焊接裂纹的形成机理与预防措施(精选5篇)

时间:2019-05-15 02:13:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《焊接裂纹的形成机理与预防措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《焊接裂纹的形成机理与预防措施》。

第一篇:焊接裂纹的形成机理与预防措施

焊接裂纹的形成机理与预防措施

1、产生焊接冷裂纹的原因

焊接冷裂纹在焊后较低的温度下形成。由于这种裂纹形成与氢有关,且有延迟开裂的特点,因此又称之为焊接氢致裂纹或延迟裂纹。

产生焊接冷裂纹的三个必要条件:

(1)氢。氢的主要来源是焊材中的水分和焊接区域中的油污、铁锈、水以及大气中的水汽等。这些水、铁锈或有机物经焊接电弧的高温热作用分解成氢原子而进入焊接熔池中。在焊接过程中氢除向大气中扩散外,余下的在焊缝中呈过饱和状态,即在焊缝中存在着扩散氢。根据氢脆理论,这种扩散氢将向应变集中区(如微裂纹或缺口尖端附近)扩散,当该区的氢浓度达到某一临界值时,裂纹便继续扩展。

(2)应力。依据目前国内及国际的施工水平,在球罐的组装过程中总会存在或多或少的强力组对,所以在组装完成后便存在着内应力,这种应力在焊后整体热处理完成后也不可能完全消除。再加上球罐焊接是一个局部加热过程,在焊接过程中产生应力与应变的循环,因此球罐焊接后必然存在残余应力。

(3)组织。焊接热影响区组织中过硬的马氏体含量越多越容易产生冷裂纹。

3、防止产生焊接冷裂纹的措施

(1)尽量选用对冷裂纹不敏感的材料选用内在质量好的母材。即选用碳当量低的优质钢材,尤其是避免母材大型夹渣。所以在球壳板制造前必须对板材进行严格的超声波检查,对有严重夹层等缺陷的钢材不得使用。

(2)尽量减少氢的来源。第一,球罐的焊接选用低氢型焊条,必要时要采用超低氢型的焊条;第二,焊条使用前一定要按产品使用说明进行烘干,并贮存在100~150℃的恒温箱中,在使用时放入保温筒内并随用随取,在保温筒内存放时间不得超过4h,否则要按原烘干温度重新烘干,重复烘干不得超过两次;第三,要彻底去除焊接坡口表面及坡口两侧20mm范围内的油污、水分,、铁锈及其他杂物;第四,不在雨雪天及空气相对湿度大于90%时施焊;第五,采取有效的防风措施,以防止吹弧,使焊接熔池得到有效的隔离保护。

(3)选用适当的焊前预热温度和预热范围。适当的预热温度降低了焊缝冷却速度,可使氢更易从焊缝熔池向大气中扩散,减少了焊缝中扩散氢含量,并且可以降低焊接区的温度梯度和焊缝的冷却速度,尽量减少马氏体的含量,减小温差应力。预热温度应通过工艺评定来确定,预热范围一般为坡口两侧三倍球壳板厚度且不小于100mm。当环境温度低时还应增大预热温度和预热范围。对纵缝应整条焊缝同时预热,不能分段预热。

(4)选用适当的后热温度和后热时间。随着焊接层数的增多,焊缝中扩散氢会逐渐积累。因此焊后应立即进行后热,使扩散氢有充分的时间溢出,同时还可以降低焊缝中的残余应力,减少冷裂纹产生的机率。

(5)焊接过程中保持适当的层间温度,适当的层间温度也能延缓焊缝的冷却时间,起到一定的去氢和降低残余应力的作用,层间温度不得低于预热温度下限值。

(6)采用合适的线能量。若焊接线能量过小,焊缝热影响区容易出现淬硬组织,再加上扩散氢的作用,焊缝容易产生冷裂纹;若线能量过大又会使焊缝热影响区的软化区宽度增加,使焊缝缺口的韧性降低,球罐整体的机械性能下降。

焊接缺陷是影响焊接质量最直接的原因,而焊接裂纹作为最难解决的焊接缺陷之一,在焊管生产中时有出现。

焊接裂纹有横向裂纹和纵向裂纹两种,其中纵向裂纹为可见典型裂纹断口,带圆弧的光滑自由面,有时有氧化物,电子探针发现没其他夹杂物。预防措施为:

1冶金因素

控制焊缝中S、P、C含量,是提高抗裂性、减少结晶裂纹的有效措施。在焊管生产中,选择合适的焊丝、焊剂,有效控制其S、P、C含量,使减少焊缝纵向裂纹的有效措施。

2接头坡口形式 合适的焊接坡口是减少焊接裂纹的有效措施,当卷板较厚,板位控制难时会增加裂纹成形几率,提高对头质量,尽量使钢管在成型过程中产生较小的残余应力,能减少结晶裂纹。

3工艺因素

减少热输入,能在焊缝中形成较小晶粒尺寸组织;降低焊接速度,可以使晶粒的端部并列长大挤压在一起,避免偏析集中;此外宽焊缝相对窄焊缝能防止晶粒长大直接鹏在一起,避免偏析集中。

焊接横向裂纹,其走向垂直于焊缝,具有沿晶和穿晶特点,预防措施为:

1冶金方面

1)要保证板材优良的力学性能,保证强度和韧性要求,尽量减少钢中杂质;

2)尽量选用低氢和高强度、高韧性的焊接材料,选用合适的焊丝、焊剂匹配,严格清理焊丝和焊接区域,烘干焊剂。

2工艺方面

1)焊接线能量过大,会使近缝区晶粒粗大;线能量过小,会使热影响区淬硬,这些都导致横向裂纹产生,应选择合适的焊接线能量;

2)预热可降低冷却速度,有效防止横向裂纹产生;

3)焊后延缓冷却可使氢充分逸出,也能防止焊缝横向裂纹产生

焊接是利用加热或加压等手段,使分离的两部分金属,借助于原子的扩散与结合而形成原子间永久性连接的工艺方法。焊接方法的种类很多,根据实现金属原子间结合的方式不同,可分为熔化焊、压力焊和钎焊3大类。

焊接方法具有如下优点:

(1)成形方便:焊接方法灵活多样,工艺简便;在制造大型、复杂结构和零件时,可采用铸焊、锻焊方法,化大为小,化复杂为简单,再逐次装配焊接而成。

(2)适应性强:采用相应的焊接方法,不仅可生产微型、大型和复杂的金属构件,也能生产气密性好的高温、高压设备和化工设备;此外,采用焊接方法,还能实现异种金属或非金属的连接。

(3)生产成本低:与铆接相比,焊接结构可节省材料10%~20%,并可减少划线、钻孔、装配等工序。另外,采用焊接结构能够按使用要求选用材料。在结构的不同部位,按强度、耐磨性、耐腐蚀性、耐高温等要求选用不同材料,具有更好的经济性。

焊接电弧是电极与工件之间的强烈而持久的气体放电现象。

电弧的构造:焊接电弧由阴极区、阳极区和弧柱区3部分组成。

采用直流弧焊机焊接时有正接法与反接法之分,正接是将工件接电源正极,焊条接负极;反接是将工件接电源负极,焊条(或电极)接正极。

用钢焊条焊接工件时,阳极区温度约为2600K,阴极区温度约为2400K,电弧中心区温度最高,可达6000~8000K。

焊条电弧焊时,对焊接电源的基本要求有:(1)具有陡降的特性;

(2)具有一定的空载电压以满足引弧的需要,一般为50~90V;(3)限制适当的短路电流,以保证焊接过程频繁短路时,电流不致无限增大而烧毁电源。短路电流一般不超过工作电流的1.25~2倍。

常用焊接电源的类型有交流弧焊机、直流弧焊机和交、直流两用弧焊机。

四、焊接冶金过程有何特点?焊接过程中为什么要对焊接区进行有效保护?

