第一篇:静电放电抗扰测试的问题及对策
静电放电抗扰测试的问题及对策
一.静电放电抗扰测试的问题及对策
电磁兼容是指设备或系统在共同的电磁环境中能一起执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其它设备或系统因受其电磁发射而导致或遭受不允许的降级。对于手机电磁兼容测试,主要出现问题的项目是:静电放电抗扰度、电快速瞬变脉冲群抗扰度、传导骚扰及辐射骚扰。以下就手机的静电放电抗扰度问题及其相关解决方案进行了描述。首先,介绍一下电磁兼容的测试方法。
二.电磁兼容测试方法
1.测试时手机的连接方式
手机通过空间链路与手机基站模拟器建立通信连接,手机充电器与手机相连且保持充电状态,充电器的交流输入端与交流电源或测试设备相连,见图1。2.手机的工作状态
电磁兼容测试过程中,手机有两种典型的工作状态:通话状态:手机与基站模拟器通过空间链路建立并保持通信连接。根据不同制式,选择中间的信道频率。基站模拟器控制手机工作在最大的发射功率。手机与充电器相连并保持充电状态。
空闲模式:手机与基站模拟器通过空间链路连接,BCCH信道激活,手机与基站模拟器保持同步,手机处于待机状态。测试过程中,根据标准的要求选择手机的工作状态进行电磁兼容测试。2.测试方法
测试方法详见各个行业标准及相关的基础标准。对于手机电磁兼容测试,主要出现问题的项目是:静电放电抗扰度、电快速瞬变脉冲群抗扰度、传导骚扰及辐射骚扰。以下就手机的静电放电抗扰度问题及其相关解决方案进行了描述。
三.静电放电抗扰测试的问题及对策
1.静电放电抗扰度试验产生的问题: 1)手机机通话中断; 2)静电放电导致手机机部分功能失效,但静电放电过程结束后或者重新启动手机机之后失效的功能可以恢复。这些现象可能为:
①、屏幕显示异常,如屏幕显示呈白色、屏幕出现条纹、显示出现乱码、屏幕显示模糊等等;
②、通话效果出现问题,如出现啸叫声或者声音消失等问题; ③、按键功能或者触摸屏功能丧失;
④、软件出现误告警,如在并没有出现插拔充电器的情况下频繁提示“充电已连接、充电器已移除”;
3)手机自动关机或者重新启动现象。这个问题既可能发生在通话过程中,也可能发生在待机过程中; 4)静电放电导致手机损坏:
①.由于部分器件损坏,手机的一些功能在重新启动后仍无法恢复,如摄像头功能;
②、自动关机后无法再次开机的情况;
③、与充电器相连接的情况下进行测试时,充电器也可能出现失效、损坏甚至爆炸等问题。
2.手机静电放电问题的具体分析
1)、通话中断:造成通话中断的主要原因是静电放电对手机内部的射频电路和或基带电路造成影响,造成了通信信噪比的下降,信号同步出现问题,从而造成通话中断;
2)、结构设计不合理也可能导致通话中断:静电放电试验中需要使用较大面积的金属材质的水平耦合板,手机与水平耦合板之间仅放置一个厚度为0.5mm 的绝缘垫。当天线或者大面积的金属部件距离这个水平耦合板距离过近时可能产生相互耦合,可能导致移动电话机实际能达到的灵敏度大大下降,使进行静电试验时通话更容易中断。严重时即使不施加静电干扰移动电话机都无法保持通话; 3)、自动关机或重启:基带电路的复位电路受到静电的干扰导致手机误关机或重启;
4)、部分器件失效:静电放电过程中高电压和高电流导致器件的热失效或者绝缘击穿。也可能受到静电放电过程中强电磁场影响导致器件暂时失效; 5)、软件故障:静电干扰信号被当作有用信号被处理,导致操作系统误响应。
四.静电放电问题的改进建议
a.在设计方案上考虑静电放电问题
1、尽量选择静电敏感度等级高的器件;
2、器件与静电源隔离;
3、减少回路面积(面积越大,所包含的场流量越大,其感应电流越大),具体的措施可能包括:走线越短越好;电源与地越接近越好;存在多组电源和地时,以格子方式连接;太长的信号线或电源线必须与地线交错布置;信号线越靠近地线越好;所有的组件越近越好;同一特性器件越近越好;
4、接地平面设计:尽量在PCB 上使用完整的地平面;PCB 接地面积越大越好;不要有大的缺口;
5、PCB 的接地线需要低阻抗且要有良好的隔离;
6、电源、地布局在板中间比在四周好;
7、在电源和地之间放置高频旁路电容;
8、保护静电敏感的元器件。b.出现静电问题后的整改建议 整改步骤:
1)尝试直接放电和间接放电、空气放电和接触放电,确认耦合路径; 2)从不同方向放电,观察现象有何不同,确定所有的放电点和放电路径; 3)从低到高,在不同电压下进行试验,确定手机在哪个电压范围内出现不合格现象;
4)多试验几台样机,分析共性,确认失效原因;
5)根据耦合路径、不合格现象、放电路径,判断相关的敏感器件; 6)针对敏感器件制订解决方案; 7)通过试验验证、修正解决方案。整改措施:
①、对于机壳缝隙、按键、FPCB 的问题可用介质隔离的方式来处理; ②、对于摄像头、麦克风、听筒等问题可以通过介质隔离、加强接地等方式来处理; ③、具有屏蔽壳的芯片可以通过加强屏蔽效果、屏蔽壳加强接地的方式来处理; ④、对于接口电路、关键芯片的引脚,要通过使用保护器件(如TVS 管,ESD 防护器件)来加以保护;
⑤.对于软件的故障,可以通过增加一些逻辑判断来正确检测和处理告警信息的方式来改善。
专业:物理电子学
学号:201312131594 姓名:王盼
第二篇:静电放电抗扰度测试
