第一篇:常规的切削加工工艺改进方案有哪些?
切削加工工艺提高工艺精度的解决方案
金属切削加工过程中刀具与工件之间相互作用和各自的变化规律是一门学科。在设计机床和刀具﹑制订机器零件的切削工艺及其定额﹑合理地使用刀具和机床以及控制切削过程时﹐都要利用金属切削原理的研究成果﹐使机器零件的加工达到经济﹑优质和高效率的目的。下面亿达渤润就简单介绍下常规的切削工艺改进方案有哪些:
一、切削刀具的选用 通常情况下,工件的精加工与粗加工选用刀具有一定区别。在粗加工中由于不必考虑精度及质量问题,可以最大限度高效切除金属材料,因此可以选择大直径刀具,减少走刀次数,缩短走刀时间。另外,在粗加工中尽量选择密齿刀具替代疏齿刀具,可以增加每转进给量,在相同的转速下切削速度可以得到增加。在精加工中,除了考虑材料高效去除的问题,还应充分考虑薄壁构件在切削中受力变形控制问题。
对于加工不同材质的工件,选用的刀具也存在差异。铝合金材料的切削加工对刀具材料要求不高,一般采用硬质合金铣刀即可,涂层可使用无涂层或金刚石涂层。航天铝合金薄壁件精加工宜选用K系列硬质合金刀具。
二、刀具角度的调整
刀具前角太小会增大切削变形和摩擦力,前刀面磨损加大降低刀具使用寿命,而刀具后角的选取会影响刀具刚度。为了减少刀具和工件之间的摩擦,后角一定要选得大一些,必要时可采用双倒棱后角,在增大后角的同时保证刀具刚度。刃倾角影响了切屑流出的方向和各切削分力的大小,在铝合金切削时宜选用较大的刃倾角。
三、切削油的选用
切削油在切削工艺中在刀具和工件起到了承接的作用,性能良好的切削油产品具有良好的极压抗磨性能,防止刀具与工件直接接触,降低切削工艺的难度,并能有效的保护刀具并大幅度提高加工效率。根据实际工艺工况选用亿达渤润专用切削油,可以解决由于油品问题导致的工件精度差,刀具磨损快,机台生锈且加工时烟雾大等问题,减少企业的设备维护成本。
四、走刀轨迹
提速增效中一个较为有效的方法就是优化走刀轨迹,在高速切削时要保证刀位路径的方向性,即刀具轨迹尽可能简化,少转折点,路径尽量平滑,减少急速转向;应减少空走刀时间,尽可能增加切削时间在整个工件中的比例;应尽量采用回路切削,通过不中断切削过程和刀具路径,减少刀具的切入和切出次数,获得稳定、高效、高精度的切削过程。
在斜面加工时,若采用横向水平走刀,每一段走刀距离都很短,在切削过程中主轴需要频繁换向,切削稳定性差,且由于切削的是斜面,不利于切削速度的提升。因此,针对此类斜面加工,走刀轨迹尽量安排为平行于最长斜边,不但走刀轨迹最长、换向次数最少,即使在高速切削下亦可减小刀具损伤。
五、切削参数
在粗加工时,一般可选择大进给量与适当大的切削深度并配以中等切削速度的“大功率”高效切削,更能达到高材料切除率,从而极大提高生产效率。而对于精加工来说,只有提高转速和增大齿数是可行的,而增大每齿进给量可能会降低表面精度,产生残余应力导致变形。所以往往通过高切削速度、低每齿进给量的“轻切快切”来保证生产效率的提高和产品的精度及表面质量。
针对不同工艺参数下的机床主轴功率与扭矩需求,进行了仿真分析运算,获取机床主轴能够很好地满足产品高速加工工艺需求的主轴转速、每齿进给量和切削深度等要素的可选范围,为切削试验参数选择提供指导性建议。
随着工业技术水平的不断提高,纳米技术、网络技术、复合材料应用、智能机器人等关键技术也日趁成熟,金属加工行业的也将面临革新。如何提高车床加工工艺以满足日益增长的企业要求将成为行业的下一个课题。
第二篇:工艺改进方案
某厂生产工艺的调整与改进