焊接冶金过程特点:电弧焊时,被熔化的金属、熔渣、气体三者之间进行着一系列物理化学反应,如金属的氧化与还原,气体的溶解与析出,杂质的去除等。因此,焊接熔池可以看成是一座微型冶金炉。但是,焊接冶金过程与一般的冶炼过程不同,主要有以下特点。

(1)冶金温度高:容易造成合金元素的烧损与蒸发;

(2)冶金过程短:焊接时,由于焊接熔池体积小(一般2~3cm3),冷却速度快,液态停留时间短(熔池从形成到凝固约10s),各种化学反应无法达到平衡状态,在焊缝中会出现化学成分不均匀的偏析现象。

(3)冶金条件差:焊接熔池一般暴露在空气中,熔池周围的气体、铁锈、油污等在电弧的高温下,将分解成原子态的氧、氮等,极易同金属元素产生化学反应。反应生成的氧化物、氮化物混入焊缝中,使焊缝的力学性能下降;空气中水分分解成氢原子,在焊缝中产生气孔、裂缝等缺陷,会出现“氢脆”现象。上述情况将严重影响焊接质量,因此,必须采取有效措施来保护焊接区,防止周围有害气体侵入金属熔池。

(7)防止强力组对。在球罐组对过程中选用合适的工艺和组装机具,尽量避免强力组对。强力组对将使球罐在焊接前就存在强大的附加内应力,这种内应力在焊后也不可能完全消除。

(8)减小错边和角变形。在错边和角变形存在的部位,曲率发生了突变,所以焊后将会存在强大的残余内应力。

(9)采用合理的焊接顺序。当采用合理的顺序焊接时,整台球罐将同时对称地收缩或膨胀,这样能控制焊接变形,减小焊接残余应力。球罐焊接应遵循先纵缝后环缝,先大坡口后小坡口,先赤道后温带最后极带的原则,而且焊工应对称、均匀施焊。球罐焊缝的打底焊要采用分段退焊法,分段长度为600~700mm。

(10)避免工艺缺陷的产生。咬边、未焊透、长条状夹渣等工艺缺陷部位是应力集中区,这些部位容易产生冷裂纹。

(11)确保封底焊缝的质量,封底焊缝要自上而下焊接,不能采用摆动、为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。

3.1控制温度的措施如下:

3.1.1采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中水泥用量;

3.1.2拌和混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;

3.1.3热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;

3.1.4在混凝土中埋设水管,通入冷水降温;

3.1.5规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;

3.1.6施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施。

3.2改善约束条件的措施是:

3.2.1合理地分缝分块;

3.2.2避免基础过大起伏;

3.2.3合理地安排施工工序,避免过大的高差和侧面长期暴露。

此外,改善混凝土的性能提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。

在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土心早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就在导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著效果。

加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低。只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7—15倍,当内混凝土应力过到抗拉强度而开裂时,钢筋的应力将不超过100—200kg/cm.因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与尝试较小了。而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数量属于干缩裂缝。虽然这种裂缝一般都较浅但它对结构的强度和耐久性仍有一定的影响。

挑弧、灭弧的施焊方法

目前,砌体结构的房屋出现各种型式的裂缝,非常常见。其裂缝程度轻重不一,差别很大。轻则影响房屋正常使用和美观,严重的将形成结构安全隐患,甚至发生工程事故。随着住宅商品化的发展,房屋裂缝问题越来越引起人们的关注。

砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。特别是随着我国墙改、住房商品化的进展,人们对居住环境和建筑质量的要求不断提高,对建筑物墙体裂缝的控制的要求更为严格。由于建筑物的质量低劣,如墙体裂缝、渗漏等涉及的纠纷或官司也越来越多,建筑物的裂缝已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。因此加强砌体结构,特别是新材料砌体结构的抗裂措施,已成为工程量、国家行政主管部门,以及房屋开发商共同关注的课题。

砖砌体结构裂缝产生的原因

1、温差变形引发的砖砌体裂缝

这类裂缝较典型和普遍的是建筑物(特别是那些纵向较长的)顶层两端内外纵墙上的斜裂缝,其形态呈“八”字或“X”型,且显对称性,但有时仅一端有,轻微者仅在两端1~2个开间内出现,严重者会发展至房屋两端1/3纵长范围内,并由顶层向下几层发展。此类型缝对那种刚性屋面平屋顶、未设变形缝、隔热层的房屋,更易发生。产生的直接原因是混凝土结构屋面的伸缩变形牵引其下砖砌体超过其材料抗拉强度的结果。具体的机理可认为是:在阳光照射下(特别是南方地区)屋面板温度可高达60~70℃,而在其下的砖砌体仅为30~35℃,如此大的温差,加上混凝土线膨胀系数比砖砌体近似大一倍,可计算出砌体中的主拉应力。

2、地基基础不均匀沉降引起的裂缝

一般在建筑物下部,由下往上发展,呈“八”字、倒“八”字、水平及竖缝。当长条形的建筑物中部沉降过大,则在房屋两端由下往上形成正“八”字缝,且首先在窗对角突破;反之,当两端沉降过大,则形成的两端由下往上的倒摪藬字缝,也首先在窗对角突破,还可在底层中部窗台处突破形成由上至下竖缝;当某一端下沉过大时,则在某端形成沉降端高的斜裂缝;当纵横墙交点处沉降过大,则在窗台下角形成上宽下窄的竖缝,有时还有沿窗台下角的水平缝;当外纵墙凹凸设计时,由于一侧的不均匀沉降,还可导致在此处产生水平推力而组成力偶,从而导致此交接处的竖缝。对于不均匀沉降导致的裂缝应以预防为主,即无地质勘察资料严禁做施工图设计,严格按图施工,不得擅自更改、任意处理,根据本地区通病,如能在那些开大窗洞的教学楼底层窗台下设置构造圈梁与地梁构成刚度较大的复合墙梁结构,对防止所述裂缝有明显效果。