静电放电抗扰度测试 静电的产生与危害 静电放电是一种自然现象,经验表明,人在合成纤维的地毯上行走时,通过鞋子与地毯的摩擦,只要行走几步,人体上积累的电荷就可以达到10-6库仑以上(这取决于鞋子与地毯 之间的电阻),在这样一个“系统”里(人/地毯/大地)的平均电容约为几十至上百pF,可能产生的电压要达到15kV.研究不同的人体产生的静电放电,会有许多不同的电流脉冲,电流波形的上升时间在100ps至30ns之间.电子工程师们发现,静电放电多发生于人体接触半导体器件的时候,有可能导致数层半导体材料的击穿,产生不可挽回的损坏静电放电以及紧跟其后的电磁场变化,可能危害电子设备的正常工作。2 静电放电试验
GB/T17626.2描述的是在低湿度环境下,通过摩擦使人体带电.带了电的人体,在与设备接触过程中就可能对设备放电.静电放电抗扰度试验模拟了两种情况: ⑴设备操作人员直接触摸设备时对设备的放电,和放电对设备工作的影响;⑵设备操作人员在触摸邻近设备时,对所关心这台设备的影响.其中前一种情况称为直接放电(直接对设备放电);后一种情况称为间接放电(通过对邻近物体的放电,间接构成对设备工作的影响).静电放电可能造成的后果是:
(1)通过直接放电,引起设备中半导体器件的损坏,从而造成设备的永久性失效.⑵由放电(可能是直接放电,也可能是间接放电)而引起的近场电磁场变化,造成设备的误动作.试验配置
由于静电放电的电流波形十分陡峭,前沿己经达到0.7~1ns,其包含的谐波成分至少要达到500MHz以上,因此试验室里试验配置的规范性是保证试验结果重复性和可比性的一个关键.下图上海三基电子工业有限公司提供的台式与落地式两种设备的试验配置.①木制试验台1700×900×800mm ①绝缘支座1100×800×100mm ②参考接地板2700×1800×1.5mm ②参考接地板2700×1800×1.5mm ③垂直耦合板500×500×1.5mm ③垂直耦合板500×500×1.5mm
④水平耦合板1600×800×1.5mm
④垂直耦合板支架500×500×1200mm
⑤绝缘垫板1400×600×0.5mm ⑤两端带470kΩ电阻的连接线(一根)⑥两端带470kΩ电阻的连接线(两根)静电放电试验的实验室
配置可以由用户自行制作,标准对此作出了规定,归结起来有以下几点:
⑴参考接地板采用0.25mm以上铜板或铝板(铝板易氧化,慎用).如用其他金属,厚度至少是0.65mm以上.参考接地板实际尺寸不限,要求四周均超出被试设备(指地面设备)或试验桌台面水平耦合板(用于台式设备)的每边0.5m以上.参考接地板要和试验室的保护接地线相连.⑵水平耦合板(仅台式设备有)和垂直耦合板(后者有绝缘支架)的材料与参考接地板相同.两块耦合板各有一根两端接有470kΩ电阻的电缆线与参考接地板相连,以便泄放试验中静电电荷.要求所用电阻有承受放电的能力;整个电缆有绝缘保护,避免与接地板短路.⑶对台式设备,在水平耦合板上覆一块0.5mm的绝缘薄板,要求试验中此板不明显积聚电荷.在台式设备试验中,水平耦合板至少比试品的每一边大出0.1m.如试品太大,要么选用更大的试验台;要么选用两张同样的试验台来摆放试品,桌面上的水平耦合板不必焊在一起,而可以在两张桌子的并合处覆一块同样材质的金属,只要各压住每个桌面0.3m以上即可.但要求两张桌子的水平耦合板用电阻线分别与参考接地板相连.⑷对地面设备,在参考接地板上要有一个0.1m高的绝缘支座,试品和试品电缆放在绝缘支座.⑸所有连接线(包括参考接地板的接地电缆;耦合板上的带电阻的连接电缆;以及放电枪接到参考接地板上的接地回线等)都必须保持低阻抗的连接.⑹其他应注意的地方
A.在距试品1m以内应无墙壁和其他金属物品(包括仪器).B.试验中的试品要尽可能按实际情况布局(包括电源线,信号线和安装脚等等).接地线要按生产厂的规定接地(没有接地线的就不接),不允许有额外的接地线.C.放电时,放电枪的接地回线与试品表面至少保持0.2m的间距,避免相互间有附加感应,影响试验结果.试验方法
标准规,凡被试设备正常工作时,人手可以触摸到的部位,都是需要进行静电放电试验的部位(这样的部位,除机壳以外,其他如控制键盘,显示屏,指示灯,旋钮,钥匙孔,电源线等都在考核范围内).试验时,被试设备处在正常工作状态.试验正式开始前,试验人员对试品表面以20次/秒的放电速率快速扫视一遍,以便寻找试品的敏感部位(凡扫视中有引起试品数显跳动,动作异常迹象的部位,都作为正式试验时的重点考查部位,应记录在案,并在正式试验时应在其周围多增加几个考查点).正式试验时,放电以1次/秒的速率进行(也有规定为1次/5秒的产品),以便让试品来得及作出响应.通常对每一个选定点上放电20次(其中10次是正的,还有10次是负的).原则上,凡可以用接触放电的地方一律用接触放电.对有镀漆的机壳,如制造厂未说明是作绝缘的,试验时便用放电枪的尖端刺破漆膜对试品进行放电.如厂家说明是做绝缘使用时,则改用气隙放电.对气隙放电应采用半圆头形的电极,在每次放电前,应先将放电枪从试品表面移开,然后再将放电枪慢慢靠近试品,直到放电发生为止.为改善试验结果的重复性和可比性,放电电极要垂直试品表面.间接放电:
①对水平耦合板,放电枪垂直地在离开试品0.1m处用接触放电方式进行放电.②对垂直耦合板,耦合板应放在离试品0.1m处,放电枪要垂直于耦合板一条垂直边的中心位置上进行放电.对试品垂直方向的四个面都要用垂直耦合板做间接放电试验.电快速瞬变脉冲群产生的原理:
当电感性负载(如继电器、接触器等)在断开时,由于开关触点间隙的绝缘击穿或触点弹跳等原因,在断开处产生的瞬态骚扰。当电感性负载多次重复开关,则脉冲群又会以相应的时间间隙多次重复出现。这种瞬态骚扰能量较小,一般不会引起设备的损坏,但由于其频谱分布较宽,所以会对移动电话机的可靠工作产生影响。电快速瞬变脉冲群抗扰度试验相关问题的分析 电快速瞬变脉冲波形通过充电器直接传导进手机,导致主板电路上有过大的噪声电压。当单独对火线或零线注入时,尽管是采取的对地的共模方式注入,但在火线和零线之间存在差模干扰,这种差模电压会出现在充电器的直流输出端。当同时对火线和零线注入时,存在着共模干扰,但对充电器的输出影响并不大。造成手机在测试过程中出现问题的原因是复杂的,具体表现为: 1)前期设计时未考虑电快速瞬变脉冲群抑制功能,没有添加相关的滤波元器件,PCB设计综合布线时也没有注意线缆的隔离,主板接地设计也不符合规范,另外关键元器件的也没有采取屏蔽保措施等;
2)生产厂在元器件供应商的选择上没有选用性能可靠的关键器件,导致测试过程中器件老化或者器件失效,从而容易受到电快速瞬变脉冲的干扰;
3)在整机生产组装过程中,加工工艺及组装水平出现的问题可能会导致产品一致性不好,别送检手机存在质量问题; 4)检测过程中由于其他测试项出现问题导致整改,可能由于整改方案的选择会影响到电快速瞬变脉冲群测试不合格。
电快速瞬变脉冲群抗扰度试验相关问题的改进建议 针对电快速脉冲群干扰试验出现的问题,主要可以采取滤波及吸收的办法来实现对电快速瞬变脉冲的抑制。
1)在手机设计初期就应重点考虑抑制电快速瞬变脉冲群干扰设计:
在PCB层电源输入位置要做好滤波,通常采用的是大小电容组合,根据实际情况可以酌情再添加一级磁珠来滤除高频信号,尽量采用表面封装;
尽量减小PCB的地线公共阻抗值; PCB布局尽量使干扰源远离敏感电路; PCB的各类走线要尽量短; 减小环路面积;
在综合布线时要注意强弱电的布线隔离、信号线与功率线的隔离,综合布线是系统很重要的一个设计组成部分,一个糟糕的综合布线格局很可能断送一个设计精良的PCB的稳定性; 关键敏感芯片需要屏蔽;
软件上应正确检测和处理告警信息,及时恢复产品的状态;
2)元器件的选择上应使用质量可靠的芯片,最好做过芯片级的电磁兼容仿真试验,质量可靠的充电器、数据线及电池的选用可提升对电快速瞬变脉冲信号的抑制能力;
3)厂家在组装生产环节中应严把质量关,做好生产工艺流程控制,尽量保证产品质量的一致性,减少因个别手机质量问题带来的测试不合格现象;
4)EFT测试过程中如出现问题,可采用在充电器增加磁环或者电快速瞬变脉冲群滤波器的方法进行整改,选用磁珠的内径越小、外径越大、长度越长越好;采用加TVS管的整改方法作用有限;
5)根据最新GB/T17626.4-2008标准要求,重复频率将增加100kHz选项,将会比5kHz更为严酷,希望厂家及早重视进行相关的电快速瞬变脉冲群测试防护工作。下面是在实验室进行电快速脉冲群抗扰度试验时所必须的配置:
1.参考接地板用厚度为0.25mm以上的铜板或铝板(需提醒的是,普通铝板容易氧化,易造成试验仪器、受试设备的接地电缆与参考接地板之间塔接不良,宜慎用);若用其他金属板材,要求厚度大于0.65mm。参考接地板的尺寸取决于试验仪器和受试设备,以及试验仪器与受试设备之间所规定的接线距离(1m)。参考接地板的各边至少应比上述组合超出0.1m。参考接地板应与实验室的保护地相连。
2.试验仪器(包括脉冲群发生器和耦合/去耦网络)放置在参考接地板上。试验仪器用尽可能粗短的接地电缆与参考接地板连接,并要求在搭接处所产生的阻抗尽可能小。
3.受试设备用0.1±0.01m的绝缘支座隔开后放在参考接地板上(如果受试设备是台式设备,则应放置在离参考接地板高度为0.8±0.08m的木头桌子上)。受试设备(或试验桌子)距参考接地板边缘的最小尺寸满足项1(0.1m)的规定。受试设备应按照设备的安装规范进行布置和连接,以满足它的功能要求。另外,受试设备应按照制造商的安装规范,将接地电缆以尽量小的接地阻抗连接到参考接地板上(注意,不允许有额外的接地情况出现)。当受试设 备只有两根电源进线(单相,一根L,一根N),而且不设专门接地线时,受试设备就不能在试验时单独再拉一根接地线。同样,受试设备如果通过三芯电源线进线(单相,一根L,一根N,及一根电气接地线),未设专门接地线时,则此受试设备也不允许另外再设接地线来接地,而且受试设备的这根电气接地线还必须经受抗扰度试验。
4.受试设备与试验仪器之间的相对距离以及电源连线的长度都控制在1m,电源线的离地高度控制在0.1m,如有可能,最好用一个木制支架来摆放电源线。当受试设备的电源线为不可拆卸,而且长度超过1m时,那么超长部分就应当挽成个直径为0.4m的扁平线圈,并行地放置在离参考接地板上方0.1m处。受试设备与试验仪器之间的距离仍控制为1m。标准还规定,上述电源线不应采用屏蔽线,但电源线的绝缘应当良好。
5.试验应在试验室中央进行,除了位于受试设备、试验仪器下方的参考接地板以外,它们与其他所有导电性结构(例如屏蔽室的墙壁和实验室里的其他有金属结构的试验仪器和设备)之间的最小距离为0.5m。