http://www.xiexiebang.commf.net
改质沥青生产工艺的改进
随着炭化工业对煤沥青质量要求的提高,中温沥青已不能适应高强度和高密度的高档碳材料产品的生产,改质沥青以其高软化点(100~115℃)、甲苯不溶物含量高(28%~34%)、喹啉不溶物含量高(8%~14%)和结焦值高(< 54%)等优良性能替代了中温沥青,被广泛应用于炭素制品中作为粘结剂。
我厂2005年建成了1套15万t/a焦油加工装置及配套的5万t/a改质沥青生产装置。在设计和建设期间,考察了国内多家改质沥青生产装置的运行情况,通过对比,对传统改质沥青生产工艺进行了改进,经过3年多的生产运行,效果良好。传统工艺存在的问题
目前国内改质沥青大多采用2个或3个反应釜串联的常压连续热聚工艺。根据考察,该工艺在生产过程中存在以下缺点。
1)3号反应釜后沥青П形管的放散不畅通,易造成虹吸现象,导致釜内物料被抽空。
2)沥青П形管易堵,检修频繁。
3)改质后的高温沥青(约400℃)为泵后冷却,沥青液下泵在高温下运行,轴套易磨损变形,使用周期短。并且高温运行对泵的性能等级要求较高,大部分厂家采用价格昂贵的进口泵。改进措施
我厂改质沥青生产装置设计时采用高温热聚法,在保持工艺流程不变的前提下,对传统的3釜串联工艺进行了改进,见图1。
图1 改进后的改质沥青生产工艺流程
1)取消了3号反应釜后的П形管,将3号反应釜由侧线进料、底部出料改为底部进料、侧线出料,在3号釜内侧线出口处增设了200mm高的T型放散管,这样保证了3号釜内液面高于侧线出口,使改质沥青可从侧线连续满管流出。2)将高温改质沥青冷却由传统的泵后冷却改为泵前冷却,从3号反应釜出来的改质沥青先自流入沥青冷却器冷却后再进入沥青中间地罐,然后由液下泵送入沥青高位槽。
3)由于高温沥青自流入沥青冷却器,我们将沥青冷却器设计成5组蛇管并联,单独运行,根据生产量的大小调节蛇管的使用数量,避免了因沥青量小、流速慢而导致冷却器蛇管的结焦。改进后工艺特点
1)改进后的工艺,由于取消了3号反应釜后的П形管,改为2、3号反应釜之间底部连通,沥青从3号反应釜侧线溢流,避免了釜被抽空的虹吸现象,同时也避免了频繁的拆除清通П形管。
2)改质后的高温沥青由泵后冷却改为泵前冷却,既消除了沥青中间槽高温下操作的不安全隐患,又使得液下泵由400℃高温下运行改为250℃下运行,降低了泵的检修频率和延长了泵的使用寿命,且价格较低的国产泵即可满足要求。
3)改质沥青泵前冷却采用浸没式冷却器,根据投产以来的生产实践,在冬季可不加水直接空冷将沥青温度降到250℃左右,减少了水分蒸发,节约了水资源。问题与讨论
3年多的运行证明,改进后的改质沥青生产装置降低了劳动强度,减少了生产成本,产品质量符合改质沥青质量指标要求。但仍存在反应釜及沥青管线结焦的问题,生产1个月就需倒换反应釜进行检查。今后还需对改质沥青生产工艺进行完善。
第三篇:第一章 切削加工基础知识
第一章 切削加工基础知识
一、本章的教学目的与要求
本章主要介绍了机械加工基础知识。重点应掌握切削运动及切削用量概念;切削刀具及其材料基本知识;切削过程的物理现象及控制;砂轮及磨削过程基本知识;材料切削加工性概念;机械加工工艺过程基本概念;机械加工质量的概念等。掌握本章内容为后续内容的学习打基础,为初步具备分析、解决工艺问题的能力打基础,为学生了解现代机械制造技术和模式及其发展打基础。学生学习本章要注意理论联系生产实践,才能更好体会,加深理解。可通过课堂讨论、作业练习、实验、校内外参观等及采用多媒体、网络等现代教学手段学习,以取得良好的教学效果。为学好本章内容,可参阅邓文英主编《金属工艺学》第4版、傅水根主编《机械制造工艺基础》(金属工艺学冷加工部分)、李爱菊等主编《现代工程材料成形与制造工艺基础》下册及相关机械制造方面的教材和期刊。