3、特殊砌体材料产生的裂缝

如混凝土小型空心砌块、灰砂砖等的砌体,前者致裂的主要原因是竖缝砂浆难以饱满以及特殊的构造要求未能跟上。后者一般使用南方地区蒸压灰砂砖,由于其本身对温差敏感、表面光滑等特殊性,虽然外观、尺寸指标均较好,但在实际使用中对严格的灰砂砖砌体施工规程不熟悉,缺少使用经验,导致除存在粘土砖常见裂缝外,还常见在较长墙段中及外墙窗台下的竖斜裂缝。

其机理可以认为:

1、刚出厂的灰砂砖稳定性差。灰砂砖主要由细砂和石灰组成,蒸压养护后,一般不到一周即已出厂,但根据生产经验,灰砂砖在出厂的一月内其释放的热量较大,存在着反复的化学反应过程,而且实际上一时难以完全反应,因此,体积极不稳定。

2、对含水率有苛刻的要求,据有关试验资料和使用经验表明,含水率控制在7%~10%之间砌体可获得较好的粘结力和抗剪强度,否则影响明显。

第二篇:钢结构焊接施工中裂纹和气孔的形成原因及预防措施

钢结构焊接施工中裂纹和气孔的形成原因及预防措施 作者:陈临泉

(中国水利水电第三工程局有限公司)摘要:本文通过阐述,详细介绍了焊接施工中焊缝常见的裂纹与气孔缺陷的分类以及产生原因,从而深入浅出的为上述缺陷提出较为详细的预防措施,并谨以此为焊接施工提供一点技术经验,以供各位同行批评指正。

关键词:热裂纹冷裂纹气孔产生原因防治措施 裂纹

它是焊接施工中比较普遍的而又十分严重的缺陷,它是在焊接应力及其他致脆因素共同作用下,焊接接头中局部区域的金属原子结合力遭到破坏而使焊接面产生裂纹,实质上,就是焊接后焊口在冷却过程产生的热应力超过材料强度所导致的裂纹。裂纹的分类:裂纹的分法多,按其产生温度可分为热裂纹、冷裂纹、再热裂纹。按部位可以分为纵裂纹、横裂纹、根部裂纹、弧坑裂纹、熔合线裂纹等等。这里主要介绍一下冷裂纹和热裂的产生、特点和预防。热裂纹的产生及预防 热裂纹的产生原因:

因为焊件及焊条内含硫、铜等低熔点杂质或多或少的存在,使得结晶凝固晚,凝固后的塑性和强度又极低。因此,在焊接熔池在结晶过程中存在偏析现象,偏析出的这些低熔点共晶和杂质,由于低熔点共晶熔点低,往往是最后结晶,在晶界以液态夹层的方式存在,这时,当外界结构约束应力足够大和焊缝金属的凝固收缩作用下,熔池中低熔点杂质在凝固过程中被拉开,被拉开的液态夹层产生的间隙己没有足够的低熔点液态金属来填充形成了裂纹,或在是在凝固后不久被拉开,造成开裂,这就是热裂纹产生的机理。热裂纹的特征:

多贯穿在焊缝表面,裂口多数贯穿表面,并断口被氧化色彩,裂纹末端略呈圆形; 多在焊缝中心位置,沿焊缝长度方向分布,极少数也产生在热影响区; 微观特征一般是沿晶界开裂,故又称之为晶间裂纹; 并在焊后立即可见,多可以用肉眼看见,热裂纹的防止措施:

限制或减小硫、磷等有害元素的含量,用含碳量较低的焊条焊接; 改善熔池的一次结晶,由于细化晶粒可以提高焊缝中的抗裂性,所以广泛采用向焊缝中加入细化晶粒的元素,如钛、铝、锆、硼、或稀土金属铈等。

控制焊接工艺参数,适当提高焊缝成形系数,如采用多层多道焊,避免偏析的产生等。采用碱性焊条和焊剂,由于碱性焊条脱硫、磷效果好,抗热裂纹的效果好,一般对于热裂纹倾向较大的构件,一般都采用碱性焊条进行焊接。采用适当的断弧方式,如埋弧焊采用断弧板,焊条电弧焊采用断弧焊或填满弧坑的方法来防止热裂纹的产生。

合理选用焊接规范,严格控制焊接工艺参数,并采用预热和后热,减慢冷却速度,适当提高焊缝形状系数,尽可能采用小电流多层多道焊,以避免焊缝中心产生裂纹;

采用熔深较浅的焊缝,改善散热条件使低熔点物质上浮在焊缝表面而不存在于焊缝中; 采用合理的装配次序,减小焊接应力,降低残余应力,避免应力集中。冷裂纹的产生及预防: 冷裂纹的产生原因:

冷裂纹主要产生在中碳钢、高碳钢、低合金钢和中合金高强度钢中。产生冷裂的原因主要有三个方面:钢的淬硬倾向,焊接应力,较多的氢的存在和聚集。许多情况下,氢是诱发冷裂纹最活跃因素之一。当焊缝中淬硬倾向和焊接应力过大,使热影响区存在显微缺陷时,氢会在这些缺陷处聚集,并由原子态转为分子态,加上焊接应力的作用,使显微缺陷扩大,从而形成冷裂纹。冷裂纹的特征:

冷裂纹断面表面没有氧化色彩,它是较低温度产生的,(200~300度以下)一般不可以用肉眼看到,要做着色才可以看到。

冷裂纹一般产生在热影响区或焊缝与热影响区的熔合线上,也有极少数产生在焊缝上。冷裂纹一般为穿晶裂纹,少数也有可能沿晶界发生。

冷裂纹一般在焊后并不立即出现,而是在焊后几小时、几天甚至更长时间才出现。冷裂纹的防止措施:

选用碱性低氢型焊条,减少焊缝中扩散氢的含量;

严格遵守焊接材料(焊条、焊剂)的保管、烘焙、使用制度,焊条和焊剂应按规定烘干,随用随取,谨防受潮;

保护气体要控制其纯度,严格清理焊条、焊件的油、锈、水分并控制焊接环境的湿度,从而减少氢的来源;

改善焊缝金属性能。如加入一些合金元素可以提高焊缝中的塑性。根据材料等级、碳当量、构件厚度、施焊环境等,正确的选择焊接工艺参数和线能量,例如:采用焊前预热,焊后缓冷,采取多层多道焊接,控制一定的层间温度等,改善焊缝热影响区的组织,去氢和消除焊接应力。

焊后紧急热处理,以去氢、消除内应力和淬硬组织回火,改善接头韧性; 采用合理的施焊程序,采用分段退焊法等,减少焊接变形和焊接应力。气孔

焊缝中的气孔是焊接缺陷之一,对一般非压力容器构件来说,不认为是重要缺陷,往往被人们所忽视,但气孔会降低焊接接头的机械性能,产生应力集中,它的存在减少了焊缝有效工作截面,降低了接头的机械强度。严重时会造成脆性破坏,影响产品质量。若是有穿透性或连续性气孔存在,将会严重影响焊件的密封性。可是,在钢制结构的焊接中,若在几米或十几米乃至更长的焊缝上,要保证不出一个气孔,只有通过采取采性气体对焊缝正面形成良好保护,保证一次焊透,或采用带背面止口的接头形式,才可防止气孔的产生。气孔的产生及预防 气孔的产生原因:

焊缝内部易形成气孔,主要原因是从熔池上方和熔池底部卷入空气所致。具体的讲,就是在钢结构焊接施工中,由于焊件表面的油、污、锈、垢及氧化膜没有清除干净、焊条受潮或质量不好、焊炬摆幅快而大、焊接现场周围风力较大、焊接速度过快、焊丝和母材的化学成分不匹配等诸多因素,造成焊缝金属在高温时,吸收了过多环境中的气体(如O2、H2、N2)或由于溶池内部冶金反应产生的气体(如CO),在溶池冷却凝固时来不及排出,而在焊缝内部或表面形成孔穴。气孔的防止措施

在焊接施工中,如何控制好过多的环境气体(如O2、H2、N2、)及时排除才是气孔预防措施的关键之所在,下面将逐一进行介绍各种有害气体的来源、危害以及具体的控制措施。氧在焊缝中的作用:

氧的来源:焊接区的氧主要来自电弧中的氧化性气体(如二氧化碳、氧、水等)、焊剂、药皮中的水份和焊件表面的铁锈、水份。氧对焊缝质量的影响: 加速焊缝中有益元素的烧损,而使焊缝的强度、塑性、冲击韧性降低。降低焊缝的物理性能和化学性能,如导电性、导磁性和抗腐蚀性等。

O2与H2、C反应,形成不溶于金属的气体,如果结晶时来不及逸出焊缝,则形成气孔。氧气孔在焊缝中的特征:氧气孔主要发生在碳钢焊缝中,一般情况下存在于焊缝的内部,气孔沿结晶方向分布,呈条状或不规则形状,表面光滑。控制氧的措施:

加强保护,如采用短弧焊,选用合适的气体流量,防止空气入侵。

清理焊件表面的水分、油污、铁锈,按规定烘干焊条、焊剂等焊接材料。对焊缝采用一定的脱氧措施。如采用含脱氧元素较高的焊条、焊剂。氢对焊缝的作用: 氢的来源:

焊缝中的氢主要来自受潮的药皮或焊剂中水份、焊条、焊剂中的有机物、空气中的水份、焊件表面的铁锈、油脂及油漆。氢对焊缝质的影响:

形成气孔,焊缝中饱和的氢来不及逸出焊缝时,就形成了气孔。产生氢白点和氢脆;

氢也是产生冷裂纹的主要原因之一。

氢气孔在焊缝中的特征:在焊接碳钢和低合金钢时,氢气孔主要出现在焊缝表面,以单个出现,在返修磨刨时明显感觉很深,气孔内壁光滑,焊接铝、镁等有色金属时,主要了产生在焊缝的内部。控制氢的措施:

清理焊件及焊丝表面的油污,铁锈、水份。

焊前按规定烘烤焊条、焊剂。气体保护焊对气体进行去水份、干燥处理。尽量选用低氢型焊条,焊接时采用直流反接、短弧操场作。对焊缝进行消氢处理,如焊前预热,焊后缓冷。氮对焊缝的作用:

氮的来源:焊接时熔池中的氮主要来自空气中。

氮对焊缝质量的影响:焊缝中饱和的氮来不及逸出焊缝时,就形成了气孔,同时也影响焊缝的力学性能。

氮气孔在焊缝中的特征:氮气孔一般发生有焊缝的表面(多层焊在每层的表面)成堆、蜂窝状出现,焊条电弧焊一般在接头引弧处出现较多,生产中也是出现得比较多的气孔。控制氮的措施:

清理焊件及焊丝表面的油污,铁锈、水份,焊前按规定烘烤焊条、焊剂。气体保护焊对保护气体进行去水份、干燥处理,气体纯度要达到要求,有风时要有防风措施。不得使用药皮开裂、药皮脱落、变质、偏心或生锈的焊条。

选用合适的焊接工艺参数,碱性焊条时要采用短弧焊,电流采用直反接。结束语: 综上所述:钢结构焊接施工中,裂纹和气孔缺陷均会导致焊缝出现应力集中,缩短使用寿命,造成脆裂,降低结构断面尺寸,影响焊缝的力学性能,危及安全。因此,在重要乃至关键部位的钢结构制作安装中,必须加强焊接工作中裂纹及气孔缺陷的数量控制,遵守焊接规范,严格施工工艺,保证焊缝质量,避免质量事故和危及到结构稳定和人民生民财产的事故发生。参考文献:

《金属工艺学》.邓文英主编.高等教育出版社;

第三篇:在役压力容器焊接裂纹的成因分析及预防措施

在役压力容器焊接裂纹的成因分析及预防措施

陈冰川,陈伟民,朱伟青

(国核电站运行服务技术有限公司,上海 200233)

摘要:对某在役奥氏体不锈钢压力容器进行现场金相检测时发现其下封头的纵向焊缝处存在微裂纹。分析了裂纹的形成原因,结果表明该裂纹是由焊接引起的横向沿晶液化裂纹和由压制成型引起的纵向裂纹共同构成的混合型裂纹。针对如何预防此类裂纹,提出了相应的工艺改进措施。

关键词:奥氏体不锈钢; 压力容器; 焊缝; 裂纹; 应力分析 中图分类号:

文献标志码:A

文章编号:

The Cause Analysis and Prevention Measures of Welding Cracks on the In-service Pressure Vessel

CHEN Bing-chuan,CHEN Wei-min,ZHU Wei-qing(State Nuclear Power Plant Service Co.Ltd., Shanghai 200233, China)Abstract: In the local metallographic examination process for an austenitic stainless steel in-service pressure vessel, the microscopic cracks had been found in the longitudinal weld of its lower head.Formation mechanism of cracks is analyzed, the result show that those cracks are composed of transverse liquefaction cracks cause by welding and vertical cracks caused by the suppression molding in manufacture.Some measures have proposed to the prevention of this kind of cracks.Keywords: austenitic stainless steel;pressure vessel;weld;cracks;stress analysis

在压力容器、锅炉和管道等设备部件制造中,常常需要依靠焊接工艺实现两部分母材间的结合。由于在焊接过程中母材被瞬间加热熔化形成熔池,随后熔池液态金属快速冷却结晶而形成焊缝。在熔池金属结晶过程中,焊接接头的显微组织会发生变化,产生焊接应力和变形,同时可能产生各种焊接缺陷,从而影响焊接件的力学性能。因此焊接是一种比较容易出现缺陷的热加工工艺。

金山某化工厂的在役压力容器R2204A聚合反应器标称为II类容器,材质为316L超低碳奥氏体不锈钢,容器规格Φ5060×22 mm,运行介质为有机催化剂,设计温度200℃,业主方未提供其他有关的运行参数。该压力容器主要由筒体和上下封头组成,筒体为钢板卷曲为圆筒状后焊接而成,上下封头则为多块钢板拼焊后冷压制成椭圆形,最后筒体与上下封头通过环形焊缝焊接而成,具体的焊接工艺不详。在2009年12月国核电站运行服务技术有限公司按照《在用压力容器检验规程》的有关规定及业主方的委托,对其内部进行了定期无损检测和金相检验,检测部位见图1,包括椭圆形下封头拼接钢板的两条纵向焊缝和一条筒体与封头连接的丁字焊缝,图中所示的1#、2#和3#依次为这三条焊缝上的现场金相检验的取样部位。