6.当使用耦合夹做被试系统的抗扰度试验时,耦合夹应放置在参考接地板上,耦合夹到参考接地板的边缘尺寸的最小距离为0.1m。同样,除了位于耦合夹下方的参考接地板以外,耦合夹相对所有其他导电性结构之间的最小距离是0.5m。如果试验是针对系统中一台设备(如EUT1)的抗扰度性能测试来说时,则耦合夹与EUT1的距离关系保持不变,而将耦合夹相对EUT2的距离增至5m 以上(标准认为较长的导线足够使线路上的脉冲群信号损耗殆尽)。耦合夹也可由1米长的铝箔包裹受试电缆代替,前提是它可以提供和耦合夹一样的等效电容(100pF)。如果现场条件不允许放置1m长的铝箔也可以适当缩短长度,但仍要保证等效耦合电容。也可以将发生器的输出通过100pF的高压陶瓷电容直接加到受试电缆的芯线或是外皮。
7.在电源线上的试验通过耦合/去耦网络以共模方式进行,在每一根线(包括设备的电气接地线)对地(对参考接地板)施加试验电压。要求每一根线在一种试验电压极性下做三次,每次一分钟,中间相隔一分钟。在一种极性做完后,换做另一个极性。一根线做完后,换做另一根线。当然也可以把脉冲同时注入两根线,甚至几根线。
四.试验等级 试验等级所代表的典型工作环境如下:1级,具有良好保护的环境。计算机机房可代表此类环境;2级,受保护的环境。工厂和发电厂的控制室可代表此类环境;3级,典型工业环境。发电厂和户外高压变电站的继电器房可代表此类环境;4级,严酷的工业环境。为采取特别安装措施的电站或工作电压高达50万伏的开关设备可代表此类环境;X级,由厂家和客户协商决定。
浪涌冲击形成的机理
电磁兼容领域所指的浪涌冲击一般来源于开关瞬态和雷击瞬态。系统开关瞬态与以下内容有关:
a)主电源系统切换骚扰,例如电容器组的切换;
b)配电系统内在仪器附近的轻微开关动作或者负荷变化; c)与开关装置有关的谐振电路,如晶闸管;
d)各种系统故障,例对设备组接地系统的短路和电弧故障。试验实施
电源、信号和其他功能电量应在其额定的范围内使用,并处于正常的工作状态。
根据要进行试验的EUT的端口类型选择相应的试验试验波形发生器和耦合单元及相应的信号源内阻。
使受试设备处于典型工作条件下,根据受试设备端口及其组合,依次对各端口施加冲击电压。每种组合应针对不同脉冲极性进行测试,两次脉冲间隔时间不少于1min。
对电源端子进行浪涌测试时,应在交流电压波形的正、负峰值和过零点分别施加试验电压。对电源线和信号线应分别在不同组合的共模和差模状态下施加脉冲冲击。
每种组合状态至少进行5次脉冲冲击。
若需满足较高等级的测试要求,也应同时进行较低等级的测试。只有两者同时满足,我们才认为测试通过。
雷击浪涌试验有共模和差模两种。因此浪涌吸收器件的使用要考虑到与试验的对应情况。为保证使用效果,浪涌吸收器件要用在 进线入口处。由于浪涌吸收过程中的di/dt特别大,在器件附近不能有信号线和电源线经过,以防止因电磁耦合将干扰引入信号和电源线路。此外,浪涌吸收器件的引脚要短;吸收器件的吸收容量要与浪涌电压和电流的试验等级相匹配。
雷击浪涌试验的最大特点是能量特别大。所以采用普通滤波器和铁氧体磁芯来滤波、吸收的方案基本无效;必须使用气体放电管、压敏电阻、硅瞬变电压吸收二极管和半导体放电管等专门的浪涌抑制器件才行。浪涌抑制器件的一个共同特性就是阻抗在有浪涌电压与没浪涌电压时不同。正常电压下,它的阻抗很高,对电路的工作没有影响;当有很高的浪涌电压加在它上面时,它的阻抗变得很低,将浪涌能量旁路掉。这类器件的使用方法是并联在线路与参考地之间,当浪涌电压出现时,迅速导通,以将电压幅度限制在一定的值上压敏电阻、瞬态抑制二极管和气体放电管具有不同的伏安特性,因此浪涌通过它们时发生的变化不同.
第三篇:石油静电及部分场所防静电对策
石油静电及部分场所防静电对策
1、石油静电特点
影响油品起电和放电的因素多,量化控制困难。
2、静电起电与影响因素 2.1起电
油品在流动、搅拌/调和、喷出、沉降/浮起、过滤/分离等,都会产生静电。2.2影响因素
(1)纯净油品是不起电的,当油品含电离杂质及不相溶的第二相分散物时起电量就会增加;
(2)过滤介质类型和面积、管道表面粗糙度和沉积层面积以及作业方式和环境温湿度等,也会影响油品起电。如油品中“供静电剂”意外增加,包括游离水、不相溶的分散介质或悬浮物等。
3、危险界限与安全控制指标 3.1油面放电危险界限:58kV
安全管理指标:德国42kV、美国35kV、俄国20kV、中国12kV 3.2铁路槽车入口电荷密度:≤30μC/m3
油面附近电荷密度:≤5.5~10.6μC/m3
加油速度:vd<0.8m2/s(铁路)
vd<0.5m2/s(汽车)3.3绝缘导体或容器放电危险界限:327V
安全控制指标:<100V(MIE为0.1~1mJ)放电电荷转移量:<0.1μC(MIE为0.26mJ)3.4绝缘体放电危险界限:
20~30kV(MIE为0.1~1.0mJ)安全管理指标:<5kV 4
防静电灾害对策指南 4.1 防灾原则
对策指南和具体措施包括:
(1)抑制起电条件,如限制流速、避免油水混合作业等;(2)确保或增加静电泄放能力,如系统接地、增湿、加抗静电剂等;
(3)避免高能放电条件,如防止绝缘导体、金属突出物等;(4)在危险作业区或操作上难以确保上述要求的危险场所,可增设部分防静电措施,包括:
·石油静电消除器/监测器 ·防静电、防杂散电流鹤管 ·本安型人体静电消除器 ·智能型接地连锁装置 ·防静电型采样器 ·防静电工作服、鞋等
4.2 现场静电管理目标及措施的推荐意见 将安全管理融入到“人、机、料、法、环”一体化管理系统中,向安全要效益;以安全经济学的基本思想为指导,预防为主,突出重点,松紧适度,以最小的投入获取最大的风险效益。4.2.1槽车/汽车加油场所
(1)确认槽车/汽车接地系统良好 确保管道法兰连接符合防静电设计要求 确保鹤管与槽车跨接良好 确保胶管接头或油枪等跨接良好(2)确保装车操作程序