二、授课主要内容
1切削运动和切削要素
主要学习零件表面的形成、切削运动、切削用量、切削层参数 2切削刀具和切削过程
主要学习切削刀具材料、车刀、刨刀、镗刀、麻花钻、铣刀的结构及刀具几何角度,切削的形成及形态、积屑瘤、切削力、切削热和切削温度、刀具磨损和刀具耐用度
3磨具和磨料切削 主要学习磨具和磨削原理 4材料的切削加工性
主要学习衡量材料切削加工性能的指标、常用材料的切削加工性、改善材料切削加工性的方法
5机械加工工艺过程基本概念
主要学习工艺过程的基本概念、工件的安装和夹具、基准及其选择原则、工件在夹具中的定位
6机械加工质量的概念
主要学习机械加工精度、机械加工表面质量
三、重点、难点及对学生的要求(掌握、熟悉、了解、自学)
让学生重点掌握切削运动及切削用量概念、切削刀具及其材料基本知识、切削过程、砂轮及磨削过程、材料切削加工性、机械加工工艺过程基本概念;机械加工质量等概念。
四、要外语词汇
主运动:primary motion 进给运动:feed movement 车刀:turning tools 刀具材料:cutting tools materials 切削过程:cutting process 磨具:abrasive grinding tools 表面质量:machining quality of machined surfaces
五、辅助教学情况(多媒体课件、板书、绘图、标本、示数等)
主讲(板书)+课堂讨论+作题练习+实验+多媒体课件+实物
六、复习思考题
1.试说明下列加工方法的主运动和进给运动:
a.车端面;b.在钻床上钻孔;c.在铣床上铣平面;d.在牛头刨床上刨平面;e.在平面磨床上 磨平面。
2.试说明车削时的切削用量三要素,并简述粗、精加工时切削用量的选择原则。
3.车外圆时,已知工件转速n=320 r/min,车刀进给速度vf=64 mm/min,其它条件如题图1-1所示,试求切削速度vc、进给量f、背吃刀量ap、切削层公称横截面积AD、切削层公称宽度bD和厚度hD。
4.弯头车刀刀头的几何形状如题图1-2所示,试分别说明车外圆、车端面(由外向中心进给)时的主切削刃、刀尖、前角γ0、主后角ao、主偏角kr和副偏角kr'。
题图1-1
题图1-2 5.简述车刀前角、后角、主偏角、副偏角和刃倾角的作用及选择原则。
6.机夹可转位式车刀有哪些优点? 7.刀具切削部分材料应具备哪些基本性能?常用的刀具材料有哪些? 8.高速钢和硬质合金在性能上的主要区别是什么?各适合做哪些刀具? 9.切屑是如何形成的?常见的有哪几种? 10.积屑瘤是如何形成的?它对切削加工有哪些影响?生产中最有效的控制积屑瘤的手段是什么? 11.设用γ0=15°, ao=8°, kr=75°, kr'=10°,s =0°的硬质合金车刀,在C6132型卧式车床上车削45钢(正火,187HBS)轴件的外圆,切削用量为vc=100 mm/min、f=0.3 mm/r、ap=4 mm,试用切削层单位面积切削力kc计算切削力Fc和切削功率Pm。若机床传动效率η=0.75,机床主电动机功率PE=4.5 kW,试问电动机功率是否足够? 12.切削热对切削加工有什么影响? 13.背吃刀量和进给量对切削力和切削温度的影响是否一样?如何运用这一规律指导生产实践? 