第一篇:中国科学技术大学传热学
中国科学技术大学2000年传热学
d2t
一、已知一根一维均质棒,在稳态、无内热源条件下,试验发现20(式中T为温
dx度,x为空间坐标),试判断棒材的导热系数t随T增大呢,还是减小?(10分)
解:qdtdtdtq0(1bt)(1bt) dxdxdx0dt2d2tdtdtd2t(1bt)2b02b/1bt
dxdxdxdxdx两边对x求导:
dt因为
1+bt>0,0
dxd2t所以20b0,即导热系数t随T增大。
dx
二、将直径为D,初始均温Ti的金属圆球悬挂在四周壁温为Tw,空气温度为T的大房间内。已知圆球表面发射率,空气对流系数h。如果对流换热和辐射换热两者数量级相同,1能应用集总热容法(即集总参数法)的准则;○2在上述准则下,圆球温度T随时试建立○间变化的微分方程。(10分)
解:(1)纯对流换热条件下应用集总参数法的条件:Bi2hr0.1。
本题中物体的热交换有对流换热和辐射换热,且两者数量级相同,所以考虑辐射后的当量换热系数是原换热系数的2倍,则反映内外热阻之比的准则条件为Bi'2hr0.1Bi0.05
(2)在符合上述准则条件下,内热阻可以忽略,温度与空间位置无关,只是时间的函数,由此得导热微分方程
cVdThATTATw4T4 d对于球体:
V/A=D/6 微分方程
cDdThTTTw4T4
6d初始条件
0,TTi 三、一无限大平壁厚,导热系数=常量,内热源产热率均匀,且为常数,已知两
1出现在平壁内部的最高温度t2壁面温度分别保持t1、t2(t1>t2)。求○max;○从两壁面传出
的热流密度值(或热流量)。(10分)解:由题意可列出微分方程如下:
dt20txc1xc2 2dx2边界条件与积分常数
12x0,tt1c1t2t12 x,tt2c2t12温度分布的无量纲参数方程
tt121x/x1 t2t12t2t1(1)平壁内部的最高温度tmax出现在dt0处,解得 dxx2t2t1
代入上式得
122tmaxt1t2t2t1
24(2)热流密度
dtt1t2qx
dx2x0,q1t1t22 x,q2t1t2
2四、何谓管内层流流动的入口段及充分发展段?求出密度,常物性的流体在半径r0的圆管内,进行稳定不可压流动的平均速度um及平均温度Tm的表达式;回答管内流动的短管换热器效率是否高于同管径的长管换热器?为什么?(10分)
答:(1)当流体与管壁之间有热交换时,管子壁面上的热边界层有一个从零开始增长,直到汇合于管子中心线的过程,当流动边界层及热边界层汇合于管子中心线后称流动及换热已经充分发展,此后的换热强度将保持不变,从进口到边界层汇合点称为入口段,其后称为充分发展段。
(2)平均速度umqmr02(qm为质量流量)平均温度TmT1T2(T1为进口温度,T2为出口温度)
(3)管内流动的短管换热器效率高于同管径的长管换热器,这是因为在短管换热器中,入口段的影响相对较大,而入口段边界层较薄使得平均表面传热系数较大。
五、假定不可压,牛顿型流体,常物性,无内热源,忽略摩擦产生的耗散热,试写出二维、稳态对流换热方程组,并说明其中各项的物理意义。(10)
解:换热微分方程htty|y0(对流换热量等于壁面处的导热量)
tt2t2t能量方程
ua(2)2xyxy(微元体的内能变化量等于其边界的导热量)连续性方程u0(进出微元体的质量守恒)xyuuP2u2u)Fx(22)(uxyxxy动量方程 22(u)Fp()yxyy2xy2(惯性力=体积力+压力+粘滞力)
六、画出如下各加热表面的自然对流流动示意图:(1)两平板倾斜,热面在下,冷面在上;
(2)两倾斜平板,上下面等温Ts,置于大气温度T(Ts>T)中;
(3)两竖壁组成的封闭有限矩形空间(上下表面绝热)。(10分)答:见附录B10图1。
七、写出黑体辐射能的光谱分布表达式,写出辐射强度L的定义式,并证明L与方向无关的表面(即兰贝特表面),其辐射力(即发射功率)E为πL。(10分)
答:黑体光谱辐射力Eb,c15c2
e(T)1d()辐射强度定义式L()
dAdcos兰内特表面:半球空间各个方向上的定向辐射强度相等。
E 2E()dLcosdL22cossinddL20d2cossindL201L
2八、在一个晴朗初冬也夜晚,有效天空温度Tsky70℃,微风引起的对流换热系数h=28/(mK),发现湖面上有一层薄冰出现,但检测空气温度T高于0℃,[假定为干空气,水的长波发射率为1,水与大地绝热,不计水蒸发,5.6710W/(mK)],试理论
8242估算T。(10分)
解:由题意知湖面与空气的对流换热量和湖面与天空的辐射换热量相等。
44hTTice(TiceTsky)
28(T273)5.6710827342034T280.8K
九、两种不透明的漫射涂层,其光谱吸收率分布a()如附录B10图2所示。试从中选择屋顶材料,问那种涂层适合用夏天?那种适合用冬天?并示出理想的a()的分布。
答:a()为水平线的涂层适合冬天用,a()为折线的涂层适合夏天用。理想分布:冬天a()=1,夏天a()=0。
十、相距很小,平行放置的两块很大的漫射一灰表面,如果发射率是0.8,为使两块表面的辐射传热速率减小到原来的1/10,需要放入一个薄防辐射层(遮热板),其发射率应为多少?