鹤管插入深度:距罐底<200mm 鹤管埋没前流速≤1m/s
鹤管埋没后流速:vd<0.8 m2/s(铁路)、vd<0.5 m2/s(汽车)加完油后静置时间>2min,然后再移管、摘地线(3)确保操作人员着装、鞋、手套等符合防静电要求(4)确保道轨分叉绝缘块符合防静电要求 附:设备整改推荐措施(1)管道静电消除/监测器(2)智能型静电接地装置(3)本安型人体静电消除器(4)防静电、防杂散电流鹤管(5)铁路绝缘块电阻检测仪 4.2.2罐区油罐加油场所(1)确保罐内无脱落的金属浮球和其它飘浮异物(2)确保罐内无诱发放电的金属突出物(3)有过滤器场所应确保油品弛涨时间≥30 s(4)按油品纯度控制加油速度
当介质含游离水、污油或混合油时,流速≤1m/s 当用切水管处理介质时,流速≤1m/s 处理沉降后的成品油时,流速≤4m/s
(5)确保操作人员着装、鞋、手套等符合防静电要求(6)确保法兰连接符合防静电设计要求 附:设备整改推荐措施(1)管道静电消除/监测器(2)本安型人体静电消除器(3)防静电型高料位报警器 4.2.3采样/检尺作业场所
(1)确保导静电绳符合防静电要求
(2)确保操作人员着装、鞋、手套等符合防静电要求(3)确保采样/检尺操作程序
作业时间必须在油品静置30min后进行 作业前必须消除人体静电
导静电绳必须与罐上专用接地端子良好连接 投放导静电绳速度<1m/s、提拉速度≤0.5m/s 采样/检尺结束后应消除人体静电后再盖采样口.(4)现场不能用塑料筒或未接地金属筒采样 附:设备整改推荐措施(1)本安型人体静电消除器(2)防静电型采样器和量油尺(3)导静电绳电阻检测仪 4.2.4成品油码头加油场所
(1)在有过滤器场所应确保成品油弛涨时间≥30 s(2)确保法兰或软管夸接等连接符合防静电要求(3)船岸管线连接宜采用绝缘法兰连接
(4)确保操作人员着装、鞋、手套等符合防静电要求 附:设备整改推荐措施(1)管道静电消除/监测器(2)本安型人体静电消除器(3)船岸连接绝缘法兰 4.2.5 LPG加油站
(1)汽车站或装瓶站台必须有专用接地设备
(2)汽车/钢瓶与接地设备的连接应用电瓶夹等专用设备(3)灌装作业前必须消除人体静电(4)汽车灌装速度确保<3m/s
(5)灌装地面应采用防静电胶板等防静电地面(6)确保操作人员着装、鞋、手套等符合防静电要求(7)临时倒放LPG处必须确保瓶体、人体和周围设施良好接地,并设防火设备
附:设备整改推荐措施(1)智能型静电接地装置(2)本安型人体静电消除器(3)防静电胶板电阻检测仪 4.2.6原油卸油站台
(1)确保操作人员着装、鞋、手套等符合防静电要求(2)卸油前确保人体和汽车不带静电(3)确保雷雨天不作卸油操作 附:设备整改推荐措施 本安型人体静电消除器
参考文献
1、《防止静电事故通用导则》GB12158-2006
2、《液体石油产品静电安全规程》GB13348-1992
3、《装卸油品码头防火设计规范》JTJ237-99
4、《石油化工静电接地设计规范》SH3097—2000
5、《预防静电、雷电与杂散电流引燃的措施》API2003
6、《静电作业规范》NFPA 77
7、《防静电技术规范》BS5958
8、《南澳大利亚防静电危害规程》AS1020-84
9、《静电安全指南》日本(88年)
第四篇:静电除尘器常见故障原因分析及对策
静电除尘器常见故障原因分析及对策
更新时间:09-8-11 09:58
摘要:简单介绍了静电除尘器工作原理及基本结构。对静电除尘器的常见故障 ,即负载短路、保温箱电加热器损坏、除尘效率降低及二次电压高、二次电流低进行原因分析 ,提出了处理对策及预防措施。
关键词:静电除尘器, 故障原因, 对策, 预防措施
中原大化集团公司于2002年筹建了2台自备75t/h循环流化床锅炉, 2004年增设了1台150 t/h循环流化床锅炉, 3台锅炉的配套环保设施烟气除尘器选用的均是BE型静电除尘器。静电除尘器投入使用以来 ,运行基本平稳。为了进一步发挥静电除尘器的环保作用,创造良好的经济和社会效益 ,现将曾出现的故障、原因及对策分析总结如下。静电除尘器的工作原理
静电除尘器是在2个曲率半径相差较大的金属阳极和阴极上 ,通以高压直流电(高压硅整流变压器将 380V交流电整流成为 20~80 kV高压直流电),维持一个足以使气体电离的静电场。气体电离后生成阴离子和阳离子,这些离子吸附在通过电场的粉尘上 ,使粉尘获得电荷。荷电的粉尘在电场力的作用下 ,向电场极性相反的电极运行 ,放出所带电荷并沉积在电极上 ,使粉尘与气体分离 ,并通过振打清灰使灰落入静电除尘器下部灰斗 ,从而达到除尘的目的。静电除尘器的基本结构
BE型静电除尘器由阳极系统、阴极系统、阴阳极振打装置、保温箱、气体均布装置、壳体、灰斗及排输灰装置等组成。阳极系统由极板排、振打砧及防摆装置构成。阴极系统由阴极框架、阴极砧梁、阴极悬挂系统、防摆装置等组成。阴阳极的振打清灰均采用顶部电磁锤振打器。变压器设置在除尘器顶部 ,高压电直接通过高压隔离开关、阻尼电阻后送入阴极系统。高压进线设有保护套管。为防止阴极系统支承绝缘子周围的温度过低而结露漏电 ,在其旁安装电加热器 ,外加保温箱。常见故障 3.1负载短路(1)现象 二次工作电流大,二次电压升不高,甚至接近于零,报警器鸣笛,并在显示屏上出现“LOAD SHORT”(负载短路)报警信号。此时应迅速按复位键,使电压、电流回零,再按停运键,而后切断电源。