14.切削液的主要作用是什么?常根据哪些主要因素选用切削液? 15.刀具的磨损形式有哪几种?在刀具磨损过程中一般分为几个磨损阶段?刀具寿命的含义和作用是什么? 16.试分析砂轮磨削金属与刀具切削金属的过程及原理有何异同?原因何在? 17.如何评价材料切削加工性的好坏?最常用的衡量指标?如何改善材料切削加工性? 18.什么是生产过程、工艺过程、工序和安装? 19.生产类型有哪几种? 汽车、电视机、金属切削机床、大型轧钢机的生产各属于哪种生产类型? 各有何特征? 20.机械加工中,工件的安装方法有哪几类? 各适用于什么场合? 21.什么是夹具? 按其用途不同,夹具分为哪几类? 各适用于什么场合? 22.何谓基准?根据作用的不同,基准分为哪几种? 23.何谓粗基准和精基准? 试述粗、精基准的选择原则各是什么? 24.试选择如题图1-3所示三个零件的粗、精基准。其中题图1-3a是齿轮,m=2,Z=37,毛坯为热轧棒料;题图1-3b是液压油缸,毛坯为铸铁件,孔已铸出;题图1-3c是飞轮,毛坯为铸件。均为批量生产。图中除了标有不加工符号的表面外,均为加工表面。25.何谓工件的六点定位原理?加工时,工件是否都要完全定位? 26.什么是加工精度?包括哪些内容? 27.机械加工表面质量的含义是什么?它与表面粗糙度有何区别?图样上常标注哪一项?
题图1-3
七、参考教材(资料)孙大涌主编.先进制造技术.北京:机械工业出版社,2000 2 李伟光主编.现代制造技术.北京:机械工业出版社,2001 3 机械工程手册编辑委员会.机械工程手册:机械制造工艺及设备卷(二)第2版.北京:机械工业出版社,1997 4 邓文英主编.金属工艺学第4版.北京:高等教育出版社,2000 5 吴桓文主编.工程材料及机械制造基础(Ⅲ)机械加工工艺基础.北京:高等教育出版社,1990 6 卢秉恒主编.机械制造技术基础.北京:机械工业出版社,1999 7 张世昌,李 旦等.机械制造技术基础.北京:高等教育出版社,2001 8 傅水根主编.机械制造工艺基础(金属工艺学冷加工部分).北京:清华大学出版社,1998 9 李爱菊,王守成等.现代工程材料成形与制造工艺基础(下册).北京:机械工业出版社,2001 10 贾青云,李冬妮等.现代汽车制造技术之机械加工:世界汽车技术发展跟踪研究(一).汽车工艺与材料,2002,(4)11 苗赫濯,齐龙浩等.新型陶瓷刀具在机械工程中的应用.机械工程学报,2002,38(2)
第一章 机械加工基础知识
切削加工是使用切削工具(包括刀具、磨具和磨料),在工具和工件的相对运动中,把工件上多余的材料层切除,使工件获得规定的几何参数(尺寸、形状、位置)和表面质量的加工方法。
第一节 切削运动及切削要素
一、零件表面的形成
1.基本表面:外圆面、内圆面(孔)、平面 2.成形面:螺纹、齿轮的齿形等
这些表面可分别用图1-1所示的相应加工方法来获得。
图1-1 零件不同表面加工时的切削运动
二、切削运动
切削运动(cutting motions):在切削加工中,刀具和工件间必须有一定的相对运动。切削运动可以是旋转运动或直线运动,也可以是连续的或间歇的 切削运动包括主运动(图中Ⅰ)和进给运动(图中Ⅱ)。
主运动(primary motion)是使刀具和工件之间产生相对运动,促使刀具接近工件而实现切削的运动。如图1-2所示工件的旋转运动。主运动速度最高,消耗功率最大。主运动只有一个。
进给运动(feed movement)使刀具与工件之间产生附加的相对运动,加上主运动,即可连续地切除余量,如图1-2所示车刀的移动。进给运动可以是1个或多个