图1 压力容器的检测部位示意图

Figure 1 Schematic diagram of pressure vessel inspection part 在对这三条焊缝进行渗透检测时,表面均未出现记录性缺陷显示。渗透检测对表面缺陷的检出灵敏度一般为1mm宽,低于这一尺寸的缺陷一般难以通过渗透检验检出。在渗透检验的焊缝中黑色区域为现场金相检验的取样部位,如图2所示。

a. 纵向焊缝的渗透检测及金相检验的1#取样部位

a.Penetration test and metallographic examination of No.1 sampling part on longitudinal weld

b. 丁字焊缝的渗透检测及金相检验的3#取样部位

b.Penetration test and metallographic examination of No.3 sampling part on T-weld 图2 焊缝的渗透检测及金相检验取样部位

Figure 2 Penetration test and metallographic examination sampling part on weld 现场金相检验结果发现封头上的两条纵缝(1#、2#取样部位)的熔合线靠近母材侧存在微裂纹,裂纹形貌如图3所示。

a.100倍 a.100X

b.400倍 b.400X

图3 纵向焊缝处的裂纹形貌

Figure 3 The cracks morphology of the longitudinal weld

检测结果交给业主方后,按照《在用压力容器检验规程》的安全状况等级评定有关内容,将该压力容器的安全状况等级降为4级。由于无法对在役压力容器进行破坏性试验,《在用压力容器检验规程》中所要求的检测方法主要包括无损检测、硬度测定、金相检验、应力测定和耐压试验等,而作为一种重要的分析手段,现场金相检验对压力容器的完整性影响极小,可以在不破坏其使用的情况下研究材料的微观组织变化,分析和推测这台压力容器产生微裂纹的产生原因,故对其的微裂纹成因分析主要借助于金相分析。裂纹的成因分析 1.1 横向裂纹的成因

1.1.1 各区域金相组织的差异

焊接接头包括焊缝、熔合区和母材热影响区三个区域,各区域的组织和力学性能差异较大。从图3可以看出,该焊接接头的焊缝组织为奥氏体柱状晶;在100倍的金相照片上可观察到,其熔合线上方有较宽的黑色条状区域,说明熔合区存在较严重的偏析和杂质聚集,这种化学成分的不均匀性会导致力学性能严重下降,其组织为奥氏体柱状晶+枝晶;熔合线下方为母材热影响区中的过热区,组织为较粗大的奥氏体孪晶。焊接接头上的微裂纹多位于熔合区附近,向母材热影响区沿晶扩展,一定数量的垂直于焊缝的横向裂纹与少量平行焊缝但尚未贯穿的纵向裂纹构成一条混合型裂纹带。

1.1.2 液化裂纹的形成机理

在母材与焊缝交界处,即熔合区或多层焊缝层间的金属由于在焊接过程中快速加热和快速冷却,且往往在晶间还存在低熔点合金和夹杂物,容易发生局部熔化而形成沿晶扩展的裂纹,这种裂纹称为液化裂纹 [1]。

图4 液化裂纹示意图

Figure 4 Schematic diagram of liquid cracks

从纵向焊缝的金相照片中观察到,该焊接接头的熔合区过宽、低熔点共晶体偏析严重说明化学成分控制不佳,这些都对液化裂纹的形成产生了重要影响。结合微裂纹的形貌特征,认为其中的横向裂纹主要是焊接热裂纹中的液化裂纹,呈沿晶开裂方式产生在熔合区附近,向母材热影响区中的过热区发展,如图4所示。

1.2 纵向裂纹的成因

纵向裂纹源于应力集中引起的开裂,该压力容器的封头采用拼板焊接后再压制成型工艺,在焊接完成后,内部容易产生焊接残余应力和焊接变形。当焊接后再进行封头压制成型时,焊接残余应力与冷压成型应力相叠加,造成焊缝局部区域应力过高,使焊缝产生新的塑性变形,故诱发了纵向裂纹。关于焊接残余应力和冷压成型应力的具体分析如下:

1.2.1 焊接残余应力

由于焊接过程是局部加热,焊接件各部分不能同步加热和冷却,也不能自由膨胀和收缩。在加热时,焊缝金属及其附近区域的母材受周围冷金属的拘束,不能自由膨胀而受到塑性压缩;在冷却后不能自由收缩而受拉应力,同时还可能发生焊接变形[2]。这种冷却后的拉应力如果不经过恰当的去应力处理便会成为焊接残余应力,影响焊接构件的承载能力。

但对于奥氏体不锈钢,一般不宜进行去应力处理。因为奥氏体不锈钢如果在500~850℃左右温度下热处理时易发生敏化,析出Cr23C6型碳化物[3],导致不锈钢的冲击韧性以及耐腐蚀性能大大下降,甚至诱发再热裂纹。显然,焊接后未进行去应力处理的奥氏体不锈钢便会有少量残余应力存在[4],为垂直于焊缝方向的拉应力。

1.2.2 冷压成型应力

该封头的制造工艺主要为三块奥氏体不锈钢拼板纵向焊接而成,之后在压制力F的作用下,封头拼板受压变形,最终达到所要求的形状。压制过程采用冷压成型工艺,工艺简图见图5。

压制力拼板焊缝

图5 封头压制成型工艺示意图

Figure 5 Schematic diagram of pressure molding process for lower head

在压制过程中,在两条纵向焊缝区域内,外加压制应力会引起内应力,其方向为垂直于焊缝的拉应力,如图6所示。这种拉应力与焊接残余应力相叠加,在力学性能最差的焊缝熔合区附近造成应力集中,导致焊缝熔合区内塑性较差的区域出现大量微裂纹。

a.拼板纵向焊缝剖面示意图

a.Schematic diagram of the section of longitudinal weld in splice plate

b.熔合区任一点应力分析

b.Stress analysis of random point in the fusion zone

图6 焊缝区域应力分析 Figure 6 Stress analysis of weld

按照断裂力学理论[5],断裂强度因子KI于含穿透裂纹的无限板,YYa,式中:Y表示裂纹形状系数,对

;表示裂纹扩展时受到的外加应力值;a表示裂纹长度。在已形成的微裂纹处,应力集中程度最高,一旦超过了微裂纹能够承受的应力值后就会使裂纹不断向前扩展,最终扩展为大致与焊缝平行的纵向裂纹。裂纹的预防措施

根据此种裂纹的成因分析结果,我们建议业主加强对该台容器的检测频率,重点跟踪微裂纹的扩展情况。同时,还为今后压力容器封头避免出现此类裂纹,提出了以下预防措施:

2.1 严格控制化学成分

严格限制奥氏体不锈钢焊接材料和母材中的硫、磷等低熔点杂质元素的含量;改进冶金技术,有效降低含碳量;适当添加钒、钛、铌等微量元素。

2.2 控制焊接接头质量

业主方虽未能提供实际所采用的焊接工艺,但从焊缝金相照片上的熔合线过宽可推断出焊接工艺存在问题,故建议在焊接方面应当控制焊接工艺参数以适当提高焊缝成形系数,一般不采用大热输入量进行焊接。焊条电弧焊时,宜采用小焊接电流,快速多道焊,对于工艺要求高的焊缝,甚至可以采用浇冷水等措施以加速冷却,防止焊缝晶粒严重长大和焊接热裂纹的形成。采用合理的焊接顺序来减小焊接应力,并控制焊接质量。在焊接后或封头压制完成后可进行低温去应力处理,温度范围控制在300~350℃,不宜超过450℃,以免析出高铬碳化物造成晶界贫铬,引起晶间腐蚀。同时在焊接过程中,应采用气体保护焊,避免其他杂质进入熔池。

2.3 优化封头制造工艺

随着原材料加工工艺的进步以及宽大的钢板制造能力的提高,以上的拼板焊接压制的封头制造工艺已经逐渐淘汰,而采用更先进的独幅板材压制成型技术来制造大型压力容器的封头。这种更先进的封头制造工艺以及合理的结构设计可以有效地避免焊接和冷压成型过程的应力集中问题。结论

综上所述,该容器的封头拼板焊缝由于焊缝熔合区的化学成分控制不佳,存在严重偏析和夹杂物,使力学性能下降,从而增加了横向的液化裂纹倾向;同时受到冷压成型应力和焊接残余应力的联合作用,在熔合区应力集中引发了纵向裂纹,一定数量的横向裂纹与少量尚未贯穿的纵向裂纹构成了一条混合型裂纹带。

参考文献 [1]王荣.焊接件的金相检验[M]// 徐祖耀,黄立本,鄢国强主编, 中国材料工程大典: 第26卷,材料表征与检测技术, 第7篇, 金相分析.北京:化学工业出版社, 2006;740~747.[2]王志海主编.热加工工艺基础[M].武汉:武汉工业大学出版社, 1996;174~179.[3]杨力.不锈钢、耐热钢及高温合金的金相检验[M]// 徐祖耀,黄立本,鄢国强主编, 中国材料工程大典:第26卷, 材料表征与检测技术, 第7篇, 金相分析.北京:化学工业出版社, 2006;719~722.[4]戈兆文主编.承压设备焊接工程师[M].昆明:云南科技出版社, 2004;105.[5]褚武扬编著.断裂力学基础[M].北京:科学出版社, 1978;11.

第四篇:金融危机形成机理分析论文

摘要:我国加入WTO后,金融开放的深度和广度的不断提高,旧有风险进一步暴露,新的风险进一步产生。在对金融危机的种类进行梳理的基础上,对金融危机的形成机理进行研究,相信它对有关金融危机的进一步研究将起到有益的帮助。

关键词:金融危机 货币危机 银行业危机 外债危机

一、引言

金融是现代经济的核心,从16361637年荷兰郁金香泡沫破灭到最近的美国次贷危机,金融危机发生的频率越来越快,从这些金融危机造成的影响来看,有些危机(如1997年韩国金融危机)在爆发之后可以使危机发生国的经济迅速复苏,而有些危机(如19981999年的俄罗斯金融危机)却使危机发生国陷入了长期的经济萧条甚至衰退之中。

1997年7月,亚洲金融危机爆发。因为资本账户的高度管制,亚洲金融危机没有传染到我国的金融市场,对其稳定性没有造成重大影响。这并不意味着中国的金融体系具有良好的稳定性;更为合理的解释是,因为没有参加比赛(国内金融市场与国际市场的人为割裂),所以没有输掉比赛(国内金融稳定性未受重大打击)。然而,时过境迁,这种侥幸或运气恐怕难以为继:第一,我国已经滞后于整体经济改革的金融改革已经提速,长期积累的隐性金融风险开始显性化,并释放其积累已久的破坏能量;第二,由中国加入WTO导入的金融开放,在建立国内金融市场与国际市场的联系的同时,也为国际投机商的攻击和国际金融动荡的传染提供了可能的通道,并由此可能触发国内金融危机。2OO2年中央党校进行过一次调查,这次调查总共涉及104名高级政府官员,当受访者被问到什么是未来1O年内中国最大的威胁时,几乎2/3的受访者提到了金融危机。

二、金融危机种类

《新帕尔格雷夫经济学大辞典》将金融危机定义为“全部或部分金融指标短期利率、资产(证券、房地产、土地)价格、商业破产数和金融机构倒闭数的急剧、短暂的和超周期的恶化”。根据IMF在《世界经济展望1998)中的分类.金融危机大致可以分为以下四大类:(1)货币危机(Currency Crises)。(2)银行业危机(Bank Crises)。银行不能如期偿付债务,或迫使政府出面,提供大规模援助,以避免违约现象的发生.一家银行的危机发展到一定程度.可能波及其他银行.从而引起整个银行系统的危机;金融市场严重动荡,市场不能有效地发挥作用,整个经济活动受到影响。(3)外债危机(Foreign Debt Crises)。一国内的支付系统严重混乱,不能按期偿付所欠外债,不管是主权债还是私人债等。(4)系统性金融危机(Systemic Financial Crises)。可以称为“全面金融危机”,是指主要的金融领域都出现严重混乱,如货币危机、银行业危机、外债危机的同时或相继发生。

三、金融危机的形成机理

引发金融危机的一些普遍因素主要有:本币的高估、赢弱的银行和非银行监管、过高的短期资本流入。除此之外还有一些特殊因素也足以引起金融危机。

可以看出,导致金融危机的原因复杂多样,且随着金融不断发展,危机的原因也呈现出多变性,但学术界一般认为,导致金融危机的根源主要是以下三点:

(一)金融交易交割的分离

金融的首要功能是通过转化闲散资金的用途以实现资源的优化配置,在优化资源分配的同时,金融交易与交割的分离(如期货、期权市场)为金融危机的产生提供了可能性。金融的这种过度发展导致虚拟经济与实体经济严重脱钩,金融交易与交割的分离(如期货、期权市场)为金融危机的产生提供了可能性。金融创新尤其是金融衍生工具的增多,更为危机爆发埋下了隐患。金融各个环节在时间空间上的分离增加了市场上的不确定性与风险因素,当风险因素不断累积,偶尔出现的突发事件就很可能导致金融危机的爆发。虽然金融创新有分散风险的作用,但本身并未将风险消除,而当金融创新过度膨胀之后,所带来的潜在风险的集中爆发,将使金融风险呈几何级数的放大,金融创新的负作用已不容忽视。2007年突然爆发的美国次贷危机,现在已经被公认为是美国过度金融创新“惹的祸”。(二)经济周期的波动

