沿梁支座处产生裂缝;楼板的弹性变形及支座处的负弯矩施工中在混凝土未达到规定强度,过早拆模,或者在混凝土未达到终凝时间就上荷载,造成混凝土楼板的弹性变形,致使砼早期强度低或无强度时,承受弯、压、拉应力,导致楼板产生内伤或断裂;大梁两侧的楼板不均匀沉降也会使支座产生负穹矩造成横向裂缝。

4、后浇带施工不慎而造成的板面裂缝:为了解决钢筋混凝土收缩变形和温度应力,规范要求采用施工后浇带法,有些施工后浇带不完全按设计要求施工,例如施工未留企口缝;板的后浇带不支模板,造成斜坡搓;疏松混凝土未彻底凿除等都可能造成板面的裂缝。

5、楼面垫层内铺设的暗装水管、电线套管铺设不当,如水管、电线套管铺设不够牢靠、集中铺设、上下交叠铺设致使水管、电线套管上皮在垫层厚度1/3以内,保护层厚度不足都可能造成板面沿管线长度方向产生裂缝。

6、混凝土的收缩(温度裂缝):众所周知,混凝土引起收缩的原因,在硬化初期主要是由于水泥的水化作用,形成一种新的水泥结晶体,这种结晶体化合物较原材料体积小,因而引起混凝土体积的收缩,即所谓的凝缩,后期主要是混凝土内自由水蒸发而引起的干缩。而且,如果混凝土处在一个温差变化较大的环境下,将会使其收缩更为加剧。如施工发生在夏季炎热气温下,石子表面温度升高,使石子体积膨胀,拌制成混凝土后,石子受冷收缩,使混凝土表面出现发丝裂缝;混凝土浇捣后未及时浇水养护,混凝土在较高温度下失水收缩,水化热释放量较大,而又未及时得到水分的补充,因而在硬化过程中,现浇板受到支座的约束,势必产生温度应力而出现裂缝,这些裂缝也首先产生在较薄弱的部位,即板角处。另外,室内外温差变化较大,也要引起一定的裂缝。

7、目前在主体结构的施工过程中,普遍存在着质量与工期之间的较大矛盾。一般主体结构的楼层施工速度平均为5-7天左右一层,最快时甚至不足5天一层。因此当楼层混凝土浇筑完毕后不足24小时的养护时间,就忙着进行钢筋绑扎、材料吊运等施工活动,这就给大开间部位的房间雪上加霜。除了大开间的混凝土总收缩值较小开间要大的不利因素外,更容易在强度不足的情况下受材料吊卸冲击振动荷载的作用而引起不规则的受力裂缝。并且这些裂缝一旦形成,就难于闭合,形成永久性裂缝。

(三)设计方面

1、地基的不均匀沉降:在住宅建设中,有相当一部分的钢筋混凝土现浇板的裂缝,是由于地基不均匀沉降的原因而造成的。如在软土地基下采用扩展基础,则对于那些相对较长的条式楼来说,要想保正它们沉降均匀是相当困难的,因此,在这种情况下,有时也会由于基础的不均匀沉降,而引起楼房的拉裂和钢筋混凝土现浇板的开裂。

2、荷载的作用:在住宅建设中,也有少部分钢筋混凝土现浇板的裂缝,是由于荷载作用方面的原因引起的。由于设计人员在进行现浇板的配筋计算过程中,通常只是根据其承载能力来确定配筋量的,而往往忽略了对板在正常使用阶段由其承受的荷载而引起的挠度及裂缝宽度的验算,由此而引起裂缝的产生,这些裂缝有时也会超过规范的最大允许值,这也应当引起足够的重视。

3、结构体型突变及未设置必要的伸缩缝:房屋长度过长,而又未考虑设置伸缩缝,当房屋的自由伸缩达到应设置伸缩缝要求的间距时,就要引起裂缝的产生。另外,平面布局凹凸较多,即转角也越多,这些转角处由于应力集中形成薄弱部位,一受到混凝土收缩及温差变化易于产生裂缝。

4、在楼房的设计中,设备专业特别是电气专业,大多将照明、有线电视、通讯等所需的管线直接敷设于现浇板中,而且有时集中于某一处现浇板中的管线多达7-8根,并且这些管线的直径多为2---3CM,由此就会使该处的现浇板厚度大大削弱,从而引起现浇板在该处开裂。