图1-2 切削运动和加工表面
三、切削用量
切削用量(cutting conditions)包括切削速度vc、进给量f(或进给速度vf)和背吃刀量aP;三要素。
1.切削速度
切削刃上选定点相对工件主运动的瞬时速度称为切削速度(cutting speed),以vc表示,单位为m/s或m/min。
若主运动为旋转运动(如车削、铣削等),切削速度一般为其最大线速度。 vcdn1000 m/s或m/min 式中:d—工件(或刀具)的直径,mm;n—工件(或刀具)的转速,r/s或r/min。
若主运动为往复直线运动(如刨削、插削等),则常以其平均速度为切削速度,即: vc2Lnr m/s或m/min 1000式中:L—往复行程长度,mm;nr——主运动每秒或每分钟的往复次数,str/s或str/min。
2.进给量
刀具在进给运动方向上相对工件的位移量称为进给量(feed rate)。
用单齿刀具(如车刀、刨刀等)加工时,进给量常用刀具或工件每转或每行程刀具在进给
运动方向上相对工件的位移量来度量,称为每转进给量或每行程进给量,以f表示,单位为mm/r或mm/str。
用多齿刀具(如铣刀、钻头等)加工时,进给运动的瞬时速度称进给速度,以vf表示,单位为mm/s或mm/min。刀具每转或每行程中每齿相对工作进给运动方向上的位移量,称每齿进给量,以fz表示,单位为mm/z。fz、f、vf之间有如下关系:
vffnfzzn mm/s或mm/min 式中:n—刀具或工件转速,r/s或r/min;z—刀具的齿数。
3.背吃刀量
在通过切削刃上选定点并垂直于该点主运动方向的切削层尺寸平面中,垂直于进给运动方向测量的切削层尺寸,称为背吃刀量(back engagement of the cutting edge),以aP表示,单位为mm。如图1-2所示,车外圆时,aP可用下式计算,即 apdwdm mm 2式中:dw、dm—工件待加工和已加工表面直径,mm。
工件上由主切削刃形成的那部分表面是过渡表面。
四、切削层参数
切削层是指切削过程中,由刀具切削部分的一个单一动作(如车削时工件转一圈,车刀主切削刃移动一段距离)所切除的工件材料层。它决定了切屑的尺寸及刀具切削部分的载荷。切削层的尺寸和形状,通常是在切削层尺寸平面中测量的,如图1-3所示。
(1)切削层公称横截面积AD 在给定瞬间,切削层在切削层尺寸平面里的实际横截面积,单位为mm2。
(2)切削层公称宽度bD 在给定瞬间,作用于主切削刃截形上两个极限点间的距离,在切削层尺寸平面中测量,单位为mm。
(3)切削层公称厚度hD 同一瞬间切削层公称横截面积与其公称宽度之比,单位为mm。由定义可知
ADbDhDmm2
因AD不包括残留面积,而且在各种加工方法中AD与进给量和背吃刀量的关系不同,所以AD不等于f和aP的积。只有在车削加工中,当残留面积很小时才能近似地认为它们相等,即
ADfap mm
第四篇:电主轴加工工艺方案范文
电主轴加工工艺方案
作者:管理员 来源:未知 日期:2011-8-6 8:13:17 人气:152 标签:导读:由于电主轴前后支撑径的精度,直接影响电主轴装配后的精度和轴承的预紧。
