高盐度废水的生物处理进展(共5篇)

时间:2019-05-15 00:58:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高盐度废水的生物处理进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高盐度废水的生物处理进展》。

第一篇:高盐度废水的生物处理进展

高盐度废水的生物处理进展 前 言

高盐度有机废水,是指总含盐量(以NaCl含 量计)至少为1%的废水,盐量主要来源于两个方 面:一是海水直接利用于工业生产和生活用水,二 是有些工业企业生产过程中排放的高盐度废

水[ 1 ]。目前,许多国家、特别是一些干旱地区和沿 海地区,水资源短缺问题愈演愈烈,为了缓解淡水 资源日益紧缺的局面,一些沿海地区已经推行海水 直接利用于工业生产和生活用水,导致了排放废水 中含有大量的无机盐。另外,一些工业品生产,如 杀虫剂、除草剂、有机过氧化物、制药和染料等化学 制造业,肉类加工厂和海产品加工厂等的生产废水 中,也含有大量的无机盐。

一般情况下,高盐度废水的有机物含量也很 高,如果未经处理直接排放,会给生态环境带来极 大的污染和危害,严重影响人们的生活质量和身体 健康。因此,对含盐废水处理工艺的研究也越来越 深入。通常情况下,过去都是采用物化法来处理此 类废水,而不采用生物处理工艺,因为高盐度会对 生物系统产生抑制作用,但物化方法却会消耗大量 的能源,启动和运行的成本都非常高。目前,人们 正在研究可以代替物化方法的处理工艺,这些工艺 大部分都涉及到好氧或厌氧生物处理。文中综合 了国内外的有关文献,综述了生物法处理高盐度有 机废水的研究进展。1 好氧生物处理高盐度废水 1.1 盐度对好氧生物系统的影响

尽管Ludzack和Noran[ 2 ]研究发现,当废水中 的氯离子浓度大于5~8 g/L 时,就会对传统的好 氧生物处理系统产生抑制作用。但实践证明,活性 污泥只要经过适当驯化,利用微生物处理高盐分废 水是可能的。通过逐步提高有机负荷和盐浓度的 方法,可驯化出耐盐浓度3% ~5%(甚至更高)的 污泥。一般情况下,盐度越高,污泥驯化的时间越 长,经驯化的菌群发生变化,菌胶团以嗜盐菌为主。研究发现,盐浓度的变化对生物处理系统存在 影响,高含盐有机废水不利于生物处理,盐浓度的 波动对生物处理影响更大。文湘华等[ 3 ]认为,盐 2008年6月刘克山1高盐度废水的生物处理进展· 59· 浓度的变化过大,会导致细胞组分的分解,在延时 曝气工艺中,盐度的急剧增高,导致BOD去除率降 低;反之,当进水由含盐水换成一般废水时,曝气池 中污泥浓度降低。降低含盐浓度比增加含盐浓度, 对微生物的影响更大,当无盐系统突然加入30 g/L 的NaCl时,系统的BOD去除率降低了30%。而当 污泥经30 g/L的NaC1驯化后,当瞬间降低反应器 内的盐浓度到2 g/L,系统的BOD去除率则降低了 75%左右。刘洪亮[ 4 ] 利用生物滤池进行研究表 明,在盐浓度为250 mg/L环境中,稳定运行的活性 污泥系统受不同盐浓度的冲击,在系统恢复的过程 中发现,冲击幅度小的则恢复较快,冲击幅度大的 则恢复较慢,当系统恢复稳定后, BOD去除率比无 盐时低10%。由此可见,高含盐废水的生物处理, 盐浓度的大幅度变化,会影响高含盐废水生物处理 系统的正常运行。盐浓度的改变,直接影响渗透压 的变化,渗透压的急剧变化,会直接导致细胞活性 降低,甚至死亡。所以在高含盐有机废水的生物处 理系统中,应该加强对盐浓度的监测和控制,使盐 浓度的波动控制在一定范围之内,从而使生物处理 系统始终保持在稳定的运行状态。

但是,也有一些学者得出了截然相反的结论。他们认为,高盐度不会降低废水生物处理的有机物 去除率,适当的含盐量可以提高污泥絮凝性,还对 生物处理系统起到稳定作用。例如Campos等[ 5 ] 发现,盐度对污泥的沉降性能影响很轻微,并不会 对污泥的物理性质产生长久的影响。实验表明,在 活性污泥反应器中, VSS浓度达到20 g/L。Kargi 和Uygur[ 6 ]用SBR处理含盐废水时发现,尽管盐度 增加会导致SV I值增加,但在盐度为6%时, SV I值 也只有97 mL /g,而且污泥的沉降性能很好。出现 这些分歧,可能是由于盐分对污泥沉降性能的影 响,不仅取决于盐分的浓度,还可能取决于废水中 所含盐分的种类。盐分可以增加混合液的重量,这 不利于污泥的沉降,同时盐分还可以增加电荷强 度,这有利于污泥的沉降。1.2 好氧处理高盐度废水的实践

文守成等人[ 7 ]利用SBR 法,经过四周驯化培 养耐盐活性污泥,来处理高含盐油田废水,实验结 果表明,在较高含盐量(5 000 mg/L)的生物制药废 水中,大多数微生物能在其中存活和繁殖,并能形 成菌胶团,保证了废水生化处理系统的良好活性, 废水的处理效率较高, SBR池进水COD平均浓度 为3 124 mg/L 时, 出水COD平均浓度为 265 mg/L, COD平均去除率为91.5%。杨健等[ 8 ]对处理高盐度废水的活性污泥驯化 进行了研究。他们取城市污水处理厂的回流污泥, 按一定步骤进行驯化,直到CODcr有机负荷VSS达 到1.0 kg/(kg·d)时,含盐量为35 000 mg/L。结 果表明:驯化污泥的有机物去除效果,明显好于未 驯化污泥的有机物去除效果,驯化污泥具有良好的 有机物吸附和氧化能力, CODcr去除率可稳定在 90%以上。未驯化的污泥,则出现明显的中毒现 象。驯化污泥经4~6周的培养,逐渐成熟,外观颜 色变为浅棕黄色, SV I值在55~80之间,污泥絮凝 颗粒细小而紧密。尽管证明了活性污泥对盐度适 应的可能性,但是,其中存在的最大问题,在于微生 物对这种适应性,一般都被限制在盐分小于5%才 具有可能性[ 9 ] ,否则,很容易出现污泥膨胀,污泥 絮凝性能下降,出水SS升高,有机物和氨氮去除率 降低。因此,最好采用特殊的微生物,来处理高盐 度废水,目前研究最多的,就是接种嗜盐菌来处理 高盐度废水。