5、大跨度大开间楼板未进行刚度计算,板厚不够,加上施工偏差、拆模过早等原因导致裂缝。

二、裂缝的预防措施

虽然钢筋混凝土现浇板在使用过程中,存在出现裂缝这一重大缺陷,但它与预制板相比,还是优点要大于其缺点的,并且它的这一缺点在设计与施工过程中,可以通过一定的措施,使其影响控制在规范允许的范围内。现浇板的优点主要表现在结构性能方面,采用现浇板后,将使楼、屋盖的结构刚度及强度、建筑物的整体抗震性能得到显著的提高。

对于现浇板的裂缝问题,可以采取以下几个方面的措施,以减少或避免这些裂缝的出现:

(一)混凝土原材料质量方面

1、尽可能不使用民办小厂生产的水泥,如必须使用,应认真对水泥标号及安定性进行试验。

2、采取严把原材料进货关、认真地对进场砂石骨料进行检验,严格控制砂的粒径及含泥量。并做好各项试验,一经发现不合格材料进场必须立即停止使用并清除出场。地主供应霸王材料请业主予以协调。

3、严格控制混凝土施工配合比。根据混凝土强度等级和质量检验以及混凝土和易性的要求确定配合比,严格控制水和水泥用量,选择级配良好的石子,减小空隙率和砂率以减少收缩量,提高混凝土抗裂强度。

近十几年来,为实现文明施工,提高设备利用率,节约能源,商品混凝土的使用率逐年提高。但受剧烈的市场竞争,导致各商品砼厂商以采用大粉煤灰掺量,低价位、低性能的砼处掺剂,以及细度模数低、含泥量较高的中细砂作为降低价格和成本的主要竞争手段,导致商品混凝土质量显著下降;另一方面承包商在订购商品混凝土时,应根据工程的不同部位和性质提出对混凝土品质的明确要求,不能片面压价和追求低价格、低成本而忽视了混凝土的品质,导致混凝土性能下降和收缩裂缝增多。同时现场应逐车严格控制好商品混凝土的坍落度检查,以保证混凝土熟料的半成品质量。

(二)施工质量

1、在混凝土浇捣前,应先将基层和模板浇水湿透,避免过多吸收水分,浇捣过程中应尽量做到既振捣充分又避免过度。

2、混凝土楼板浇筑完毕后,表面刮抹应限制到最小程度,防止在混凝土表面撒干水泥刮抹,并加强混凝土早期养护。楼板浇筑后,对板面应及时用材料覆盖、保温,认真养护,防止强风和烈日曝晒。

3、严格施工操作程序,不盲目赶工。杜绝过早上传、上荷载和过早拆模。在楼板浇捣过程中更要派专人护筋,避免踩弯面负筋的现象发生。通过在大梁两侧的面层内配置通长的钢筋网片,承受支座负弯矩,避免因不均匀沉降而产生的裂缝。

4、施工后浇带的施工应认真领会设计意图,制定施工方案,杜绝在后浇处出现混凝土不密实、不按图纸要求留企口缝,以及施工中钢筋被踩弯等现象。同时更要杜绝在未浇注混凝土前就将部分模板,支柱拆除而导致梁板形成悬臂,造成变形。

5、对于较粗的线管或多根线管的集散处,可增设垂直于线管的抗裂短钢筋网加强,抗裂短钢筋采用Φ6-Φ8,间距≤150,两端的锚固长度应不小于300毫米。

线管在敷设时应尽量避免立体交叉穿越,交叉布线处采用线盒,同时在多根线管的集散处宜采用放射形分布,尽量避免紧密平行排列,以确保线管底部的砼灌筑顺利和振捣密实。并且当线管数量众多,使集散口的砼截面大量削弱时,宜按预留孔洞构造要求在四周增设上下各2Φ12的井字形抗裂构造钢筋。

6、对计划中的临时大开间面积材料吊卸堆放区域部位的模板支撑架在搭设前,就预先考虑采用加密立杆和搁栅增加模板支撑架刚度的加强措施,以增强刚度,减少变形来加强该区域的抗冲击振动荷载,并应在该区域的新筑砼表面上铺设旧木模加以保护和扩散应力,进一步防止裂缝的发生。