“http:/// ”>电主轴内孔的圆度及与外圆的同轴度,直接影响电主轴的动平衡。电主轴与定子内孔的配合过盈量,直接影响定子的热装。因此为防止电主轴内孔与外圆不同心,造成电主轴不平衡,电主轴粗车后钻内孔,精车后再精车内孔。为消除加工应力,电主轴淬火后采用低温时效。为保证电主轴与轴承之间的配合间隙,电主轴安装轴承外圆按轴承内环配磨,保证配作间隙0.003 ~ 0.008。 为抵消装配误差,电主轴精磨合格后,标出高低点位置(用稀释酸橡皮“O”字圆章)为部装装配做好标记。为保证电主轴与定子内孔的配合过盈量(前端0.057~0.082、后端0.09~0.12),电主轴与定子接触外径按定子内孔配磨。电主轴床头箱的装配主要针对电电主轴床头箱拆装困难,电主轴预紧力的选择,电主轴的动平衡,定子与床头箱压装,转子与电主轴热装,防漏等关键技术进行了细致的研究,制定了详细的装配工艺方案。为确定电主轴轴承预紧力,进行了预紧力测试试验。为保证电主轴的动平衡,对电主轴进行粗动平衡(不装定子)和精动平衡。为控制电主轴前后轴承温度,测量电主轴静刚度,在不安装定子和转子情况下组装床头箱,进行运车试验。 为使定子顺利压入床头箱内,装配前将箱体内涂抹润滑脂。为解决转子热装问题,对转子进行加热试验。为防止渗漏,对水套和定子进行打压试验。电电主轴最突出的问题之一是内藏高速电机的发热,由于主电机旁边就是电主轴轴承,电机的发热直接会影响电主轴轴承的温升,如果电主轴轴承预紧力过大,导致电主轴温升过高,会直接降低轴承的工作精度。如果电主轴轴承预紧力过小,又会影响电主轴的刚度。再加上电电主轴为高速电主轴,电主轴运动部分微小不平衡量,都会引起巨大的离心力造成机床的振动,影响加工精度和表面质量,降低机床寿命,因此电主轴的预紧力和电主轴组件的不平衡量必须在安装前确定好。(图文) 难加工材料的切削加工技术 潘 飞 (常州铁道高等职业技术学校机械工程系 江苏 常州 213011) 摘 要:随着社会的不断发展,对材料的要求也越高,对切削加工也提出了更高的要求。本文针对这一问题,着重讲述切削难加工材料应考虑的几个方面。 关键词:难加工材料;切削加工 近年来,机械产品多功能、高功能化的发展势头十分强劲,要求零件必须实现小型化、微细化。为了满足这些要求,则所用材料必须具有高硬度、高韧性和高耐磨性,而具有这些特性的材料其加工难度也特别大,因此又出现了新的难加工材料。难加工材料就是这样随着时代的发展及专业领域的不同而出现,其特有的加工技术也随着时代及各专业领域的研究开发而不断向前发展。另一方面,随着信息化社会的到来,难加工材料切削技术信息也可通过因特网互相交流,因此,今后有关难加工材料切削加工的数据等信息将会更加充实,加工效率也必然会进一步提高。难加工材料的界定及具体品种,随时代及专业领域而各有不同。 一、切削领域中的难加工材料 在切削加工中,通常出现的刀具磨损包括如下两种形态:(1)由于机械作用而出现的磨损,如崩刃或磨粒磨损等;(2)由于热及化学作用而出现的磨损,如粘结、扩散、腐蚀等磨损,以及由切削刃软化、溶融而产生的破断、热疲劳、热龟裂等。切削难加工材料时,在很短时间内即出现上述刀具磨损,这是由于被加工材料中存在较多促使刀具磨损的因素。例如,多数难加工材料均具有热传导率较低的特点,切削时产生的热量很难扩散,致使刀具刃尖温度很高,切削刃受热影响极为明显。这种影响的结果会使刀具材料中的粘结剂在高温下粘结强度下降,WC(碳化钨)等粒子易于分离出去,从而加速了刀具磨损。另外,难加工材料中的成分和刀具材料中的某些成分在切削高温条件下产生反应,出现成分析出、脱落,或生成其他化合物,这将加速形成崩刃等刀具磨损现象。在切削高硬度、高韧性被加工材料时,切削刃的温度很高,也会出现与切削难加工材料时类似的刀具磨损。