C.R.Woolard[ 10 ]从大盐湖分离出嗜盐菌,分别 在序批式反应器和序批式膜反应器中培养,实验结 果表明,嗜盐菌并不需要很复杂的营养物质,要维 持酚的降解,只需要15%(150 g/L)的盐、氨、磷和 铁。含盐质量分数为1% ~15%的合成酚废水,经 过12 h(反应时间7 h)处理后,酚的去除率为99% 左右,出流悬浮物较高, SV I为100 mg/L 以上, SS 为50 mg/L 左右。Kargi等[ 11 ]人在2000 年,利用 含有嗜盐菌的系统,用活性污泥法成功的处理了油 田废水, COD 去除率达到了95%。同样, Kubo 等[ 12 ]利用序批式反应器处理盐度为15%的酸洗 废水, COD去除率达到了90%。另外, Bozo等[ 13 ] 在用活性污泥法净化高盐度油田废水时,研究了 PAC对活性污泥系统的影响。实验结果发现,过 高的水力负荷,会导致生物反应器的污泥流失,添 加PAC后,其与废水表面混溶,能够增加反应器的 污泥体积指数,降低出水的SS,并且能够促进污染 物的降解。这是由于PAC的吸附以及起到了固定 微生物的作用,微生物附着在PAC表面,可以防止 因为水力负荷过高而导致生物量的流失。2 厌氧生物处理高盐度废水 2.1 盐度对厌氧生物系统的影响

大量含盐有机废水,采用厌氧处理更具有实用 性。经过连续驯化的厌氧污泥可以适应更高的盐

·6 0· 刘克山1高盐度废水的生物处理进展第21卷第3期 度,对盐度的抗冲击性更强。厌氧条件下,甲烷菌 活性会受到盐度的抑制,特别是当向厌氧反应器投 加NaOH和Na2 CO3 调节pH值时,钠离子的影响 就不容忽视。海产品加工的废水中,含高浓度的离 子主要是Na+、Cl-和SO2B 二段法,对处理高含盐 量皂化废水进行了研究,试验结果表明:在含盐量 为2% ,变化幅度小于2.5%时,采用A-B二段接 触氧化法处理环氧丙烷皂化废水,不需要专门的耐 盐菌种, COD总去除率可达到80% ~86%,使处理 后的水质达到一级排放标准。

Tsuneda等[ 20 ]分别考察了单一的硝化、反硝化 和厌氧-好氧过程中,盐度与N的去除率之间的 关系。实验表明,在硝化过程中,当盐度从1%提 高到2%时,稳定期的N2O转化率增长了2.2倍, 从0.22%提高到0.48%;在反硝化过程中,盐度从 3%提高到5%时,对N2O的转化率并没有明显的 影响;在厌氧-好氧活性污泥系统中,当盐度为 3%时,稳定期的N2O 转化率明显增长,当盐度从 1.6%提高到3%时, 其转化率从0.7% 提高 到13%。

Panswad和Anan[ 21 ]研究了未经驯化和驯化的 活性污泥,对厌氧/缺氧/好氧组合系统处理含盐废 水的影响,水力停留时间为14(2 + 2 + 12)h,泥龄 为10 d,结果发现,未经驯化系统,当盐分从0 g/L 上升到30 g/L 时, COD 去除率从90%下降到 60% ,N的去除率从88%下降到68%。而经过驯 化的系统,当盐分从0.5%提高到3%时, COD 去 除率则从90%下降到71% ,N的去除率从85%下 降到70%。并且他认为,厌氧反硝化过程对高盐 度有较强的抗冲击能力,在冲击期,两个系统对P 的去除率都很低,经过驯化的系统,重新达到稳定 状态,需要的时间比未经驯化的系统要少。(下转第115页)2008年6月张 泓1基层污染减排管理工作刍议·1 15 · 核”以及“打和牌”的现象;对工作失职或故意为企 业隐瞒超标数据的考核人员,要及时提出批评,责 令整改;构成违纪的,纪检监察部门要根据情节,予 以行政处分和经济处罚,对情节严重的,要移交司 法机关处理。3 结 语

污染减排是“十一五”期间的约束性指标,是 推动生态文明建设的战略性措施和重要抓手。在 具体操作时,应提升减排工作思维理念,摆脱传统 的减排资料统计中出现的思维惯性,确立科学的减 排指标体系、核算体系,杜绝数据填报过程中的闭 门造车现象;要从“三大体系”入手,系统核查数据 的真实性、方法之间的一致性、约束性指标的可达 性;要确立全新的系统考核机制,强势推进污染减 排工作的提升。(上接第60页)4 结 论

介绍了好氧、厌氧和他们的组合工艺,生物法 处理高盐度废水的研究进展情况。虽然生物法处 理此类废水受到盐度的影响,但可以看出,当废水 盐度小于5%时,利用传统的活性污泥法就可以驯 化出耐盐菌,经过一段时间的适应后,就能有效地 去除高盐废水中的有机物。而如果要处理更高盐 度的废水,最好的方法就是接种嗜盐菌。此外,组 合工艺比单一处理工艺,也显示出更大的优势

第二篇:高含油有机化工废水生化处理工艺探析(精选)

高含油有机化工废水生化处理工艺探析

摘 要: 高含油有机化工废水中含有油及悬浮物,成分为: CODcr, 1800mg/L;挥发酚, 10~15mg/L;油, 1000 ~1200mg/L;硫化物, 20~30mg/L;氨氮, 100mg/L;悬浮物, 100~200mg/L;氰化物, 0.3~0.5mg/L;BOD5/COD≥ 0.30。其处理方法是工业废水中的难点之一,介绍了含有油及悬浮物的高含油有机化工废水的硫化物,生化处理,污泥处理等处理方法,从处理后的水样分析数据看,达到了国家排放标准。

关键词: 有机化工污水;除油处理;生化处理;污泥处理;工艺参数;硫化物;硫化物

高含油有机化工废水中主要含有油及悬浮物,其处理方法是工业废水中的难点之一。以某污水处理装置设计规模为250 t/h,其中含硫污水经汽提后的出水及化工污水(以下简称化工污水)合计30 t/h,含油污水220 t/h。根据污水水质,整个污水处理工艺分为除油处理、生化处理及污泥处理3部分。除油处理部分除油部分的工艺流程见图1。图1 除油部分的工艺流程 Fig 1 Process flow of deoiling treatm ent从图1可见,化工污水由厂区内污水提升泵送至1000m3化工污水调节罐(D-101),保证后续处理水质的稳定。调节罐设有双层收油堰板,对含油污水进行初步隔油。调节罐出水自流至平流斜管隔油池(T-101)。为提高隔油效果,平流隔油后段设置斜管段,去除大部分浮油及粗分散油。池中设置链条式刮油刮泥机和集油管,操作人员要定期进行刮油和收油。集油池内设有蒸汽加热管道,防止污油凝固,并初步沉降脱水,收集的污油用污油提升泵(P-105)送至污油脱水罐(D-104)。隔油池出水与化工污水合并进入气浮池(T-102)。气浮采用部分回流出水加压溶气气浮流程, 并投加混凝剂聚合铝(PAC)20mg/L进行破稳凝聚,以提高气浮的效果,去除污水中的乳化油和细分散油。气浮出水由回流泵(P-101)加压100% 回流,在气浮池内分为两段释放。进水加絮凝剂在反应段经机械混合及搅拌反应后,进入气浮池溶气分离段与回流溶气水混合。溶气水经减压释放器释放出微气泡吸附油珠,将油珠托起,达到油水分离的目的。气浮池中设有链条式刮沫机,连续刮出表面泡沫,并配置可调式出水堰板,以适应水量和浮渣量的变化。含油污水经过气浮进一步去除乳化油后,其出水含油量要求不大于20mg/L。气浮池出水经污水提升泵(P-102)提升进入生化处理部分。为了保证出水连续,污水提升泵与出水段液位计变频连锁。隔油与气浮的COD去除率约为30%,进水 COD由1800mg/L降至1260mg/L。调节罐与隔油池收集的污油用泵(P-105)送入污油脱水罐(D-104)进行沉降脱水后,再经污油输送泵(P-106)加压进入全厂污油灌区。污油脱水灌区设有200m3的污油罐2座。生化处理部分如图2可见,生化处理部分采用推流式鼓风瀑气与膜法A/O处理工艺相结合,进行两级生化处理。气浮出水经泵(P-102)提升进入一级生化池(T-103)选择段,进水与二次沉淀池回流污泥在选择段充分接触混合,再通过瀑气区鼓风瀑气, 混合液得到足够的溶解氧并使活性污泥和污水充分接触,进行碳化和硝化反应。污水中的可溶性有机污染物为活性污泥吸附,并被存活在活性污泥上的微生物降解。出水自流进二次沉淀池(T-104),进行泥水分离,污泥由回流泵(P-103)提升,回流至瀑气池首端选择段(回流比为100%), 出水自流进入二级生化池(T-105)。一级生化池设计COD去除率为75%,进水COD由1260mg/L 降至315mg/L。