7、加强对楼面砼的养护:砼的保湿养护对其强度增长和各类性能的提高十分重要,特别是早期的妥善养护可以避免表面脱水并大量减少砼初期伸缩裂缝发生。但实际施工中,由于抢赶工期和浇水将影响弹线及施工人员作业,因此楼面砼往往缺乏较充分和较足够的浇水养护延续时间。为此,施工中必须坚持覆盖麻袋或草包进行一周左右的妥善保湿养护,并可采用喷养护液进行养护,达到降低成本和提高工效,并可避免或减少对施工的影响。

8、严格控制板面负筋的保护层厚度:现浇板负筋一般放置在支座梁钢筋上面,与梁筋应绑扎在一起;另外,采用铁架子或混凝土垫块等措施来固定负筋的位置,保证在施工过程中板面钢筋不再下沉,从而可有效控制保护层,避免支座处因负筋下沉,保护层厚度变大而产生裂缝,板的保护层厚度不应大于1.5cm。

设计方面

1、对于地基的不均允沉降,可以通过调整基础的选型来对楼房沉降和沉降差进行控制,如采取改用深基础及桩基础等方式以减少这类裂缝的发生。

2、在板角增加辐射筋。现浇板的四周在设计上都已配置负筋,但针对绝大多数裂缝产生于板角这一现象,在板角四周增设辐射筋,使产生裂缝的应力作用方向与辐射筋相一致,能有效地抑制裂缝,此外配筋较多时,相对来说也能明显改善裂缝的产生或扩展,根据裂缝距板角的距离,辐射筋长度为1.5m左右。

3、平面布置上尽量减少凹凸现象和设置必要的伸缩缝。平面转角过多,即薄弱部位越多,而这些部位由于应力集中,往往是裂缝的多发区。

三、裂缝的处理方法

1、对于一般混凝土楼板表面的龟裂,可先将裂缝清洗干净,待干燥后用环氧浆液灌缝或用表面涂刷封闭。施工中若在终凝前发现龟裂时,可用抹压一遍处理。

2、其它一般裂缝处理,可将板缝清洗后用1:2或1:l水泥砂浆袜缝,压平养护。

3、当裂缝较大时,应沿裂缝凿八字形凹槽,冲洗干净后,用1:2水泥砂浆抹平,也可以采用环氧胶泥嵌补。

4、当楼板出现裂缝面积较大时,应对楼板进行静载试验,检验其结构安全性,必要时可在楼板上增做一层钢筋网片,以提高板的整体性。

5、通长、贯通的危险结构裂缝,裂缝宽度大于0.3mm的,可采用结构胶粘扁钢加固补强,板缝用灌缝胶高压灌胶。

第五篇:混凝土开裂的原因及对策

混凝土开裂的原因及对策

一、混凝土开裂的原因

11、荷载引起的裂缝

12、温度变化引起的裂缝

13、收缩引起的裂缝

14、地基础变形引起的裂缝

35、钢筋锈蚀引起的裂缝

36、冻胀引起的裂缝

37、施工材料质量引起的裂缝

48、施工工艺质量引起的裂缝

二、普通混凝土裂缝的处理方法

41、表面修复

42、局部修复法

43、水泥压力灌浆法

54、化学灌浆

55、减少结构内力

56、结构补强

57、改变结构方案,加强整体刚度

68、混凝土置换法

69、电化学防护法

610、仿生自愈合法

611、其它方法

三、大体积混凝土裂缝产生的原因

71、干燥收缩

72、塑性收缩

83、自收缩

84、温度收缩

85、化学收缩

四、大体积混凝土有害、无害裂缝判别标准

五、无害裂缝处理方法

101、二次压面法

102、表面涂抹砂浆法

103、表面涂抹环氧胶泥(或粘贴环氧玻璃布)法

104、表面凿槽嵌补法

115、表面贴条法

六、有害裂缝处理方法

121、水泥灌浆法

122、化学灌浆法

混凝土开裂可以说是“常发病”和“多发病”,经常困扰着工程技术人员。其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。

实际上,混凝土裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。本报告对混凝土裂缝的种类和产生的原因作较全面的分析并提出相应的防治措施,供同行参考、探讨。

一、混凝土开裂的原因

1、荷载引起的裂缝

混凝土在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝,次应力裂缝是指由外荷载引起的次生应力产生裂缝。

荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。

2、温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。

3、收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。

塑性收缩,发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

缩水收缩(干缩),混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

自生收缩,自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。

炭化收缩,大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。炭化收缩一般不做计算。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

4、地基础变形引起的裂缝

由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。

5、钢筋锈蚀引起的裂缝

由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。

6、冻胀引起的裂缝

大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水(结冰温度在-78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。

7、施工材料质量引起的裂缝

混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。

8、施工工艺质量引起的裂缝

在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异。

二、普通混凝土裂缝的处理方法

1、表面修复

常用的方法有压实抹平,涂抹环氧粘结剂,喷涂水泥砂浆或细石混凝土,压抹环氧胶泥,环氧树脂粘贴下班丝布,增加整体面层,钢锚栓缝合等。

表面涂抹和表面贴补法表面涂抹适用范围是浆材难以灌入的细而浅的裂缝,深度未达到钢筋表面的发丝裂缝,不漏水的缝,不伸缩的裂缝以及不再活动的裂缝。表面贴补(土工膜或其它防水片)法适用于大面积漏水(蜂窝麻面等或不易确定具体漏水位置、变形缝)的防渗堵漏。

2、局部修复法

常用的方法有充填法、预应力法,部分凿除重新浇筑混凝土等。

用修补材料直接填充裂缝,一般用来修补较宽的裂缝,作业简单,费用低。宽度小于0.3mm,深度较浅的裂缝、或是裂缝中有充填物,用灌浆法很难达到效果的裂缝、以及小规模裂缝的简易处理可采取开V型槽,然后作填充处理。

3、水泥压力灌浆法

适用于缝补宽度≥0.5mm的稳定裂缝。

此法应用范围广,从细微裂缝到大裂缝均可适用,处理效果好。利用压送设备(压力0.2~0.4Mpa)将补缝浆液注入砼裂隙,达到闭塞的目的,该方法属传统方法,效果很好。也可利用弹性补缝器将注缝胶注入裂缝,不用电力,十分方便效果也很理想。

4、化学灌浆

可灌入缝宽≥0.05mm的裂缝。

5、减少结构内力

常用的方法有卸荷或控制荷载,设置卸荷结构,增设支点或支撑。改简支梁为连续梁等。

6、结构补强

常用的方法有增加钢筋,加厚板,外包钢筋混凝土,外包钢,粘贴钢板,预应力补强体系等。

因超荷载产生的裂缝、裂缝长时间不处理导致的混凝土耐久性降低、火灾造成的裂缝等影响结构强度可采取结构补强法。包括断面补强法、锚固补强法、预应力法等混凝土裂缝处理效果的检查包括修补材料试验;钻心取样试验;压水试验;压气试验等。

7、改变结构方案,加强整体刚度

例如:框架裂缝采用增设隔板深梁法处理。

8、混凝土置换法

混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。

9、电化学防护法

电化学防腐是利用施加电场在介质中的电化学作用,改变混凝土或钢筋混凝土所处的环境状态,钝化钢筋,以达到防腐的目的。阴极防护法、氯盐提取法、碱性复原法是化学防护法中常用而有效的三种方法。这种方法的优点是防护方法受环境因素的影响较小,适用钢筋、混凝土的长期防腐,既可用于已裂结构也可用于新建结构。

10、仿生自愈合法

仿生自愈合法是一种新的裂缝处理方法,它模仿生物组织对受创伤部位自动分泌某种物质,而使创伤部位得到愈合的机能,在混凝土的传统组分中加入某些特殊组分(如含粘结剂的液芯纤维或胶囊),在混凝土内部形成智能型仿生自愈合神经网络系统,当混凝土出现裂缝时分泌出部分液芯纤维可使裂缝重新愈合。

11、其它方法

常用方法有拆除重做,改善结构使用条件,通过试验或分析论证不作处理等。

三、大体积混凝土裂缝产生的原因

大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致钢筋混凝土产生裂缝的主要原因。

这种裂缝有表面裂缝和贯通裂缝两种。表面裂缝是由于混凝土表面和内部的散热条件不同,温度外低内高,形成了温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面的拉应力超过混凝土抗拉强度而引起的。贯通裂缝是由于大体积混凝土在强度发展到一定程度,混凝土逐渐降温,这个降温差引起的变形加上混凝土失水引起的体积收缩变形,受到地基和其他结构边界条件的约束时引起的拉应力,超过混凝土抗拉强度时所可能产生的贯通整个截面的裂缝。