金融是现代经济的核心,经济周期性的扩张与收缩,必然伴随着金融周期性扩张与收缩,从历史经验上看,积累金融风险,经济收缩往往带动金融收缩,暴露金融风险。经济周期的存在为金融危机的爆发提供了外部环境。马克思更把金融危机看作是经济危机的表面形式。以1992年英镑危机为例,当时英国正处在经济周期的顶点,通货膨胀高企,英国政府选择紧缩政策力图使经济“软着陆”,然而德国在东德回归后的经济扩张使得英镑难以承受降息带来的副作用,最终导致英镑脱离欧洲货币体系。1997年的亚洲金融危机,虽然是由国际投机资本冲击引发,但现在看来,亚洲各国在楼市和顺差大规模扩张后,经济已面临周期性回调的需要。各国政府没有提前做好应对之策,最终招来国际金融大鳄的袭击自然是不可避免的,也就是说,亚洲金融危机有着本身的必然性,尽管它是我们不愿看到的。

(三)经济环境的不确定性

经济环境的不确定性是金融活动中十分现实的问题,它是造成金融风险的外部条件。金融领域中理性人之间的博弈行为尤为突出,心理预期的多变、契约的不完备性、信息的不对称都使经济环境充满了不确定性,全球化、金融自由化以及国际政治局势的不安,更加增添了这种不确定性。一旦金融危机出现苗头,“羊群效应”将使金融危机进一步恶化。而国际评级机构(如标普、穆迪、惠誉)调降危机国度评级和国际金融大鳄(如英镑危机和亚洲金融危机时的量子基金)的“煽风点火”,将使危机进一步迈向失控境地。

四、结束语

伴随经济发展和金融创新的不断深化,引发金融危机的新因素不断出现,金融危机不断发生新的变化,呈现出新的特点。而理论认识相对实际情况不可避免的存在滞后性,往往只能对已经发生的金融危机做出事后解释而无法对新情况提出有价值的意见。

研究金融危机,目的在于预测、防止或者减小金融危机带来的损失。而事实证明,金融危机理论在这方面的作用似乎微乎其微,其有用性受到怀疑。

当然,这并不意味着金融危机理论毫无意义,它还会伴随金融发展不断发展完善。有必要指出的是,由于金融危机的复杂性,各种金融危机理论都存在着片面性。有些理论甚至存在着彼此矛盾的情况。如何在我国实际情况下应用发展这些理论才是金融理论研究者和工作者的职责所在。

本文为中国人民银行武汉分行重点课题的部分研究成果。项目编号:WB2004B010

参考文献

[1]Kaminsky G,Reinhart C.The Twin Crises: the Causes of Banking and Balance-of-payments problems [J].The American Economic Review,1999(6):473-500

[2]王春峰,金融危机一理论与模型[J].天津大学学报,2002,(3):171177

[3]唐旭,金融理论前沿课题(第二辑)[M].北京:中国金融出版社,2003

第五篇:焊接缺陷及预防措施

焊接缺陷及预防措施

王露露

(延安职业技术学院,陕西 延安 717100)

摘要:焊接缺陷的产生过程是十分复杂的,既有冶金的原因,也受到应力和变形的,缺陷对焊接结构承载能力有非常显著影响,更为重要的是应力和变形与缺陷同时存在。焊接缺陷容易出现在焊缝及附近地区,而那些地方正是结构中拉伸残余应力最大的地方。焊接缺陷是平面的或是立体的,平面类型的缺陷比立体类型的缺陷对应力增加的影响大的多,因而也危险的多。为此,在分析焊接缺陷对结构产生影响的基础上,结合焊接实际提出了相应的预防措施。

关键词:焊接缺陷;气孔;裂纹;预防措施

焊接缺陷英文名welding defect,指焊接过程中在焊接接头中产生的未焊透、未熔合、夹渣、气孔、咬边、焊瘤、烧穿、偏析、未填满、焊接裂纹等金属不连续、不致密或连接不良的现象。

一、外观缺陷:

外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。

二、内部缺陷

焊接的内部缺陷主要有气孔、夹渣、裂纹、未熔合等现象。

(一)气孔:

气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴。其气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。

(1)气孔的分类气孔从其形状上分,有球状气孔、条虫状气孔;从数量上可分为单个气孔和群状气孔。群状气孔又有均匀分布气孔,密集状气孔和链状分布气孔之分。按气

前要适当清除工件和焊丝表面的油污及铁锈,另一方面应尽可能使用含水分低的CO2气体。CO2气体中的水分常常是引起氢气孔的主要原因。

另外,氢是以离子形态溶解于熔池的。直流反极性时,熔池为负极,它发射大量电子,使熔池表面的氢离子又复合为原子,因而减少了进入熔池的氢离子的数量。所以直流反极性时,焊缝中含氢量为正极性时的1/3~1/5,产生氢气孔的倾向也比正极性时小。

3、氮气孔

氮气的来源:一是空气侵入焊接区;二是CO2气体不纯。试验表明:在短路过渡时CO2气体中加入φ(N2)=3%的氮气,射流过渡时CO2气体中加入φ(N2)=4%的氮气,仍不会产生氮气孔。而正常气体中含氮气很少,φ(N2)≤1%。由上述可推断,由于CO2气体不纯引起氮气孔的可能性不大,焊缝中产生氮气孔的主要原因是保护气层遭到破坏,大量空气侵入焊接区所致。

造成保护气层失效的因素有:过小的CO2气体流量;喷嘴被飞溅物部分堵塞;喷嘴与工件的距离过大,以及焊接场地有侧向风等。因此,适当增加CO2保护气体流量,保证气路畅通和气层的稳定、可靠,是防止焊缝中氮气孔的关键。

另外,工艺因素对气孔的产生也有影响。电弧电压越高,空气侵入的可能性越大,就越可能产生气孔。焊接速度主要影响熔池的结晶速度。焊接速度慢,熔池结晶也慢,气体容易逸出;焊接速度快,熔池结晶快,则气体不易排出,易产生气孔。

(二)裂纹:焊接件中最常见的一种严重缺陷。金属的焊接性中包括了两大类的问题:一类是焊接引起的材料性能变坏,使焊件失掉了材料原来特有的性能,如不锈钢焊后失掉其耐蚀性等;另一类是在焊接接头或其附近的母材内产生裂纹和气孔等缺陷.裂纹影响焊接件的安全使用,是一种非常危险的工艺缺陷。焊接裂纹不仅发生于焊接过程中,有的还有一定潜伏期,有的则产生于焊后的再次加热过程中。焊接裂纹根据其部位、尺寸、形成原因和机理的不同,可以有不同的分类方法。按裂纹形成的条件,可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类。

热裂纹多产生于接近固相线的高温下,有沿晶界分布的特征;但有时也能在低于固相线的温度下,沿“多边形化边界”形成。热裂纹通常多产生于焊缝金属内,但也可能形成在焊接熔合线附近的被焊金属(母材)内。按其形成过程的特点,又可分为下述三种情况。