图2 生化处理部分的工艺流程 Fig 2 Process flow of biotreatm ent二级生化池(T-105)采用缺氧-好氧(A/O)工艺,对污水进行二级生化处理及反硝化处理。池内采用悬浮球形填料,以利于生物膜的成长。采用A/O处理工艺,在去除COD的同时可以进行生物反硝化脱氮,保证出水氨氮指标合格。A 段池内设置提升式微孔瀑气器进行布气搅拌,采用电动阀门控制间断进气周期时间,并能进行调整。使A段处于缺氧状态,溶解氧控制在0~ 1mg/L(一般为0.5mg/L)。0段池内也采用提升式微孔瀑气器进行布气,以保证好氧氧化所需的溶解氧,O段溶解氧控制在1~2mg/L。二级生化池出水首先进入混凝反应池,投加聚丙烯酰氨充分混合、反应,出水进入混凝沉淀池,进行泥水分离,以提高出水达标排放率。沉淀池的剩余污泥由提升泵(P-104)提升送至三泥脱水罐(D-105)。二级生化池设计COD去除率为71%,进水 COD降至90mg/L。生化池中的瀑气设备采用提升式微孔瀑气器,这种瀑气器充氧效果好,氧的利用效率较高, 不易堵塞。利用液压提升装置,可随时简便地将瀑气器摇出水面清洗、检查。污泥处理部分污泥处理部分的工艺流程见图3。图3 污泥处理部分的工艺流程 Fig 3 Process flow of active sludge treatm ent隔油池的池底油泥、气浮池收集的浮渣及底泥,二次沉淀池的浮渣及剩余污泥、混凝沉淀池的浮渣,污油罐、调节罐罐底油自流至油泥浮渣池(T-108),经油泥浮渣泵(P-107)送至三泥脱水罐(T-105)浓缩脱水。混凝沉淀池的剩余污泥定期用泵(P-104)送至三泥脱水罐。浓缩脱水的油泥用离心机进料泵(P-108)送入离心脱水机(M-114)脱水,干污泥用脱水污泥输送泵(P-109)送出,装车外送。脱出的污水自流进入含油污水池(T-109),用含油污水提升泵(P-110)送至含油污水调节罐,重新处理。离心脱水需加两种高分子絮凝剂,阴离子型和阳离子型聚丙烯酰氨。两种絮凝剂均配制成 1‰的水溶液,然后用加药泵定量送入离心脱水机入口。三泥脱水罐的污泥含水率可以从99%降至97%,经离心脱水后可以降至82%,体积可以缩小18倍。主要工艺参数 4.1 污水处理主要进出水指标 1)进水水质设计水量250 t/h,进水水质如下: CODcr1800 mg/L;挥发酚10~15 mg/L;油 1000~1200mg/L;硫化物20~30mg/L;pH7~9;氨氮100 mg/L;悬浮物100~200 mg/L;氰化物 0.3~0.5mg/L;BOD5/COD≥0.30。2)出水水质 CODcr≤90mg/L;挥发物0.5mg/L;BOD5≤20 mg/L;硫化物1.0mg/L;pH6~9;氨氮15mg/L;氰化物0.5mg/L;悬浮物70mg/L;油≤7.5mg/L。4.2 主要构造物设计参数 1)隔油池单间处理量110m3/h;停留时间t=2.0 h;有效水深2m;池宽B=4.5m;水平流速V=0.0034m/s。2)气浮池单间处理量125m3/h;分离段停留时间t=55 min(一段)+40min(二段);溶气罐停留时间4.3 min;回流比100%(两段释放)。3)一级生化池正常进水CODcr 1260 mg/L;容积负荷率 COD0.9 kg/m3·d;有效水深5.5m;实际停留时间12.5 h;污泥回流比100%。4)级沉淀池处理量250 m3/h;表面负荷0.8 m3/m2·h;有效水深3.5m;实际停留时间2 h。5)二级生化池正常进水CODcr315mg/L;容积负荷率COD 0.3 kg/m3·d;有效水深5.5m;停留时间10 h;0段容积负荷率COD0.3 kg/m3·d;有效水深5.5m;停留时间10 h。6)混凝反应池反应时间10.44min。7)混凝沉淀池处理量250 m3/h;表面负荷0.8 m3/m2·h;有效水深2.5m;停留时间3.14 h。8)含油污水调节罐容积2000m3;调节时间9 h。9)化工污水调节罐容积1000m3;调节时间33 h。10)污油脱水罐 φ6000×8030,V=200m3, 2座 11)三泥脱水罐 φ5000×9318,V=100m3, 3座 4.3 占地面积及消耗指标 1)占地面机污水场占地约160m×70m 2)消耗指标电(380V)500万kWh/a;新鲜水1 t/h;蒸汽 0.3 t/h;聚丙烯酰氨10 t/a;聚合铝40 t/a;磷酸氢二钠120 t/a。结论用生化处理含有油及悬浮物的高含油有机化工废水,出水水质为: CODcr≤90mg/L;挥发物0.5mg/L;BOD5≤20 mg/L;硫化物1.0mg/L;pH6~9;氨氮15mg/L;氰化物0.5mg/L;悬浮物70mg/L;油≤7.5mg/L。经过处理后,CODcr下降了95%,挥发物下降了95%,含油量下降了99.25%,氨氮下降了 85%,悬浮物下降了53%,达到了国家排放标准。

参考文献:

[1] 唐受印 , 戴友芝 , 汪大翚.废水处理工程 [M].北京 : 化学工业出版社 , 2004 : 90-95 , 108.[2] 刘岩 , 李志东 , 蒋林时.膜生物反应器(MBR)处理废水的研究进展 [J].长春理工大学学报 , 2007 , 30(1): 98-101.[3] 高廷耀 , 顾国雄.水污染控制工程 [M].北京 : 高等教育出版社 , 1999 : 124-127.[4] 上海市政设计院.给水排水设计手册 [M].北京 : 中国建筑工业出版社 , 1985 : 75-80.[5] 马世豪 , 徐云 , 文剑平等.一体式膜生物反应器污水处理应用技术规程 [M].北京 : 中国建筑工业出版社 , 2003 : 4-5 , 21-25.[6] 膜生物反应器中膜的清洗方法和机理研究.[7] 王佳涵 , 吕晓龙.MBR在处理生活污水过程中的早期污染和影响因素 [J].天津工业大学学报 , 2007 , 26(2): 5-9.[8]孙新 , 徐国勋 , 祝信贤.在线反冲洗控制MBR膜污染的试验 [J].城市环境与城市生态 , 2005 , 18(1): 36-38.姓 名:王超

学 号:20092042026

班 级:20092042

时 间:2010年12月30号

第三篇:染料废水的处理技术

化工三废处理工(论文)

题 目:

染料废水的处理技术 院 系:

材料工程院 专 业: 精细化学品生产技术 班 级: 11级精化班 姓 名: 徐兴旺 学 号: 110303219

年 11 月日

2013 07

目录

摘要

……………………………………………………………3 1前言 ……………………………………………………………3 2 物理化学法 ……………………………………………………3 2.1吸附法 ……………………………………………………3 2.1.1 活性炭吸附 ……………………………………………4 2.1.2 树脂吸附法 …………………………………………4 2.1.3 矿物、废弃物 …………………………………………4 2.1.4 矿物吸附 …………………………………………5 2.2 膜分离技术 …………………………………………………6 2.3 萃取法 ……………………………………………………7 3 化学法 ……………………………………………………8

3.1 Fenton法 …………………………………………………8 3.2 光催化氧化法 ………………………………………………8

3.3 电化学氧化法 ……………………………………………9 3.4 超声波降解技术

…………………………………………10 4 生物法 ………………………………………………11 4.1微生物处理法……………………………………………………11 4.2好氧法 ………………………………………………………12 4.2厌氧法 ………………………………………………………12 5 其他方法 ……………………………………………………14 5.1辐射法 ………………………………………………………14

6存在问题及展望……………………………………………………15 7结论 …………………………………………………………16 8参考文献 ………………………………………………………17

染料废水处理技术

徐兴旺

(芜湖职业技术学院 安徽 芜湖 241000)

【摘要】 介绍了染料废水的处理现状,目前国内外主要的处理方法有物化法(常用的有吸附法、混凝法、膜技术 萃取法等)、化学法(如Fenton法 氧化法、电解法 超声波降解技术等)、生物法(微生物处理法、好氧法、厌氧法)和其它方法,介绍了各种工艺方法处理染料废水的实例并指出了各方法的优缺点和技术的关键,最后对今后染料废水处理技术的发展进行了展望。

【关键词】 染料废水; 物化法; 化学法; 生物法;

1.前言 随染料和印染工业的迅速发展,每年要向水体环境排放大量含染料的工业废水,此类废水色度深、有机污染物含量高、组分复杂、水质变化和生物毒性大、难生物降解,且染料抗光解、抗氧化性强,用常规的方法难以治理,给环境带来了严重污染[1]。近年染料废水的物理化学处理。2.物理化学法 2.1.吸附法

在物理化学法中应用最多的是吸附法。吸附法是利用吸附剂表面的活性,将分子态的污染物浓集于其表面而达到去除目的,目前主要采用活性炭吸附法。近年来,活性炭纤维用于对废水中染料的吸附研究取得了一定成果。ClO2氧化与活性炭吸附相结合处理印染废水,与单独用ClO2氧化或活性炭吸附处理相比,COD去除率和脱色率均有较大提高。粉煤灰由于来源广泛,价格低廉,因而在印染废水处理方面有较大

3 的潜力。阎存仙[2]研究了粉煤灰对活性染料、酸性染料、阳离子染料等废水的吸附脱色能力。Qodah采用页岩油灰处理活性染料废水,效果良好。吸附法处理染料废水具有投资少、周期短等特点,适用于规模较小的企业,但应对吸附染料后的吸附剂再生及废吸附剂的后处理引起重视,以减少二次污染。2.1.1活性炭吸附法

活性炭作为一种优良的吸附剂已经广泛地用于染料废水的脱色,活性炭能去除各种染料的颜色,处理效果取决于活性炭的类型和染料废水的特性,增大活性炭用量可提高吸附率。活性炭价格较高,使它的应用受到限制,使用后的活性炭需要再生,再生的方法有高温和解吸液处理两种,再生会导致活性炭 10~15%的损失。2.1.2树脂吸附法 世纪后期,随着结构改良的离子交换树脂、吸附树脂和复合功能树脂的成功研制,树脂吸附法被广泛应用于化工废水的治理与资源化。但是在染料废水处理方面的研究和应用相对不是很多,有人针对染料废水合成出具有不同物理化学特性的树脂来处理该类废水,并取得了较好的处理效果。一般染料废水中都含有比较多的无机盐,而盐类对树脂的吸附有一定的影响。Silke Karcher等研究了硫酸盐,碳酸盐,磷酸盐等无机盐对吸附的影响。研究发现,硫酸盐对吸附的抑制很弱,碳酸盐对吸附的抑制中等,磷酸氢根离子的存在对吸附有着强烈的抑制作用,目前对此还没有合理的解释。2.1.3 矿物、废弃物吸附法

自然界中的很多物质具有多孔结构,有良好的吸附性能,可用来处理染料废水。天然矿物主要包括各种黏土,矿石,煤炭等,一般储量都比较丰富,我国矿渣,炉渣,煤渣,粉煤灰等废物量也很多,成本更为低廉,因此这些无机吸附剂的应用前景比较广阔。曾秀琼用改性的天然膨润土吸附活性艳红X-3B,并与活性炭进行比较。结果表明,两者对废水的脱色率都在90%以上。Konduru R.Ramakrishna等将泥煤、钢渣、膨润土、粉煤灰等无机吸附剂和活性炭对染料的吸附性能进行了比较,试验结果表明,钢渣、粉煤灰对酸性染料以及泥煤、膨润土对碱性染料的吸附效果可以和活性炭相媲美,而这四种吸附剂对分散染料的吸附效果都优于活性炭,这一结果为低成本的吸附剂走向工业化应用提供了科学依据。很多科学家对一些天然的原料和农业精制炭进行了进一步处理,并研究了这些物质的吸附行为,其中桉树皮、稻壳、竹子、麦杆、椰子壳、野草、木薯皮、花生壳、李子核、棕榈果等天然炭纤维经过处理后对染料都有很好的吸附效果。但是这些吸附剂吸附饱和后如何处置是有待解决的难点。找到一种行之有效的吸附剂可以更好的处理染料废水。2.1.4 矿物吸附

天然矿物如黏土.矿石等在全球储量丰富,应用前景广阔,常用作吸附剂的天然矿物主要有膨润土、蒙脱石、海泡石、海绵铁、凹凸棒石等(表1)。由于各类矿石具有较高的吸附性能而被广泛地应用于印染废水治理。