如切削高硬度钢时,与切削一般钢材相比,切削力更大,刀具刚性不足将会引起崩刃等现象,使刀具寿命不稳定,而且会缩短刀具寿命,尤其是加工生成短切屑的工件材料时,会在切削刃附近产生月牙洼磨损,往往在短时间内即出现刀具破损。在切削超耐热合金时,由于材料的高温硬度很高,切削时的应力大量集中在刃尖处,这将导致切削刃产生塑性变形;同时,由于加工硬化而引起的边界磨损也比较严重。由于这些特点,所以要求用户在切削难加工材料时,必须慎重选择刀具品种和切削条件,以获得理想的加工效果。 二、难加工材料在切削加工中应注意的问题 切削加工大致分为车削、铣削及以中心齿为主的切削(钻头、立铣刀的端面切削等),这些切削加工的切削热对刃尖的影响也各不相同。车削是一种连续切削,刃尖承受的切削力无明显变化,切削热连续作用于切削刃上;铣削则是一种间断切削,切削力是断续作用于刃尖,切削时将发生振动,刃尖所受的热影响,是切削时的加热和非切削时的冷却交替进行,总的受热量比车削时少。铣削时的切削热是一种断续加热现象,刀齿在非切削时即被冷却,这将有利于刀具寿命的延长。日本理化研究所对车削和铣削的刀具寿命作了对比试验,铣削所用刀具为球头立铣刀,车削为一般车刀,两者在相同的被加工材料和切削条件(由于切削方式不同,切削深度、进给量、切削速度等只能做到大体一致)及同一环境条件下进行切削对比试验,结果表明,铣削加工对延长刀具寿命更为有利。利用带有中心刃(即切削速度=0m/min的部位)的钻头、球头立铣刀等刀具进行切削时,经常出现靠近中心刃处工具寿命低下的情况,但仍比车削加工时强。在切削难加工材料时,切削刃受热影响较大,常常会降低刀具寿命,切削方式如为铣削,则刀具寿命会相对长一些。但难加工材料不能自始至终全部采用铣削加工,中间总会有需要进行车削或钻削加工的时候,因此,应针对不同切削方式,采取相应的技术措施,提高加工效率。 三、切削难加工材料用的刀具材料 立方氮化硼CBN(Cubic Boron Nitride)的高温硬度是现有刀具材料中最高的,最适合用于难加工材料的切削加工。新型涂层硬质合金是以超细晶粒合金作基体,选用高温硬度良好的涂层材料加以涂层处理,这种材料具有优异的耐磨性,也是可用于难加工材料切削的优良刀具材料之一。难加工材料中的钛、钛合金由于化学活性高,热传导率低,可选用金刚石刀具进行切削加工。CBN烧结体刀具适用于高硬度钢及铸铁等材料的切削加工,CBN成分含量越高,刀具寿命也越长,切削用量也可相应提高。据报道,目前已开发出不使用粘结剂的CBN烧结体。金刚石烧结体刀具适用于铝合金、纯铜等材料的切削加工。金刚石刀具刃口锋利,热传导率高,刃尖滞留的热量较少,可将积屑瘤等粘附物的发生控制在最低限度之内。在切削纯钛和钛合金时,选用单晶金刚石刀具切削比较稳定,可延长刀具寿命。涂层硬质合金刀具几乎适用于各种难加工材料的切削加工,但涂层的性能(单一涂层和复合涂层)差异很大,因此,应根据不同的加工对象,选用适宜的涂层刀具材料。据报道,最近已开发出金刚石涂层硬质合金和DLC(Diamond Like Carbon)涂层硬质合金,使涂层刀具的应用范围进一步扩大,并已可用于高速切削加工领域。 四、切削难加工材料的刀具形状 在切削难加工材料时,刀具形状的最佳化可充分发挥刀具材料的性能。选择与难加工材料特点相适应的前角、后角、切入角等刀具几何形状和对刃尖进行适当处理,对提高切削精度和延长刀具寿命有很大的影响,因此,在刀具形状方面决不能掉以轻心。但是,随着高速铣削技术的推广应用,近来已逐渐采用小切深以减轻刀齿负荷,采用逆铣并提高进给速度,因此,对切削刃形状的设计思路也有所改变。