这两种裂缝不同程度上,都属有害裂缝。高强度的混凝土早期收缩较大,这是由于高强混凝土中以30%~60%矿物细掺合料替代水泥,高效减水剂掺量为胶凝材料总量的1%~2%,水胶比0.25~0.40,改善了混凝土的微观结构,给高强混凝土带来许多优良特性,但其负面效应最突出的是混凝土收缩裂缝几率增多。高强混凝土的收缩,主要是干燥收缩、温度收缩、塑性收缩、化学收缩和自收缩。

混凝土初现裂纹的时间可以作为判断裂纹原因的参考:塑性收缩裂纹大约在浇筑后几小时到十几小时出现;温度收缩裂纹大约在浇筑后2到10d出现;自收缩主要发生在混凝土凝结硬化后的几天到几十天;干燥收缩裂纹出现在接近1年龄期内。

1、干燥收缩

当混凝土在不饱和空气中失去内部毛细孔和凝胶孔的吸附水时,就会产生干缩,高性能混凝土的孔隙率比普通混凝土低,故干缩率也低。

2、塑性收缩

塑性收缩发生在混凝土硬化前的塑性阶段。高强混凝土的水胶比低,自由水分少,矿物细掺合料对水有更高的敏感性,高强混凝土基本不泌水,表面失水更快,所以高强混凝土塑性收缩比普通混凝土更容易产生。

3、自收缩

密闭的混凝土内部相对湿度随水泥水化的进展而降低,称为自干燥。自干燥造成毛细孔中的水分不饱和而产生负压,因而引起混凝土的自收缩。高强混凝土由于水胶比低,早期强度较快的发展,会使自由水消耗快,致使孔体系中相对湿度低于80%,而高强混凝土结构较密实,外界水很难渗入补充,导致混凝土产生自收缩。

高强混凝土的总收缩中,干缩和自收缩几乎相等,水胶比越低,自收缩所占比例越大。与普通混凝土完全不同,普通混凝土以干缩为主,而高强混凝土以自收缩为主。

4、温度收缩

对于强度要求较高的混凝土,水泥用量相对较多,水化热大,温升速率也较大,一般可达35~40℃,加上初始温度可使最高温度超过70~80℃。一般混凝土的热膨胀系数为10×10-6/℃,当温度下降20~25℃时造成的冷缩量为2~2.5×10-4,而混凝土的极限拉伸值只有1~1.5×10-4,因而冷缩常引起混凝土开裂。

5、化学收缩

水泥水化后,固相体积增加,但水泥-水体系的绝对体积则减小,形成许多毛细孔缝,高强混凝土水胶比小,外掺矿物细掺合料,水化程度受到制约,故高强混凝土的化学收缩量小于普通混凝土。

当混凝土发生收缩并受到外部或内部约束时,就会产生拉应力,并有可能引起开裂。对于高强混凝土虽然有较高的抗拉强度,可是弹性模量也高,在相同收缩变形下,会引起较高的拉应力,而由于高强混凝土的徐变能力低,应力松弛量较小,所以抗裂性能差。

四、大体积混凝土有害、无害裂缝判别标准

原则上与核安全有关的钢筋混凝土不允许出现裂缝,尤其是反应堆厂房底板、安全壳筒身及穹顶、汽轮机厂房蜗壳泵等重要部位严禁产生裂缝,其他部位应尽可能控制裂缝的产生。

但是由于各种原因不可避免的产生各种裂缝,为了明确当混凝土出现裂缝时如何判别其是否有害、无害?为此,福清核电各单位(业主、监理、工程公司、施工单位)经过认真研讨,确定了混凝土裂缝判别标准:

1、无害裂缝:

δf≤0.3mm深度h≤0.5H

δf≤0.2mm贯穿(自愈性)

1.0mm≥δf>0.3mmL≤0.1B2、有害裂缝(满足下列条件之一):

Δf>0.3mm纵深裂缝、h>0.5H;

Δf>0.2mm贯穿全截面;裂缝影响使用功能(有渗透、透气、透射线等要求,且满足其中之一即可);

Δf>0.3mm非贯穿,可能引起钢筋锈蚀裂缝;降低结构承载力的裂缝。

3、各符号的含义:

Δf——裂缝宽度L——裂缝长度

h——裂缝深度H——裂缝深度

B——沿裂缝长方向的结构宽度,如浇筑后的沉缩(塑性裂缝)

五、无害裂缝处理方法

1、二次压面法

对于新浇混凝土收缩裂缝,该裂缝多在新浇筑并暴露于空气中的结构构件表面出现,有塑态收缩、沉降收缩、干燥收缩、碳化收缩、凝结收缩等收缩裂缝,这种裂缝不深也不宽,处理方法如下:

1)如混凝土仍有塑性,可采取压抹一遍的方法,并加强养护。

2)如混凝土已硬化,可向裂缝内渗入水泥浆,然后用铁抹子抹平压实。

2、表面涂抹砂浆法

处理时将裂缝附近的混凝土表面凿毛或沿裂缝凿成深15—20mm宽100—200mm凹槽,扫净并洒水湿润。

先刷水泥净浆(业主批准适用的界面剂)一度,然后用1:1~2水泥砂浆分2~3层,涂抹总厚10~20mm压光。有渗漏水时,应用水泥净浆(厚2mm)和1:2.5水泥砂浆(厚4-5mm可惨入1—3%于水泥重量的氯化铁防水剂)交替抹压4-5层,涂抹后3-4小时进行覆盖并洒水养护。

3、表面涂抹环氧胶泥(或粘贴环氧玻璃布)法

涂抹前,将裂缝附近表面清洗干净(油污应用丙酮或二甲苯擦洗净)、干燥。较宽裂缝用环氧胶泥填塞,并将胶泥均匀地涂刮压裂缝表面,宽80-100mm。基层干燥有困难时可以用环氧煤焦油胶泥。需要粘贴环氧玻璃布时,先将玻璃布脱钠、干燥,视具体情况可作成一布二油(或二布三油,第二层布的周围应比下一层宽10~15mm)。

4、表面凿槽嵌补法

当裂缝稀少,但深度较深时,沿混凝土裂缝凿一条V型或U型槽,槽内表面应修理平整,清洗干净,并保持槽内干燥。槽内嵌入刚性材料如水泥砂浆、环氧胶泥,或填灌柔性材料如聚氯乙烯胶泥、沥青油膏等密封。密封材料嵌入前,先涂刷与嵌填材料混凝土性质的稀释涂料(表面可作砂浆保护层或不作保护层),具体做法见图1。

图1表面凿槽修补裂缝的处理方法

(a)一般裂缝处理

(b)渗水裂缝处理

(c)活动裂缝处理

(d)活动裂缝扩展后的情况:1—裂缝;2—水泥砂浆或环氧胶泥;3—聚氧乙烯;4—1:2.5水泥砂浆或刚性防水五层做法;5—密封材料;6—隔离缓冲区;B—槽宽;δ—裂缝活动距离

注:对于施工缝表面的裂缝,处理时可在与其连接的施工段混凝土浇筑前,按表面凿槽嵌补法的要求在裂缝位置处凿V型或U型槽,该槽内不再填充其他填充物,由该连接施工段浇筑的结构混凝土填充,以保证施工缝处混凝土。

5、表面贴条法

对于裂缝移动范围不限于一个平面并有防水要求不便凿槽修补的活裂缝,可将一条具有柔性的聚丁橡胶密封条置于裂缝上面,用聚丁橡胶粘结剂将周边粘结于混凝土上(见图2),使密封条中部能随裂缝活动而自由活动,长的裂缝可分段为粘结,分段为密封条的连接采用聚丁橡胶粘贴搭接,搭接处上下压搓应切成斜面搭接,长度100mm。

图2柔性密封带表面粘贴

1—裂缝2—油毡或塑料隔离层;3—聚丁橡胶密封条;4—粘结剂

六、有害裂缝处理方法

1、水泥灌浆法

钻孔:采用风钻钻孔,孔距1-1.5m除浅孔采用骑缝孔外一般占孔轴线与裂缝呈30—45·斜角(见图3),孔深应穿过裂缝面0.5m以上,当钻孔有两排或两排以上时,宜交叉或呈梅花形布置。