(2)原因
①除尘器下部灰斗存灰太多 ,煤灰堆积至阴极框架甚至极板 ,导致阴阳两极连通而短路。这种情况主要是输灰系统出现故障,影响了煤灰的输出 ,导致大量堆积。
②阴极线断线 ,线头搭在阳极板上 ,导致短路。电晕极振打装置的绝缘轴结露被击穿 ,或支承绝缘子受潮积灰引起短路。绝缘轴与支承绝缘子结构布置见图 1。
③高压穿墙瓷瓶、高压套管罩内壁受潮结露 ,造成短路。(3)处理对策及预防措施
①加强灰斗内煤灰的输出,准备好输灰系统设备的备品备件,一旦有设备故障,及时消除,保证输灰的正常进行,确保灰斗内不大量积灰。而且灰斗内积灰太多,会使阳极板和阴极框架无法自由伸缩膨胀而受阻弯曲变形,影响电场的正常工作。
②电晕极振打装置的绝缘轴和支承绝缘子要用抹布擦拭干净 ,无积灰与露水痕迹 ,保持洁净光滑。上部挡风板要密封良好 ,有裂缝等应及时处理 ,防止雨水或潮气进入保温箱。
③设备投运前约 4 h,启动电加热器进行加热驱潮 ,使保温箱内温度达到烟气露点温度以上 ,防止因积灰受潮引起短路。不要在烟气露点温度以下时就启动电场 ,避免击穿短路。
④高压隔离开关柜的柜门应关闭锁好 ,防止雨水或潮气进入。检修时把高压穿墙瓷瓶和高压套管擦拭干净 ,防止击穿或对地短路。3.2保温箱电加热器损坏(1)现象
在控制柜的各保温箱温度显示屏上 ,电加热器工作状态显示“OFF” ,但温度指示低于所设定的温度范围 ,电加热吸合开关为断开状态 ,电加热器电源自动切断 ,重新投运后又跳闸 ,无法投用。
(2)原因
①保温箱内电加热器的电源接线烧断或短路 ,致使加热器无法工作。
②电加热器因本身质量问题或积灰过多 ,并持续在高温环境中工作而发生断裂、损坏。③线路存在短路、断路、接触不良等问题。(3)处理对策及预防措施
利用停运检查机会查看电加热器是否完好;电加热器的接线是否牢固;电源控制柜内的电源开关、加热器吸合开关及电气接线完好 ,无短路、断路和接触不良等现象。.3二次电压高 ,二次电流低且波动(1)现象
在电场控制柜的电压电流指示仪上 ,一次电压电流基本正常或稍低 ,二次电压较正常值高 ,二次电流明显偏低;数值显示屏上显示的二次电流不仅偏低而且波动。
(2)原因
①除尘器的振打装置未投用或振打设置不当。振打器振打强度或频率过高 ,会导致极板极线上的灰难以脱落或粉尘二次飞扬。这是因为电极上的粉尘没有形成易脱落的较大片状或块状 ,而是成为分散的单个粒子或较小的颗粒聚合体 ,不容易靠重力作用下落至下部灰斗 ,而是被气流重新夹带至后部电场 ,即成为粉尘的二次飞扬 ,相当于增大了粉尘浓度 ,而且会导致阴极线放电效果不理想。
②振打器参数设置存在问题 ,导致只有部分振打器工作 ,致使没有振打的阳极板与阴极线上积灰过多 ,阴极线粗大 ,放电不良。阴极线粗大的原因有:由于分子力、静电力及粉尘的性质而粘附在阴极线上 ,使阴极线积灰多;投运初期除尘器的温度低于烟气露点温度 ,水或酸性物质粘附在电极上 ,与尘粒粘结在一起 ,产生大的附着力 ,导致极线积灰较多;烟气中水蒸气含量太多 ,使通过除尘器时温度下降较明显 ,粉尘之间、粉尘与电极之间有水凝结而粘附(粉尘粒径在 3~4μm时最大附着力为 1 N /m2, 3μm以下附着力剧增 , 0.5μm约为 10 N /m2)。
③烟气中的粉尘浓度过大。(3)处理对策及预防措施
①及时投用振打装置并定期检查;正确设置运行参数 ,保证振打器全部投用且振打高度合适。
②烟气温度低于露点温度时不要投用电场。
③加强除尘器进出口烟气温度和上游各换热器处烟气温度的监视 ,一旦发现水汽、设备漏水等异常情况 ,要高度重视 ,分析原因 ,采取措施 ,必要时停炉检修。.4 除尘效率降低(1)现象
除尘器下游烟气浊度仪显示烟气中的粉尘含量升高 ,高压控制柜显示的电场参数波动大 ,严重时烟囱冒黑烟。
(2)原因
①静电除尘器入口气流分布板孔眼被堵塞 ,气流分布不均匀 ,导致部分电场超负荷运行 ,致使除尘效率降低。
②电场下部灰斗的排灰装置严重漏风;防止煤灰结块而设置的流化空气阀门内漏或未及时关闭 ,导致进风量超标 ,除尘效率下降。
③发生电场以外放电 ,如隔离开关、高压电缆及阻尼电阻等放电。
④振打装置的振打时间与振打周期不合适 ,导致极板极线积灰严重 ,电晕线粗大 ,影响放电效果;粉尘产生二次飞扬 ,导致除尘效率下降。
(3)处理对策及预防措施
检查气流分布板的振打装置是否失灵或未投用 ,保证振打效果;利用检修机会检查气流分布板 ,防止分布板有脱落或孔眼被堵塞;针对排灰装置的漏风部位与原因进行处理 ,流化空气阀门使用后要及时关闭 ,同时利用停炉检修机会确认并避免阀门内漏;调整振打强度、时间间隔和周期 ,保证振打效果 ,同时避免粉尘的二次飞扬与电晕线粗大。
第五篇:布袋除尘器的静电问题及防爆措施
布袋除尘器的静电问题及防爆措施
1.前言
布袋除尘器的静电问题及防爆措施 王万玉(北京市劳保所)近年来,粉尘爆炸事故频频发生,引起国内外有关方面的重视.这些事故表明:
(1)可燃性粉尘是固体物质的一种特别危险的状态,其危险程度不亚于气态混台物;
(2)因静电而引爆粉尘的事故占有较大比例;
(3)除尘器在除尘系统中是最危险的区域(如苏联专家把除尘器首爆总结为事故的基本规律).因此对除尘器的静电问题及爆炸防护进行深入的研究越来越重要.本文根据国内外的研究及我们对纺织行业除尘系统静电引爆危险性研究和防爆型布袋除尘器的研制,谈谈自己的看法.