对难加工材料进行钻削加工时,增大钻尖角,进行十字形修磨,是降低扭矩和切削热的有效途径,它可将切削与切削面的接触面积控制在最小范围之内,这对延长刀具寿命和提高切削条件十分有利。钻头在钻孔加工时,切削热极易滞留在切削刃附近,而且排屑也很困难,在切削难加工材料时,这些问题更为突出,必须给以足够的关注。 为了便于排屑,通常在钻头切削刃后侧设有冷却液喷出口,可供给充足的水溶性冷却液或雾状冷却剂等,使排屑变得更为顺畅,这种方式对切削刃的冷却效果也很理想。近年来,已开发出一些润滑性能良好的涂层物质,这些物质涂镀在钻头表面后,用其加工3~5D的浅孔时,可采用干式钻削方式。孔的精加工历来采用镗削方式,不过近来已逐渐由传统的连续切削方式改变为采用等高线切削这类间断切削方式,这种方式对提高排屑性能和延长工具寿命均更为有利。因此,这种间断切削用的镗削刀具设计出来后,立即被应用于汽车零件的CNC切削加工。在螺纹孔加工方面,目前也采用螺旋切削插补方式,切螺纹用的立铣刀已大量投放市场。如上所述,这种由原来连续切削向间断切削的转换,是随着对CNC切削理解的加深而进行的,这是一个渐进的过程。采用此种切削方式切削难加工材料时,可保持切削的平稳性,且有利于延长工具寿命。 五、难加工材料的切削条件 难加工材料的切削条件历来都设定得比较低,随着刀具性能的提高,高速高精度CNC机床的出现,以及高速铣削方式的引进等,目前,难加工材料的切削已进入高速加工、刀具长寿命化的时期。现在,采用小切深以减轻刀具切削刃负荷,从而可提高切削速度和进给速度的加工方式,已成为切削难加工材料的最佳方式。当然,选择适应难加工材料特有性能的刀具材料和刀具几何形状也极为重要,而且应力求刀具切削轨迹的最佳化。例如,钻削不锈钢等材料时,由于材料热传导率很低,因此,必须防止切削热大量滞留在切削刃上,为此应尽可能采用间断切削,以避免切削刃和切削面摩擦生热,这将有助于延长工具寿命和保证切削的稳定。用球头立铣刀对难加工材料进行粗加工时,工具形状和夹具应很好配合,这样可提高刀具切削部分的振摆精度和夹持刚性,以便在高速回转条件下,保证将每齿进给量提高到最大限度,同时也可延长工具寿命。 如前所述,难加工材料的最佳切削方法是不断发展的,新的难加工材料不断出现,对新材料的加工总是不断困扰着工程技术人员。最近,新型加工中心、切削工具、夹具及CNC切削等技术发展非常迅速,而且在切削加工之外,CNC磨削、CNC电加工等技术也得到空前的发展,难加工材料的加工技术选择范围已大为扩展。当然,有关难加工材料加工信息的收集与对该技术的深入理解,还不能尽如人意,正因为如此,而对难加工材料的不断涌现,人们总是感到加工技术有些力不从心。例如,前述车削加工由连续切削向间断切削转换,便有利于延长工具寿命,新型涂层硬质合金刀具的使用,使难加工材料切削技术水平得到进一步提高。在难加工材料的切削加工中应特别重视工具寿命的稳定,不仅工件材料要和刀具性能妥善配伍,而且对加工尺寸、加工表面粗糙度、形状精度等的要求也极严格,因此,不仅应特别注意刀具选用,对工件的夹持方式等相关技术也不能掉以轻心。今后,难加工材料零件的加工将采取CAD/CAM、CNC切削加工等计算机控制的生产方式,因此,数据库的建构、工具设计与制作等工具管理系统的完善,都极为重要。难加工材料切削加工中,适用的刀具、夹具、工序安排、工具轨迹的确定等有关切削条件的数据,均应作为基础数据加以积累,使零件生产方式沿着以IT化为基础的方向发展,这样,难加工材料的切削加工技术才能较快地步入一个新的阶段。第五篇:难加工材料的切削加工技术