解:设遮热板的发射率为2。在未放防辐射层前系统黑度
s11111111
1111.50.80.81放入防辐射层后系统黑度
s211 11220.5111122由
s2120.138 s110
第二篇:传热学思考题
第1章 《绪论》思考题
1、一维大平壁稳态导热傅里叶定律的形式与牛顿冷却公式颇相似,那么为什么导热系数是物性,表面
传热系数h却不是物性?
2、导热傅里叶定律的写法(指负号)与问题中坐标的方位有没有什么关系?思考题1.1附图中两种情形
所对应的热流方程是否相同?
3、试分析一只普通白炽灯泡点亮时的热量传递过程。
4、试分析一个灌满热水的暖水瓶的散热全过程中所有环节,应如何提高它的保温性能?
5、请说明“传热过程”和“复合换热过程”这两个概念的不同点和相同点?
6、对导热热流密度q和对对流换热时热流密度q的正负规定是否相同?为什么?
7、你能正确区别热量,热流量,热流密度(或称热流通量)几个不同称呼的准确含义吗?它们哪些是矢
量?在针对控制体积求和时,上述三个量是否处理方法相同?
8、把q写成 /A,需要附加什么条件,还是无条件?
9、你认为100 ℃的水和100 ℃的空气,哪个引起的烫伤更严重?为什么?
10、酷热的夏天,用打开冰箱门的方法能不能使室内温度有明显的下降?
11、热对流与对流换热有何根本的区别?
12、列举你所了解的生活中或工程领域中传热的若干应用实例,并分析他们的基本传热原理。
13、为什么针对控制容积和针对表面的能量平衡关系有根本的差别?
14、你认为传热学与热力学的研究对象和研究内容有什么相同和不同?
15、三十多年以前,一名叫姆贝巴(Mpemba)的非洲学生曾经发现,同等条件下放在冰箱中的热冰琪淋
汁反而比冷冰琪淋汁先开始结冰。他请一位物理系的教授解释这个现象。教授作了实测:用直径45 mm,容积 100 cm3 的玻璃杯放入温度不同的水在冰箱中冻结。实验结果证明,在初始温度30℃~80℃范围内,温度越高,结冰越早。你对这个问题如何认识?
16、一位家庭主妇告诉她的工程师丈夫说,站在打开门的冰箱前会感觉很冷。丈夫说不可能,理由是冰箱
内没有风扇,不会将冷风吹到她的身上。你觉得是妻子说得对,还是丈夫说得对?
17、夏季会议室中的空调把室温定在24℃,同一个房间在冬天供暖季内将室温也调到24℃。但是夏季室
内人们穿短裤、裙子感觉舒适,冬天则必须穿长袖长裤甚至毛衣。请问这是为什么?
第三篇:传热学论文
地球的温室效应分析:原因及其对策
内燃1301赵坤
摘要:地球自有人类出现至今,已为人类的生存提供了维持生命所必须的条件,但人类社会的发展和对地球的开发利用,使得地球正遭受着毁灭性破坏。工业化革命以来,人类的活动增加了大气中的温室气体,导致了地球升温,全球气候不断恶化„„
关键词:全球变暖 温室效应 二氧化碳 对策
何为温室效应
温室效应,是指“大气中的温室气体通过对长波辐射的吸收而阻止地表热能耗散,从而导致地表温度增高的现象”。温室效应,又称“花房效应”,是大气保温效应的俗称。大气中的二氧化碳浓度增加,阻止地球热量的散失,使地球发生可感觉到的气温升高,这就是有名的“温室效应”。破坏大气层与地面间红外线辐射正常关系,吸收地球释放出来的红外线辐射,就像“温室”一样,促使地球气温升高的气体称为“温室气体”。
温室效应的一般机理
温室效应是由太阳——大气——地球系的物理学相互作用造成的,包含以下关键因素。
(1)太阳的温度大约为5800K它外发射光线,产生许多波长的光,波谱范围从紫外线到红外线,在550μm左右的可见光部分最大。
(2)这些光线的大部分通过大气传到地面,其中一部分被陆地或海洋表面吸收。
(3)地球表面也发射辐射,地球辐射的波长范围从接近红外线区域到远离红外线区域,峰值大约为10μm,比太阳光的波长长得多。如果没有大气存在,这个通量将与太阳入射通量平衡。
(4)无云的大气层对太阳光是相当透明的,但对于地球的红外辐射的透明程度则小得多,因此,大气被加热了,随后地球表面也显著增暖。
