第一篇:初二数学勾股定理定义及习题
勾股定理的定义: 较短的直角边称为勾,较长的直角边为股,斜边称为弦,因此勾股定理又称为勾股弦定理.
2、勾股定理的逆定理
如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.
3、直角三角形的判定
判定一个三角形是直角三角形,一是利用定义,即证明三角形中有一个角是直角,二是利用勾股定理的逆定理.
4、勾股定理的应用
(1)已知直角三角形的两条边,求第三边;
(2)已知直角三角形的一边,求另两条边的关系;
(3)用于推导线段平方关系的问题等;
(4)用勾股定理,在数轴上作出表示线段
例
1、设a、b、c、d都是正数.求证:证明:、、的点,即作出长为的构造一个长为(a+b),宽为(c+d)的矩形ABCD.
一、填空题
1、如图所示,将一根24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是__________.
2、等腰三角形的底边长为6cm,腰长为5cm,则它的面积为__________.
3、如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=1,CF=3,则AB的长度为__________.
4、在Rt△ABC中,∠C=90°,BC=6cm,CA=8cm,动点P从C点出发,以每秒2cm的速度沿CA、AB运动到点B,则从点C出发__________秒时,可使
.
5、已知△ABC中,AB=10,AC=17,BC边上的高AD=8,则BC的长为__________.
6、如图,已知AM⊥MN,BN⊥MN,垂足分别为M、N,点C是MN上使AC+BC的值最小的点.若AM=3,BN=5,MN=15,则AC+BC=__________.
7、在平面直角坐标系xOy中,已知点P(-2,1)关于y轴的对称点为P′,点T(t,0)是x轴上的一个动点,当△P′TO是等腰三角形时,t的值是__________.
8、如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是__________. 1、11cm≤h≤12cm 2、12cm23、4、2秒或6.5秒5、21或9 6、17
7、点拨:作P′Q⊥x轴于Q,求得x轴于点
.以点O为圆心,为半径作弧交
3;再以点P′为圆心,为半径作弧交x轴于T(4,0);作线段OP′的垂直平分线交x轴于点T,连接TP′,则TP′=OT=t,TQ=|
4-t|,在Rt△P′QT中,由勾股定理得(2-t)+1=t,22
24.8、点拨:作点D关于AB的对称点F,连接CF、BF、EF,则ED=EF,BD=BF=1,∠ABC=∠ABF=45°,∴∠CBF=90°,∴EC+ED=EC+EF≥CF=
.
二、解答题
9、如图AM是△ABC的中线,∠C=90°,MN⊥AB于N.求证:AN=BN+AC.
229、AN=AM-MN=AC+CM-MN=AC+BM-MN=AC+BN. 2222
第二篇:八年级数学下册:17.2勾股定理逆定理(1)习题
八年级数学课题:17.2勾股定理逆定理(1)
1、在下列长度的各组线段中,能组成直角三角形的是()
A.5,6,7
B.1,4,9
C.5,12,13
D.5,11,122、若一个三角形三边长的平方分别为:32,42,x2,则此三角形是直角三角形的x2的值是()
A.42
B.52
C.7
D.52或73、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
4、三角形的三边长为,则这个三角形是()
A.等边三角形;
B.钝角三角形;
C.直角三角形;
D.锐角三角形.5、在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()
A、a=9,b=41,c=40
B、a=b=5,c=
C、a∶b∶c=3∶4∶5
D、a=11,b=12,c=156、分别以下列五组数为一个三角形的边长:6,8,10
13,5,12
1,2,3
9,40,41
32,42,52。其中能构成直角三角形的有_______________.7、已知,则由此a,b,c为三边的三角形是
三角形.8、命题“全等三角形的对应角相等”
(1)它的逆命题是。
(2)这个逆命题正确吗?。
(3)如果这个逆命题正确,请说明理由,如果它不正确,请举出反例。
9、以下列各组线段为边长,能构成三角形的是____________,能构成直角三角形的是____________.(填序号)
①3,4,5
②
1,3,4
③
4,4,6
④
6,8,10
⑤
5,7,2
⑥
13,5,12
⑦
7,25,2410、如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,△DBC是直角三角形吗?
11、判断由线段a,b,c组成的三角形是不是直角三角形:
(1)a=15,b=8,c=17.(2)a=13,b=14,c=15.12、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=,b=,c=;
⑵a=5,b=7,c=9;
⑶a=2,b=,c=;
⑷a=5,b=,c=1。
(5)a=5k,b=12k,c=13k(k>0)。
13、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)求证:∠C=90°。
14、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
15、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?
第三篇:初二下学期数学勾股定理知识点整理(xiexiebang推荐)
初二下学期数学勾股定理知识点整理
查字典数学网初中频道为您整理了初二下学期数学勾股定理知识点整理,希望帮助您提供多想法。和小编一起期待学期的学习吧,加油哦!
勾股定理
在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。即勾的长度的平方加股的长度的平方等于弦的长度的平方。[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a2+b2=c2.简介
勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。
勾股定理是一个基本的几何定理,是数形结合的纽带之一。
直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。
勾股定理内容
直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a2+b2=c2。
勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。中国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。
推广
1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2.勾股定理是余弦定理的特殊情况。
以上就是查字典数学网为大家整理的初二下学期数学勾股定理知识点整理,大家还满意吗?希望对大家有所帮助!
第四篇:初二数学习题尺规作图
初二数学习题尺规作图 班 姓名 号
1.尺规作图,保留作图痕迹,注明结果,不写作法
(1)作∠AOB的对称轴
(2)作线段AB关于直线L的对应线段A′B′
L A A
OBB
(3)已知△ABC 与△A′B′C′关于某条直线对称,请作出这条直线
AA′
BB′B
A
CC′
(3)(4)
(4)在直线L上求一点,使它到A、B距离相等
(5)在∠AOB的内部求一点P,使它到角的两边距离相等,到C、D两点距离也相等
A
C
D
OB
(6)已知△ABC,利用“SAS” 作出△A′B′C′,使这两个三角形全等
A
BC
L
A(7)如图,求作一点P,使PA=PB, PC=PD.C
DB
(8)如图A、B、C表示三个村庄,为了解决村民子女就近入学问题,计划建一所小学,要使小学到三个村庄距离相等,请在图中确定学校的位置(写出作法)
A
CB
(9)要在河边L修建一个水泵站,分别向张庄(A)、李庄(B)送水,水泵站修在河边什么地方,可使所用的水管最短(写出作法)
B
A
L
第五篇:初二勾股定理教案
协 议 书
经双方协议,达成共识。竹园行政村村民刘永会自愿同意,将南地伍亩三分(5.3)的责任田,永久转给本村村民刘永田耕种,南顶大路,北顶小坑,东靠刘红志,西靠刘永远。双方同意,永不反悔,谁反悔谁负责全部责任。此地可埋人。(不包括刘永会粮补资金)双方粮补资金仍旧归各自所有。
协议人:
证明人:
2012年11月20日