2.除尘系统产生静电的种类及爆炸危害 2.1产生静电的种类
a.摩擦起电.在脒尘系统中的粉尘,由于相互摩擦或与除尘系统中的设备管道以及其它除尘部件的摩擦都能产生静电.
b.碰撞带电.粉尘在输送时,因在运动中相互碰撞或者与管壁、器壁碰撞,这种快速接触和分离导致了静电的转移,从而使粉尘本身,除尘系统都带上了静电。
c.剥离带电.贴附在滤料上的粉尘,一是受到振荡,粉尘从滤料上被剥离F来,引起电荷分离,导致粉尘、滤料带静电.
d.沉降带电.粉尘在空气中由于重力自由沉降时,在沉降路程两端会产生电势差
e.冲流带电.象液体在管道中流动能产生冲流电流和冲流电压一样,粉尘在管道中运行时,也会产生冲流带电.由于粉尘的悬浮性,带电后漂浮在空气中,空气是良好的绝缘体(许多粉尘本身就是高绝缘体),所以粉尘带电后很难泄漏,一旦静电积累到一定程度时,会发生静电放电,引起爆炸和燃烧.
2.2粉尘爆炸危害
粉尘的危害是多方面的,其中以引起爆炸和火灾是最为严重的危害.漂浮在空气中的可燃性粉尘一旦形成爆炸性尘云,且从某种火源接受了足够能量(大于最小点火能)就会引起爆炸.一旦爆炸,因单位容积里的发热量极大,力学破坏效果也极大.爆炸的粉尘云在爆炸冲击渡作用下飞散至远趾,形成着火的粉尘点,引起其它场所的爆炸或发生火灾,造成二次性破坏,给国家、企业和人民带来巨大的损失.如啥尔滨亚麻厂除尘器首先发生爆炸,膨胀压力将除尘器(包括集尘斗)里的大量粉尘沿进鼠管道和管沟反喷到车间,引起麻尘爆炸及蓬松纤维着火,在短短的7秒多种内毁坏了13000多方米厂房,及J房内生产设备教室词、除尘系统设备,职工伤亡235人,其中死l、电伤65人,轻伤1他人,直接经济攒失选880多万元.粉尘爆炸同时会产生一氧化碳,爆炸物分解出有毒气体,污染环境,影响人体健康
3布袋除尘器的静电问题问题主要有:
首先.粉尘与除尘系统设备管道等相互摩擦和碰撞都会产生大量静电。带电粉尘通过除尘器时贴附于滤料上,由于布袋除尘器采用间歇式清灰方式.带电粉尘的堆积使场强逐渐增强.如果贴附于滤料L的粉垒厚度增大到一定程度,使得粉尘表面电场强度达到空气的介质击穿场强.则在场强最大值区域将出现静电.若此时因某种原因(如清灰),使得粉尘扬起.且粉尘浓度处于爆炸极限内.则很容易引起粉尘爆炸。粉尘层的极限值(对应于击穿空气放电情况),主要由粉尘的荷电量及导电性决定,可根据粉尘的荷静电量及电场理论分析得出.这样计算出的粉尘厚度极限值是对应于最坏状况F的计算值,考虑粉尘荷静电的泄漏及电晕放电.若考虑这些因紊,则实际粉尘厚度极限值将大于理论计算值.但粉尘荷静电的泄漏及电晕放电随周围环境(如湿度设备等J变化很大.因此定量评价静电引爆粉尘的危险性及进行爆炸防护时应考虑到最坏的情况.
第二,从滤料上被剥离下来的粉尘带有大量静电.进入集尘斗后,带电粉尘的堆积电使得粉堆表面电场强度逐渐增强.如果粉堆表面电场强度达到空气的介质击穿场强,在场强最大值区域也将出现放电.应用电磁场理论.对粉堆作定量分析.可得出以下二个最令人吃惊的结果:
<1)积粉尘因重力挤压所生的放电很可能发生在粉尘荷质比在3.3x10c/kg以下某一适中的数值;
(2)粗粉尘中混有易引燃的细粉尘时易形成危险的情况.此外.通过理论和实际的检验.证明容器体积越大.流量越高、以及粉尘绝缘性越好.越容易放电.
第三,如果滤料及集尘斗是绝缘的.或者两者是导电性材料制成的,但接地不良.则粉堆表面放电出现之后.放电产生的离于并不能转移到地面,一种符号的离子被嗳向粉堆,另一种符号的离子将被排斥.便在滤料上或集尘斗上出现很高的表面电荷.此时很可能引起刷形放电的传播.如果此时偶然性出现导体靠近带电体表面等情况,就能引起大范的表面空气电离.放电能量可达数焦耳.另外.如果滤料及集尘斗是导电性材料制成,但接地术良.刚两者成为带电的孤立导,由于导体单次放电能量远大于绝缘体单次放JU能量.周此这时比两者都用绝缘材料制成的更危险.在日本.曾因滤料是绝缘的或虽然已织人为除静电用的金属线.但出j接地不良.而发生多起粉尘爆炸事故】.
第四,如果征粉堆表面放置一孤立导体.皿4放电能量迅速增大.若除尘系统人口处末没置金属分离器.则铁丝、铁钉及铁块等金属有可能随粉尘混入粉堆中,此时有可能出现这种放电现象.