Vimonses等研究比较了膨润土、高岭土及沸石对刚果红的吸附效果。研究考察了吸附剂的投加量、染料浓度、初始PH及反应温度对吸附过程的影响。结果表明,高岭土对染料的吸附等温曲线符合Langmuir等温模型,而高岭土和沸石则符合Freundlich模型。三种吸附剂对染料的吸附均遵循假二级吸附方程。粒子内部扩散研究表明,吸附速率不单由扩散步骤控制。进一步的热力学研究还表明“这三类矿物对于染料的吸附是放热的、自发的过程。钠基膨润土表现出了最好的吸附性能,高岭土次之。该研究为难降解染料的处理提供了更为经济的吸附剂选择。研究者们对天然矿石的结构稍加改性,即可提高矿石材对于染料废水处理的吸附性能。对天然矿物的改性成为新型吸附剂开发的研究热点。2.2 膜分离技术

膜分离技术用于印染废水处理具有能耗低、工艺简单、不污染环境等特点。冯冰凌等[3]采用壳聚糖超滤膜处理印染废水,COD去除率可达80%左右,脱色率超过95%。吴开芬[4]则利用超滤法处理含靛蓝废水,6

可使染料的浓溶液直接回用,透过液可作为中性水再利用。郭明远等[5]自制了醋酸纤维素(CA)纳滤膜,结果表明,CA纳滤膜可用于活性染料印染废水的处理和染料回收。活性炭填充共混的改性壳聚糖超滤膜,经适当交联后用于酸性红染料废水的分离脱色,最大脱色截留率达98.8%[6]。Soma等[7]采用氧化铝微滤膜,对不溶性染料废水,膜的截留率高达98%。但是膜分离技术由于浓差极化、膜污染及膜的价格较贵,更换频率较快,使处理成本较高,从而严重阻碍了膜分离技术的更大规模的工业应用。2.3萃取法

萃取实质是采用与水不互溶但能很好溶解污染物的萃取剂,使其与废水充分混合触 后,利用污染物在水和溶剂中不同的分配比分离和提取污染物,从而净化废水。萃取法处理染料废水是利用不溶或难溶于水的溶剂将染料分子从水中萃取出来。常用的萃取法有溶液萃取、电泳萃取、液膜法等。Pandit等采 用可逆胶囊液-液萃取方法,通过把有机染料(有机相)与水相分离而使废水得到处理。他们的研究表明,在阳离子十六烷基三甲基溴胺表面活性剂存在下,阴离子甲基橙从水中得到有效地分离;在阴离子十二烷基苯硫酸盐表面活性剂存 在下,戊基乙醇作为萃取溶剂,阳离子亚甲基蓝也得到有效分离。陈敬润等以天然植物油为膜液,含聚四氟乙烯涂层的聚丙烯平板膜(PPsT)作为支撑膜,研究了支撑液膜(SLM)系统去除和回收水溶液中分散染料阳离子红4G的性能 及影响因素,在最佳条件下,100 mg/L的染料溶液其去除率达到94.1%。近年来液膜技术发展较快,利用

液膜技术萃取含染料废水中的染料物质,具有明显的经济效益和环境效益。3.化学法 3.1 Fenton法

用Fenton试剂对含染料废水进行混凝前的预处理,脱色率可达96.77%,而直接混凝法脱色率仅为10%~30%。随着人们对Fenton工艺研究的深入,近年来又把紫外光(UV)、草酸盐引入Fenton工艺中,使Fenton工艺的氧化能力大大增强。Pigllatello[8]研究表明,当用少量紫外光的可见光照射时降解作用明显增强,降解时间缩短。Fenton试剂作为一种强氧化剂处理水中有机污染物反应条件温和,设备简单,但处理成本高。在处理毒性大、一般氧化剂难氧化或生物难降解的有机废水方面,与其他方法如与混凝沉降法、活性炭法、生物法等联用,可降低处理成本,拓宽Fenton试剂的应用范围。3.2 光催化氧化法

光催化氧化法具有明显的节能高效、污染物降解彻底等特点,常用的催化剂有二氧化钛、过氧化氢、草酸铁等无机试剂。以载铂二氧化钛半导体为催化剂,对3B艳红的光催化降解研究表明,过氧化氢对3B艳红的载铂二氧化钛光催化降解具有明显的助催化作用,脱色率和COD去除率分别为97.9%和92.3%[9]。Fe3+及其络合物在近紫外及可见光区有强的配体,能催化或充当光化学反应的媒介,紫外光照射下草酸铁/过氧化氢复合体系对染料活性艳红X-3B水溶液脱色和降低COD有明显效果,处理24min后,脱色率达90%以上,COD去除率为33%~

70%[10]。利用太阳能进行光催化氧化有机染料技术,在节约能源、维持生态平衡、实现可持续发展等方面具有突出的优点。程沧沧等[11]采用TiO2-Fe3+体系,太阳光照射0.5h,浓度25mg/L,直接耐酸大红4BS染料分子降解率达85%。在探索光催化技术的过程中,光催化还出现了一个新的发展方向———电化学辅助光催化降解技术即光电催化。利用光透电极和纳米结构TiO2作为工作电极和光催化剂,采用光电催化法对水中染料进行电解,发现光电催化降解对三种染料———品红、铬蓝K、铬黑T溶液的降解效果最好[12]。

光催化氧化技术在染料废水处理领域的应用具有良好的市场前景和经济效益,但该领域的研究还存在诸多问题,如寻求更高效的催化剂,反应机理和动力学尚需进一步研究,催化剂的分离与回收,低能高效的能源等。以上问题的解决,将会推动染料废水处理的光催化降解技术的工业化进程。3.3 电化学氧化法

近年来电化学水处理技术得到了改进,在传统电化学法的基础上增加了氧化、催化氧化或光催化氧化作用,有效地突破了微电解技术的局限。王慧等[13]采用电化学法处理含盐染料废水,研究发现,电解过程中余氯的产生对色度和COD的去除有决定性作用,电解60min,色度和COD的去除率分别可达85%和99.8%。利用活性炭和氢氧化铁组成的复合催化剂,采用电催化法对染料废水进行处理,结果表明,在电压10V、电流0.1A、电解时间1.5h条件下,COD去除率达87.5%~90%,脱色率达99%~100%[14]。章婷曦等[15]采用内电解—催化氧化—氧化塘

法处理染料废水,COD和色度的去除率都在95%以上。祁梦兰等[16]采用微电解—催化氧化—飞灰吸附组合工艺处理活性染料生产废水,COD去除率达95%以上,脱色率达99.9%。电催化氧化技术走向实用化的关键是研究出具有高效催化性能的电极材料,提高电极材料的催化性能,提高电流效率、弱电极极化以降低能耗是今后的主攻方向。将电催化氧化与脉冲电源结合起来,改变电极结构,达到提高处理效果和节能的目的,将是电催化氧化投入工业应用的努力方向。3.4 超声波降解技术