在严重应力集中的焊件根部和缝边,以及过热区。防止的措施包括:①降低焊缝中的含氢量,例如采用低氢焊条,严格烘干焊接材料等;②合理的预热及后热;③选用碳当量较低的原材料;④减小拘束应力,避免应力集中。

变形裂纹这种裂纹的形成不一定是因为氢含量偏高,在多层焊或角焊缝产生应变集中的情况下,由于拉伸应变超过了金属塑性变形能力而产生。

(3)再热裂纹

产生于某些低合金高强度钢、珠光体耐热钢、奥氏体不锈钢以及镍基合金焊后的再次高温加热过程中。其主要原因一般认为当焊后再次加热到 500~700℃时,在热影响区的过热区内,由于特殊碳化物析出引起的晶内二次强化,一些弱化晶界的微量元素的析出,以及使焊接应力松弛时的附加变形集中于晶界,而导致沿晶开裂。因此,这种裂纹具有晶间开裂的特征,并且都发生在有严重应力集中的热影响区的粗晶区内。为了防止这种裂纹的产生,首先在设计时要选择再热裂纹敏感性低的材料,其次从工艺上要尽量减少近缝区的内应力和应力集中问题。

(4)层状撕裂

主要产生于厚板角焊时,见附图。其特征为平行于钢板表面,沿轧制方向呈阶梯形发展。这种裂纹往往不限于热影响区内,也可出现在远离表面的母材中。其产生的主要原因是由于金属中非金属夹杂物的层状分布,使钢板沿板厚方向塑性低于沿轧制方向,另外由于厚板角焊时在板厚方向造成了很大的焊接应力,所以引起层状撕裂。通常认为片状硫化物夹杂危害最大,而层状硅酸盐和过量密集的氧化铝夹杂物也有影响。防止这种缺陷,主要应在冶金过程中严格控制夹杂物的数量和分布状态。另外,改进接头设计和焊接工艺,也有一定的作用

裂纹的危害:

c.再热裂纹为晶界开裂(沿晶开裂)。d.最易产生于沉淀强化的钢种中。e.与焊接残余应力有关。(2)再热裂纹的产生机理

a.再热裂纹的产生机理有多种解释,其中模形开裂理论的解释如下:近缝区金属在高温热循环作用下,强化相碳化物(如碳化铁、碳化饥、碳化镜、碳化错等)沉积在晶内的位错区上,使晶内强化强度大大高于晶界强化,尤其是当强化相弥散分布在晶粒内时, 阻碍晶粒内部的局部调整,又会阻碍晶粒的整体变形,这样,由于应力松弛而带来的塑性变形就主要由晶界金属来承担,于是,晶界应力集中,就会产生裂纹,即所谓的模形开裂。

(3)再热裂纹的防止a.注意冶金元素的强化作用及其对再热裂纹的影响。b.合理预热或采用后热,控制冷却速度。c.降低残余应力避免应力集中。d.回火处理时尽量避开再热裂纹的敏感温度区或缩短在此温度区内的停留时间。

冷裂纹:

(1)冷裂纹的特征 a.产生于较低温度,且产生于焊后一段时间以后,故又称延迟裂纹。b.主要产生于热影响区,也有发生在焊缝区的。c.冷裂纹可能是沿晶开裂,穿晶开裂或两者混合出现。d.冷裂纹引起的构件破坏是典型的脆断。

(2)冷裂纹产生机理a.瘁硬组织(马氏体)减小了金属的塑性储备。b.接头的残余应力使焊缝受拉。c.接头内有一定的含氢量。

含氢量和拉应力是冷裂纹(这里指氢致裂纹)产生的两个重要因素。一般来说,金属内部原子的排列并非完全有序的,而是有许多微观缺陷。在拉应力的作用下,氢向高应力区(缺陷部位)扩散聚集。当氢聚集到一定浓度时,就会破坏金属中原子的结合键,金属内就出现一些微观裂纹[3]。应力不断作用,氢不断地聚集,微观裂纹不断地扩展,直致发展为宏观裂纹,最后断裂。决定冷裂纹的产生与否,有一个临界的含氢量和一个临界的应力值o当接头内氢的浓度小于临界含氢量,或所受应力小于临界应力时,将不会产生冷裂纹(即延迟时间无限长)。在所有的裂纹中,冷裂纹的危害性最大。

(3)防止冷裂纹的措施 a.采用低氢型碱性焊条,严格烘干,在100~150℃下保存,随取随用。b.提高预热温度,采用后热措施,并保证层间温度不小于预热温度,选择合理的焊接规范,避免焊缝中出现洋硬组织c.选用合理的焊接顺序,减少焊接变形和焊接应力d.焊后及时进行消氢热处理。

下载焊接裂纹的形成机理与预防措施(精选5篇)word格式文档
下载焊接裂纹的形成机理与预防措施(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    铬钼钢焊接延迟裂纹分析(最终版)

    铬钼钢焊接延迟裂纹产生原因分析 这次检修焊接合格率出现问题主要是在铬钼耐热钢Cr5Mo和15CrMo上,铬钼钢焊接在我公司并不是新材料的焊接,而是有20几年的历史了,是比较成熟的......

    工业企业财务困境形成机理分析

    工业企业财务困境形成机理分析 [摘要]本文针对工业企业的财务困境,重点分析了工业企业运作流程对其财务困境形成的影响和工业企业在日常运作、资本结构、企业发展战略中的财......

    焊接质量通病及预防措施

    国家高速公路网G0613 云南省香格里拉至丽江高速公路第五项目部 目录 焊接质量通病及预防措施 编制: 复核: 审核:云南建工香丽高速公路土建施工第五项目部 焊接质量通病及预防......

    旅游节事的经济效益形成的机理分析

    旅游节事的经济效益形成的机理分析 摘要:本文从我国旅游节事活动发展现状出发,从产业发展的角度,分析了节事经济效益形成的宏观和微观条件,提出节事产业发展要在一定的经济、制......

    共晶组织及其形成机理(含5篇)

    共晶组织及其形成机理 共晶组织的基本特征是两相交替排列,但两相的形态却是多种多样,如下图所示:层状片棒状球状针状螺旋状 典型的共晶组织形态为什么会有不同的组织形态?这是由......

    绿色消费形成机理分析及企业对策

    · 绿色消费形成机理分析及企业对策 一、引言 绿色消费是指消费行为不仅要满足我们这一代人的消费需求、安全和健康需要,还要满足后代的消费需求、安全和健康需要。它包括三......

    浅谈长输管道焊接施工中裂纹的控制措施

    浅谈长输管道焊接施工中裂纹的控制措施 摘 要:当前,随着我国社会和经济的快速发展,人口不断增加,我国社会对能源的需求逐步增大,然而实际上我国的能源资源十分有限且分布不均,管道......

    箱梁腹板裂缝的机理分析及预防措施

    箱梁腹板裂缝的机理分析及预防措施 摘 要:随着预应力混凝土连续箱梁桥腹板裂缝成为一个普遍而复杂的问题,人们给予了越来越多得重视,并设法通过采取措施将其控制在一个容许的裂......