图3钻孔示意

1—裂缝,2—齐缝口,3—斜孔

冲洗:钻孔完毕后,应用水冲洗,按竖向排列自上而下逐孔进行。

密封:缝面冲洗净后,在裂缝表面用1:1~2水泥砂浆或环氧胶泥涂抹。

埋管:一般用ø19-38的钢管作灌浆管(钢管上端加工丝扣),安装前在钢管外壁用生胶带缠紧,然后旋入孔中,孔中管壁周围的空隙用水泥砂浆或硫磺砂浆封堵,以防冒浆或灌浆管冲孔中脱出。

试压:用0.1-0.2MPa压力水作渗水试验,采取灌浆孔压水,排水孔排水的方法检查裂缝和管路畅通情况,然后关闭排气孔检查止浆堵漏效果,并湿润缝面,以利粘结。

灌浆:合格的经设计批准使用的填缝用注射性水泥,水泥净将水灰比为0.4,灌浆压力0.3—0.5MPa。在整条裂缝处理完毕后,孔内应充满净浆,并填入净砂用棒捣实。

2、化学灌浆法

钻孔:采用风钻钻孔,孔距1-1.5m除浅孔采用骑缝孔外一般占孔轴线与裂缝呈30—45·斜角(见图3),孔深应穿过裂缝面0.5m以上,当钻孔有两排或两排以上时,宜交叉或呈梅花形布置;

密封:缝面冲洗净后,在裂缝表面用1:1~2水泥砂浆或环氧胶泥涂抹。

埋管:一般用ø19-38的钢管作灌浆管(钢管上端加工丝扣),安装前在钢管外壁用生胶带缠紧,然后旋入孔中,孔中管壁周围的空隙用水泥砂浆或硫磺砂浆封堵,以防冒浆或灌浆管冲孔中脱出。

试压:用0.2-0.3MPa压缩空气进行压力实验;

灌浆:采用环氧树脂浆液进行灌浆。

下载铜拉深冲压容易开裂原因浅析(5篇)word格式文档
下载铜拉深冲压容易开裂原因浅析(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    芹菜叶柄开裂原因及防治

    芹菜叶柄开裂原因及防治 芹菜叶柄开裂主要表现为茎基部连同叶柄同时裂开。这不仅影响芹菜商品品质,而且极易引起病菌感染,致使芹菜发病霉烂。 芹菜叶柄开裂的原因首先可能是生......

    内墙涂料开裂原因分析及整改措施

    摘要:随着国家进一步改革开放的实施,走出去战略已经涉及到各个行业。农业、经济、科技、经贸、工程等行业在国外市场已经打开了一片天。笔者近年来一直在非洲从事建筑行业,先后......

    混凝土楼板开裂原因及处理方法

    混凝土楼板开裂原因及处理方法 目前住宅工程混凝土楼板和填充墙出现裂缝的现象比较常见,现根据有关资料并结合我公司的情况,对现浇混凝土楼板和砌块填充墙裂缝的原因和对策分......

    现浇板开裂原因分析及加固技术

    现浇板开裂原因分析及加固技术 简介:通过检测,对现浇板裂缝从设计、施工两方面进行分析,并提出相应处理措施。 关键字:现浇板,裂缝加固 一、工程概况 某企业厂房工程,框架结构四......

    现浇板开裂原因分析及加固技术

    现浇板开裂原因分析及加固技术 简介:通过检测,对现浇板裂缝从设计、施工两方面进行分析,并提出相应处理措施。关键字:现浇板,裂缝加固一、工程概况 某企业厂房工程,框架结构四层,钢......

    混凝土开裂原因及防治措施五篇

    混凝土开裂原因及防治措施近年来,在民用建筑设计中通常采用现浇钢筋混凝土楼板、楼盖。但在实际应用中也发现存在很多问题,在新建工程的结构中出现裂缝的情况比较突出,已经成......

    石膏板吊顶开裂原因及处理办法

    石膏板吊顶开裂原因及处理办法 一、石膏板接缝开裂的主要原因 1、石膏板体积稳定的特性 一般装修材料都怕水,都存在湿胀干缩的现象,但石膏板却可以说是建筑装修各类板材中性......

    现浇混凝土楼板开裂原因及解决办法汇总

    现浇混凝土楼板开裂原因及解决办法 摘 要:随着建筑业的发展,现浇钢筋混凝土楼板非常普遍,但在实际施工中又出现了一个质量通病问题——裂缝问题,本文通过现浇混凝土板开裂的原因......