超声波是指频率高于20kHz的声波,当一定强度的超声波通过媒体时,会产生一系列的物理化学效应。超声波降解水体中有机污染物是一种新型水处理技术,简便、有效。祁梦兰等[17]采用声化学氧化法对靛蓝染料废水做预处理,可使生物难降解的染料废水可生化性BOD/COD值由0.21~0.23提高到0.44~0.51。刘静[18]用超声波—电解法处理活性紫染料废水研究表明,超声波与微电场的协同作用可大大提高水的脱色率。在最佳工艺下,废水经超声波—电解处理60min,色度去除率可以达到99.69%。将超声波应用到二氧化钛光催化降解酸性粒子元青染料反应中,在相同反应时间内降解率为78.5%,而二氧化钛光催化降解率为65.0%[19]。王晓宇等[20]采用超声波与紫外光协同氧化法处理酸性红B染料废水60min后,脱色率可达99.1%。4生物法

与能耗高、花费大的化学氧化法相比,生物处理方法因其经济性,为众多工业废水处理工艺所青睐。常用的生物处理方法主要包括厌氧生

10

物降解和好氧生物降解.在染料废水处理方面”厌氧降解与好氧降解各有其针对性 4.1微生物处理法

近年来,微生物对于染料废水的降研究主要集中在选育和培育出各种优良脱色菌株用于降解和吸附废水中的染料“及采用高效工程菌强化技术等%目前发现能降解染料的微生物种类很多”主要有真菌.细菌和藻类3类(表2)

利用纯菌体系对染料废水的处理,与实际应用于染料废水的处理还有很大差距。常用于实际废水处理的生物工艺主要包括:好氧法、厌氧法及厌氧。4.2好氧法

11

对于可生化性较高的染料废水采用好氧法处理YWX6的去除率较高,去除率一般可达80%左右。而现代合成染料废水的可生化性差(BOD/COD<0.2),一般采用单纯的好氧法难以对COD和色度进行有效的去除。

近年来的研究主要将好氧处理与化法.化学法等方法联用“以期在达标排放的前提下,使处理效率更高效果更好、费用更低。

宓益磊等49采用一种电场和生物耦合的新型技术处理酸性大红GR模拟废水”并与单纯电化学法和好氧生物法进行实验对照。结果表明:反应6h后,电化学法.好氧生物法.电-好氧生物耦合技术对酸性大红GR的去除率分别为15.7% 25.8%和71.2%。耦技术能明显提高酸性大红GR的去除效果,起到强化生物处理的作用。在15mA微电流条件下电-生物技术能克服50mg.L-1酸性大红GR对好氧生物处理的抑制作用“为高浓度难降解染料废水的生物强化处理提供了可能。Liang等采用好氧生物接触氧化与铁/炭微电解耦合工艺对偶氮染料茜素黄进行处理。实验结果表明”当水力停留时间为6h回流比为#和)时“茜素黄最终出水降解率达96.5%,总有机碳去除率分别为69.86%和79.44%铁(微电解对染料的去除起到了促进作用)也为染料废水的处理提供了一种新的方法和选择。4.3厌氧法

由于现代人工合成染料抗光解.抗氧化.抗生物降解的性质,使好氧处理(适于处理生化降解性好的废水)难以满足要求,而厌氧既能去除部分有机物,又能降解结构复杂的有机物,提高其可生化性。

12

Brown等早在1983年即通过对水溶性偶氮染料研究厌氧生物降解得出结论:厌氧过程对于脱色过程是非常重要的”尤其是最初的脱色过程。脱色反应是偶氮键的断裂。

Somasiri采用升流式厌氧污泥床,(UASB)反应器对纺织废水进行脱色及还原性,COD去除的研究。结表明,UASB反应器能够去除超过90%的还原型COD,超过92%的色度被脱除。球菌在处理过程中占主导地位。

单纯的厌氧过程对染料废水色度的脱除效果显著;而厌氧过程后,染料多被还原为胺类化合物,胺类对于微生物的毒害作用较大,且废水中有机物也得不到彻底的去除,出水COD较大.5 其他方法

在难降解染料废水处理方面,超临界水氧化技术(SCWO)、低温等离子体化学法也是目前研究较为活跃的新技术。射线辐射法有相当进展,其中射线辐射法可加强后续混凝处理效果,大大提高对阳离子染料的去除效率。5.1 辐射法

微波辐射是辐射法中常用的处理染料废水的方法。微波辐射用于消除有机污染物是 80 年代后兴起的一项新技术,微波位于电磁波谱的红外辐射和无线电波之间,微波仅对液体中的极性分子起作用,能使极性分子产生高速的旋转碰 撞产生热效应,改变体系的热力学函数,降低反应的活化能和分子的化学活性。此外,微波还有非热效应的特性,即在微波场中,剧烈的极性分子振荡,能使 化

13

学键断裂,使污染物降解。冯建敏等采用微波辐射技术,建立了酸性黄染料废水的处理工艺,实验结果表明,质量浓度 50mg/L的酸性黄染料废水50mL,活性炭用量 2g,微波辐射功率 800W,处理 7min时,可以得到最佳的废水处理效果。刘宗瑜[20]等为有效处理酸性染料废水,采用在吸附催化剂的存 在下微波辐射技术处理染料废水,并取得了良好的实验结果,对染料废水的去 除率达到96%~98%。辐射法可有效降解染料等其他难生物降解的有机物,且辐射技术和其它技 术有很好的协同作用,与传统的水处理技术相比,辐射技术在常温常压下进行,工艺简单,无二次污染。该技术存在的主要难题是用于产生高能粒子的装置昂 贵、技术要求高,而且该法的能耗大、能量利用率较低;此外为避免辐射对人体的危害,还需要特殊的保护措施。因此该法要投入运行,还需进行大量的研究探索工作。6存在问题及展望

多年来,研究者采用了多种工艺对染行处理研究。但每种处理工艺各有其优缺点和适用范围,如表3所示。目前,染料工业废水处理的突出问题可归结如下:

(1)色度的脱除和复杂难降解有机物的矿化存在技术困难和理论黑箱:根据Wiff氏提出的发色基团理论,要去除染料废水的色度,关键的步骤在于破坏其发色基团的结构;而提高印染废水的可生化性,降低其COD值,则要依靠芳香环的裂解。然而,何种处理技术能够同时解决色度脱除和难降解物质矿化的技术难题;在处理过程

14

中,各类污染物又遵循哪种降解(氧化? 还原?)的规律,是亟待解决的理论问题。

(2)废水排放量巨大,威胁水环境安全:高毒性废水进入水体环境"在水生生物体内富集;经处理染料废水降解产物可能比母体化合物更具生物毒性,染料废水处理究竟应将产物控制在何种状态,也是研究者面临的理论困境。

(3)经济发展水平制约处理技术的推广:从国家发展程度上看,我国尚属发展中国家,染料废水处理的经济性也制约着目前现有染料废水处理技术的推广,亟待提出经济性好的染料废水处理工艺。(4)研究者多关注于将各类处理工艺与污染物组合随机组合,研究缺乏面向污染物分类的系统性工艺研究;即使有研究者关注到按染料结构开发处理技术,也忽略了从三大类应用最广泛的染料(偶氮染料、蒽醌染料及三苯基甲烷类染料)横向加以比较的研究思路。可见,欲实现染料废水的脱色和矿化高效处理,需从染料的微观结构入手,对其降解机制进行分析,并开发出针对性较好的染料 废水处理技术