从上面分折可看出,布袋除尘器及集尘斗是很危险的区域,老式的布袋除尘器存在些不安全隐患,应尽快研究布袋除尘器的爆炸防护问题,设计出防爆型布袋除尘器.
4.防爆措施
可燃性粉尘爆炸和可燃性气体爆炸有一定的相似性,必须具备以下几个条件
4.1粉尘本身具有爆炸性:
4.2粉尘必须悬浮在空气中并与空气混合达到爆炸浓度: 4.3供氧量充足;
4.4具有形成破坏性压力的封闭结构: 4.5具有引爆火源.
研究和预防粉尘爆炸也必须从上述几个方面人手.下面从控耐爆炸条件,防止爆炸形成及控制爆炸范围,减弱爆炸破坏作用两个方面对布袋除尘器提出一些防爆措施.
<1>贴附于滤料上的粉尘厚度的增加,使得粉尘表面电场强度增加。易出现击穿空气放电.因此应根据理论分析及实际生产状况,设计一合适的清灰周期时间.这有三十方面的好处:第一。粉尘厚度过太影响附尘效率,及时清灰可提高除尘效率;第二,避免因粉尘层厚度过大而出现击穿空气放电;第三,及时清灰,可减小空间粉尘浓度,减少参与爆炸的能量,控制破坏范围.目前。国内外较先进的除尘器(如西德LTG公司生产的TFC园笼除尘器及国产WLC联合除尘机组)都采用连续清灰方式来替代间歇式除尘方式。经测试这种除尘器内粉尘浓度低于粉尘爆炸下限.
<2>用特殊的悬吊装置取代下花板,消灭下花板上的粉尘堆积.
<3>粉堆中粗细尘混杂在一起,爆炸危险性增大.因此,在粉尘通过除尘器进入集尘斗之前,将粉尘分离为几级。然后再进入不同的集尘斗.这样就可将粗细粉尘分开,且减小集尘斗的尺寸,破坏产生静电放电的条件.如果及时将集尘斗中的粉尘压实,不使粉尘形成爆炸性尘云,则更安全.TFC园笼除尘器及WLC’联合除尘机组符合这一要求,已在国内外得到广泛使用。尤其是纺织行业.
<4>为使布袋上的静皂易于中和和泄漏,以及发生放电时,所产生的离子导人大地。避免产生传播型刷型放电,布袋应采用导电性较好的防静电材料制作(如用金属丝纤维、碳纤维等).从实验结果可看出。将导电性纤维从袋的两面按一定要求进行缝纫,比织进去的方法效果显著.同时。为保证接地良好,应设计接地端子.
<5>集尘斗等其他除尘设备应保证接地昆好.
<6>研究表明,滤袋对爆炸参数有影响,装有滤袋的除尘器的爆炸参数比没有滤袋的除尘器的爆炸参数低.这主要是因滤袋把除尘器容积分隔开来,使爆炸只在滤袋下面的空间发展.在这种情况下形成的气体就比粉尘在除尘器整个容积内发生爆炸时所形成的气体要少;当爆炸在除尘器内扩散时,未燃烧的那部分古尘空气被滤袋过滤,并沉积在滤布上,脱离了可能爆炸的状态.因此必须要求滤袋不得有玻损.同时为了防止除尘器内粉尘着火的初期就把滤布烧穿而提高可能爆炸的参数值,应使用耐火或助燃的材料制作滤袋.若除尘器的滤袋采用可燃性材料做成,在计算除尘器泄爆孔的面积上必须考虑除尘器的整个容积.
<7>因为陈尘器以上的空间容积与滤袋以下的容问容积之比越大,除尘器内,能爆炸的参数越低,因此应设法缩小集尘斗的容积.方法之一是研制不用尘斗纳除尘器结构:方法之二是使滤袋伸入尘斗(即加大滤袋长度).
<8>增加古尘空问的湿度(65%以上)有多方面作用.首先,细雾粒可以使尘粒易于沉降,减小形成爆炸性尘云的可能性;其次,湿度的增大使得粉尘引爆能量增大、火焰传播的能力减弱;最后,湿度的增大有利于粉尘所荷静电的泄漏和中和.减小静电引爆的可能性.国内外大的爆炸事故大部分在干燥季节发生即可证明增加湿早防止粉尘爆炸可行的,合理的方法.
<9>设计探测、报警、自动灭火及管道截断等自动舫护系统.除尘器防爆的一种有前途的方法是.在爆炸发生初期,当爆炸压力尚未达到对受保护设备有危险性的数值时,利用自动防护系统进行抑爆.
<10>按照理论分析及实际要求,选择台适的壳体材料.设计防爆泄压安全膜和安全活门,以使除尘器内部的可燃物发生爆炸时,保护除尘器不受损坏.
<11>如果除尘器布置在室内.且改造困难较大,应在泄爆口加接排气和道,以便~旦发生爆炸时将泄爆口流出的未燃尽粉尘和燃烧产物排放到安全地点.但需注意装在除尘器上的排气管道,即使不太长的管道,也会显著提高除尘器内可能爆炸的最大压力.因此设计除尘器壳体的承受医力及泄瀑安全膜和安全话门的动作压力时.必须考虑加接的排气臂道后的影响.
<12>在通风机的吸入管上应安装磁铁分离器或金属捕捉器,以除去混杂在物料、粉尘中的铁丝、铁钉的及铁块等,避免产生撞击火花和摩擦生热引爆粉尘的及本文第3节所述的静电放电能量增大.
参考文献
1.王万玉.《亚麻凝尘静电起电规律及危险性评价研究》,硕士学位论文.1990.7.
2.王万玉、徐博文等,《纤维粉尘静电特性及引爆机理研究》分项报告E12],北京市劳保
所,1991.3.
3.^.R.BlytheandW.Reddish.Elecrostaics,1979,InstituteofPhy~cs,London.1979,107 P.BoschungandM.Glor.J.Electrostaics,8(198o).
5.《静电译丛》(下).天津市物理学会静电专业委员会,1985.
6梁士明、王万玉等,《纤维粉尘静屯特性及引爆机理研究》分项报告C05].北京市劳保
所,19913.