15 结论

目前,含有机染料废水的处理方法较多,在实践中应根据具体条件和要求,合理组合工艺,使处理效率不断提高,并有效降低处理成本;在新技术研究方面,需开发高效、低毒、低能耗、不造成二次污染的水处理技术,特别是光、声、电、磁、无毒药剂氧化、生物氧化等各种手段联用的新型绿色水处理技术。【参考文献】

[1]郑曦;高铁絮凝剂的电合成及其在染料废水处理中的应用[J];福建师范大学学报(自然科学版);2002年03期

[2]阎存仙.粉煤灰的综合利用[J].上海环境学,1996,15(2):21-23.[3] 冯冰凌,叶菊招,朗雪梅.聚氨基葡糖超滤膜的研制及其在印染废水处理中的应用[J].工业水处理,1998,18(4):16-18.[4] 吴开芬.用超滤法处理靛蓝废水[J].环境科学进展,1998,6(增刊):124-127.[5] 郭明远,杨牛珍.纳滤膜分离活性染料溶液的研究水处理技

16

术,1996,22(2):97-99.[6] 俞胜飞,叶菊招,朗雪梅,等.壳聚糖活性炭共混超滤膜的研制[J].水处理技术,1999,25(5):255-258.[7] SomaC,RumeauM,SergentC.Useofmineralmem2branesinthetreatmentoftexileseffluentsporeintlcontinorganicmembrane[C].France:Montpeller,1989.523-526 [8] PigllatelloJJ.DarkandphotoassistedFe3+catalyzed degradationofchlorophenoxyherbicidesbyhydrogenperoxide[J].Environ.Sci.Technology,1992,26:944 [9] 沈学优,李华英,陈群燕,等.载铂二氧化钛对3B艳红染料溶液光催化降解性能的研究[J].水处理技术,2001,27(1):33-36.[10] 邓南圣,刘筱红,罗 凡,等.Fe(Ⅲ)-草酸盐络合物/H2O2/UV体系对染料废水的处理研究[J].水处理技术,2002,28(1):45-48.[11] 程沧沧,胡德文.TiO2-Fe3+体系降解耐酸大红染料的研究[J].环境污染与防治,1998,20(4):17-19.[12] 姚清照,刘正宝.光电催化降解染料废水[J].工业水处理,1999,19(6):15-17.[13] 王慧,王建龙,占新民,等.电化学法处理含盐染料废水[J].中国环境科学,1999,19(5):441-444.[14] 杨柳燕,许翔元,朱水源,等.复合催化电解法处理染料工业废水[J].中国环境科学,1998,18(6):557-560.[15] 章婷曦,周建,黄俊等.内电解—催化氧化法治理染料废水[J].17

南京理工大学学报,1999,23(6):547-549.[16] 祁梦兰,韩兆瑞,李赶响,等.微电解—催化氧化—吸附法处理活性染料生产废水[J].河北科技大学学报,2000,21(3):62-65.[17] 祁梦兰.声化学—间歇式活性污泥法处理染料废水研究[J].化工环保,1996,16(6):332-336.[18] 刘 静.超声电化学处理印染废水的实验研究[J].上海环境科学,2000,20(3):151-153.[19] 白 波,赵景联,冯 霄.超声光催化降解酸性粒子青染料的研究[J].化工环保,2002,12(6):319-323.[20] 王晓宇,卞华松,张国莹.超声与紫外光协同氧化法处理染料废水的工艺研究[J].上海环境科学,2002,21(6):334-337.[21] 肖雨堂,许建华,陈 静.铁屑强化传统工艺处理降解印染废水实践[J].给水排水,1998,24(4):37-39.[22] ShahV,GangN,MadamwarD.Anintegratedprocessoftexiledyeremovalandhydrogenevolutionusingcyanobacteriumphormidiumvalderianum[J].WorldJournalofMicrobiologyandBiotechnology,2001,17(5):499-504

18

第四篇:实验室废弃物、废水的处理制度

4.15.2.7 制定实验室废弃物、废水的处理制度

医 疗 废 物 管 理 制 度

一、使用后的一次性使用医疗用品必须由取得当地卫生行政部门和环保部门颁发的卫生许可证、经营许可证的集中处置单位统一收集处置,不得出售给个体商贩、废品回收站或交由其他任何单位收集处理。

二、医疗一次性废物应分类放置于防渗漏、防锐器穿透的专用包装物或者密闭的容器内,须有明显的警示标识和警示说明。由专人应用专用的转运工具按照确定的时间、路线转运到指定贮存地点。转运工具和容器使用后应当及时进行消毒和清洁。

三、感染性废物、病理性废物、损伤性废物、药物性废物及化学性废物不能混合收集。少量的药物性废物可以混入感染性废物,但应在标签上注明。进行焚烧。

四、医疗废物中病原体的培养基、标本和菌种、毒种保存液等高危废物,应当首先在产生地点进行压力蒸汽灭菌或化学消毒处理,然后按感染性废物收集处理。

五、使用过的一次性医疗用品如一次性注射器、输液器和输血器等物品必须就地进行毁形。无回收价值的可放入专用收集袋直接焚烧。

六、锐器不应与其他废弃物混放,用后必须稳妥安全地置入锐器容器中进行焚烧。

七、传染病病人或疑似传染病病人产生的生活垃圾应按照医疗废物进行管理和处置;各科室产生的污水、传染病病人或者疑似传染病病人的排泄物应当按照国家规定严格消毒,达到国家规定的排放标准后,方可排入污水处理系统。

八、禁止在运送过程中丢弃医疗废物;禁止在非贮存地点倾倒、堆放医疗废物或将医疗废物混入其他废物和生活垃圾。

九、各级各类人员加强监督,定期检查。

第五篇:焦化厂废水的处理工艺

焦化厂废水的处理工艺

焦化污水又称酚氰废水,其中除了含有大量的酚、氰、氨氮外,还有少量的如吲哚、苯并芘(a)、萘、茚等,这些微量有机物中有的已被确认为致癌物质,且不易被生物降解,这种高浓度有毒废水正是焦化厂污水处理的重点。虽然焦化厂的废水产生量及成分随采用的生产工艺和化学产品精制加工的深度不同而异,但是多数废水的COD(化学耗氧量)较高,主要污染物都是酚、氨、氰、硫化氢和油等。

焦化废水的特点 有:

1、水量比较稳定,水质则因煤质不同、产品不同及加工工艺不同而异。

2、废水中含有机物多,大分子物质多。有机物中有酚类、苯类、有机氮类(吡啶、苯胺、喹啉、咔唑、吲哚等)以及多环芳烃等;无机物中含量比较高的有:NH3-N、SCN-、Cl-、S2-、CN-、S2O32-等。

3、废水中COD浓度高,可生化性差,BOD5/COD一般为28%~32%,属较难生化处理废水。

4、焦化废水中含NH3-N、TN较高,不增设脱氮处理,难以达到规定的排放要求。废水处理工艺流程

工厂污水处理流程根据其装置及各构筑物的功能,可分为四个部分:预处理、生化处理、后处理、污泥干化。(1)预处理

预处理保证污水水质和水量不产生大的波动,在进入生化曝气池前降低污水中的油类物质和氰化物,避免生化处理装置受油污染及高负荷冲击。预处理流程为:污水经吸水井、隔油池、二级气浮、调节池、调温池,最终进入生化曝气池。分析结果表明:重力平流式隔油池除油效率平均在60%左右,最高达88%;Ⅰ级气浮除油率达90%以上,经预处理除油后,污水中的矿物油含量小于10 mg/l,满足了生化曝气对污水中矿物油含量的要求;污水中的氰化物在Ⅰ、Ⅱ级气浮中与加入的混凝剂(聚合硫酸铁)中的Fe作用生成电离度很小的络合物[Fe(CN)6]4-、[Fe(CN)6]3+,Ⅰ级气浮的氰化物去除率高达80%。气浮设备还能去除部分COD,但去除率不高,平均在35%左右,最低只有10%,大量COD需要靠生化去除。污水的温度一方面靠调温池中的直接蒸汽来保证,另一方面靠热空气来保证。直接蒸汽在给污水升温的同时蒸去了污水中部分挥发性物质,如氨、挥发酚等。污水经二级增温以后,在寒冷季节,曝气池中污水温度能控制在25~35℃范围内。污水在经过上述预处理以后,水质基本能达到本工艺的生化要求,各项指标分别为:挥发酚〈300 mg/l;氰化物〈5 mg/l;氨氮500〈mg/l ;COD〈2000mg/l;温度25~35℃。(2)生化处理 ①原理

经预处理后的焦化污水与部分生活污水在曝气池前配水井中充分均匀混合后,进入生化曝气池,按r=1:5的回流比,与处理后污水混合回流至生化曝气池的前段。污水生化采用反硝化--硝化工艺。该工艺利用亚硝酸细菌、硝酸细菌、反硝化细菌分别对氨氮、挥发酚、氰化物的氧化分解原理可用下面几式表示:

NH4+-N+O2+HCO3-→C5H7O2+H2O+NO3-+H2CO3 NO2-+3H+→0.5N2+ H2O+OH-NO3-+5H+→0.5N2+2H2O+OH-

HCN+ H2O→CH2O=NH→HCONH2+ H2O→HCOOH+ NH2→CO2+ H2O ②工况

污水处理量:42m3/h 罗茨风机风量:88.6 m3/min 回流比:r=1:5 曝气池底部布置有高充氧效率的软管,经曝气后,池中溶解氧含量>3mg/l,能充分满足硝化段好氧细菌对溶解氧的要求。本工艺的反硝化细菌、硝化细菌对温度的要求高于一般细菌,属中温菌,在31--36℃范围内,细菌表现出较强的活性,各项污染物出水浓度均能达标(其它条件正常情况下)。超过这一温度范围,出水水质恶化,细菌由生化膜上脱落死亡,水质发黑且严重超标。工厂采用蒸气及热空气两种方法确保31-36℃的温度范围。曝气池中的PH值由纯碱来调节,工艺设计时,前置反硝化段生成部分碱供硝化段消耗,纯碱投加在硝化段进口底部,随着池内污水的湍流,池内PH值得以很好地调节,保证了微生物生存所需的酸碱度,纯碱投加量视池中PH值而定。微生物生长、繁殖条件除温度、PH值外,还必须有营养物质磷元素,工厂用投加NaH2PO4的方法来补充污水中磷元素的不足,磷的投加量不宜过大,否则导致池内微生物疯长、脱落,造成池内污泥量过多,增加风机负荷,浪费动力消耗。经测算,磷的投加量为15Kg/日,每天24小时均匀投加。从每天池底排泥情况看,剩余污泥量尚可。③处理效果

污水处理投运几年来,设施(备)运行较为稳定,A--O工艺运行正常。几年来,各类污染物处理率逐年好转,出水达标由稳定三级逐步向稳定二级过渡,目前部分指标已达一级标准。99年上半年,部分指标达到或优于二级综合排放标准,见表(2)。处理后的达标污水部分回用熄焦,部分排入城市污水管网,出水标准执行污水综合排放标准GB8978-1996表四。(3)后处理

曝气池出水送Ⅲ级气浮设备进一步作除色、除氰处理,以达到更好的排放水质。(4)污泥处理

Ⅰ、Ⅱ、Ⅲ级气浮的浮渣、气浮槽底沉积的焦油以及曝气池所排剩余污泥,都汇集于污泥贮槽,再用液下泵送至污泥浓缩池,在污泥浓缩池里,污泥靠重力沉降自然分 层,污泥浓缩2~3天后,撇出上层液体,将含水量99%的污泥排至污泥干化场(144m2)。在干化场内,一部分水分通过过滤层渗入底部渗管内汇集于窨井中,再与污泥浓缩池撇出的上层液体一起回到集水井中;一部分水分在晾晒过程中自然蒸发。失去水分的污泥称为干污泥。干污泥的处理是运至工厂的煤场配煤焚烧。干污泥年产量约为5吨。

下载高盐度废水的生物处理进展(共5篇)word格式文档
下载高盐度废水的生物处理进展(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    脱硫废水零排放深度处理

    脱硫废水零排放深度处理 目前,国内大多数火电厂的湿法脱硫废水处理系统采用传统的加药絮凝沉淀工艺,但整体投运率很低。经传统处理系统处理后脱硫废水中SS和COD的浓度较高,且无......

    废水排放及处理应急预案

    废水排放及处理应急预案 我们是一家资源再生利用企业,我厂的主要环境因素是污水,污水的处理不仅关系到生产质量的稳定,也关系到我厂经营的基础,为了避免重大的污水超标排放事故......

    用电厂冲渣处理造纸废水

    用电厂冲渣处理造纸废水 来源:无线测温 http://www.xiexiebang.com 煤渣中含有大量多孔非晶态的SiO2、Al2O3,其对废水中的污染物有一定的吸附能力,能够起到脱色和去除污染物的......

    探究制浆造纸废水新时期处理技术

    探究制浆造纸废水新时期处理技术 摘要:目前,在化学工业及其相关产业的竞争和发展日益激烈的同时还带来了很多的危害。就制浆造纸废水而言,它是一类成分复杂、难处理的高浓废水......

    稠油污泥处理技术进展

    稠油污泥处理技术进展 一、国内外含油污泥主要处理技术现状综述 对含油污泥进行无害化处理、清洁生产并回收其中资源的综合处理,一直是国内外环境保护和石油工业的重点工作之......

    制浆造纸废水状况及处理技术总结

    制浆造纸废水状况及处理技术总结 一、我国制浆造纸工业的特点与污染现状 1.产量持续增长 全球造纸行业生产与消费每年以2-3%的速度增长,亚洲以8.5%增长,名列各大洲之首,而中国造纸......

    如何优效处理重金属电镀废水5篇

    如何优效处理重金属电镀废水 固体捕集剂RS100对于处理重金属电镀废水具有非常大的优势和效果。 工具/原料 固体捕集剂RS100 方法/步骤 1、RS100 是由本公司自主研发的新一代......

    煤气柜废水和残留物处理方法和技术

    一.气柜内残留废气的处理: (1)气柜内残留煤气采用点燃法处理:在气柜水封出口端连接煤气点燃管道,将管道接至安全地带,在点燃处开挖点燃火坑1.5m×1.5m×1.5m,点燃管口朝下,末端......