(5)大气中含有吸收红外辐射的所谓“温室气体”,包括水汽、二氧化碳、甲烷、氧化氮、臭氧和一些浓度更低但仍强烈吸引红外辐射的气体,如氯氟烃类。所有这些温室气体都在一个或多个狭窄的波长范围内吸收红外辐射,形成红外吸收带。由于含有自然吸收红外辐射气体的大气造成了大气的整个较低部分变暖,升温幅度超过30K,这一现象常常被称为自然温室效应。这种增温还可以被认为是由于发射红外辐射的有效高度增加而产生的。大气低层对于红外辐射不再是透明的,所以地球向外辐射就从更高的高度上发射,结果使得地球表面变得更暖。
温室效应加剧的原因
人类活动使温室气体含量增加
大气中的温室气体,主要有六种,包括:二氧化碳、一氧化二氟烃类物质。关于每种温室气体含量增加的原因,具体分析如下:(1)二氧化碳(CO2)。在对大气释放CO2方面,最重要的人类活动是交通、电力等部门对化石燃料的消耗,全球每年因此接受到的碳量19世纪中期为1亿吨左右,到本世纪80年代已达57亿吨。CO2增加的另一个原因是地球陆地植物系统的破坏,近几十年来,森林的砍伐和破坏日益严重,导致大气中CO2浓度增加。
(2)一氧化二氮(N2O)。海洋是一氧化二氮的一个重要来源。无机氮肥的大量使用和石化燃料及生物体的燃烧也能释放出一定量的一氧化二氮。工业革命前一氧化二氮的浓度为288cm3·m-3,目前已增加到310cm3·m-3。据以往的观测结果进行推断,大气中一氧化二氮的年增加率仍将保持在0.25%左右。
(3)甲烷最重要的来源是沼泽、稻田和反刍动物,这三项占总排放量的60%左右。天然气、煤的采掘和有机废弃物的燃烧等人类活动也产生甲烷。
(4)臭氧(O3)臭氧在大气层的上部浓度最高,并且形成我们所熟悉的臭氧层,其可以吸收大气中过量的紫外辐射,使生物的免疫系统免受损害。然而,近年来,在大气层的下部,一定数量的人造物质聚集起来,生成了低空臭氧,并且还在不断生成。
(5)氯氟烃(CFCS)氯氟烃完全是人工合成物质,因其无毒、有惰性,而被广泛应用于灭火剂、制冷剂等化工产品的制造。从上个世纪来,人工合成的卤素碳化物不断大量排入大气,使其在大气中的浓度迅速上升, 它们不仅浓度高,保留时间也很长,因而其对环境的影响也是长期的。
人类活动导致温室气体被吸收量的减少
大气中任何气体的含量,都是由其排放量与被吸收量之间的平衡来决定的。但是,人类活动破坏了这种平衡,导致温室气体含量增加。如对CO2气体,自然界主要是通过植物的光合作用进行吸收的。而人类对森林的大规模砍伐,却降低了自然界对CO2的吸收能力,破坏了CO2的排放量与被吸收量之间的平衡,导致CO2大气含量增加。
温室效应带来的后果
自然灾害
温室效应加速,地球升温,大气恶化,必然气候带迁移,冰川消融,海面上涨,自然灾害频频发生。一系列变化,人类和地球面临严峻的威胁。温室效应带来的自然灾害现总结为以下几点:
(一)海平面上升今后50或100年内,全球温度升高几摄氏度,海洋发生膨胀,山地冰川融化,和格林兰冰原南缘可能后退,海平面会升高0.2一1.5米。海平面升高,严重危及沿海地区的居住条件和生态系统。
(二)飓风和大风暴频繁 海洋升温,使其逐渐增多的水蒸气在大气中产生更强烈的对流,其结果咫风和大风暴更为频繁。已知太平洋周围易受台风袭击的地区在过去20年间大约增加了1/6。
(三)干旱地区增加 地球升温加速水份蒸发而减少河流流量,也就是说大气中水蒸气增多,意味着某些地区干早概率增加,预计2030年,低纬地区酷暑季节干早的概率增加到每3年一次,而50年代仅20年一次。
(四)地震 环境因子太阳活动和气象与地震之间存在某些联系,对地震的发生常常起有调制和触发的作用。温度效应的加速,地温升高大气变化,以及太阳表面剧烈活动释放的能量,无疑影响到地震发生的频度和强度。
对生态的影响
有人曾经说过,环境的污染和生态的破坏比战争给人类带来的威胁更大,而由温室效应引起的地球表面温度上升正在破坏着地球上的生态平衡,这主要表现在植物、动物和昆虫出现迁移现象,以适应气候变化;一些动植物因不适应环境而被毁灭,严重的影响着生物多样性。另外,一些农作物的产量由于气温上升而下降,甚至无收;沙漠地区由此不断扩大;森林面积不断减小;干旱连年发生。这种生态平衡的破坏对人类社会的发展势必产生不良影响。
促进疾病的蔓延
温室效应造成的气温升高和臭氧层变薄而引起的紫外线辐射加强会使某些疾病蔓延,同时也会损害人体自身对疾病的预防能力。紫外线的辐射不仅会导致癌症,而且还会改变或消除免疫系统,加剧了一些与皮肤有关的疾病的产生,如麻疯病、天花、皮肤溃疡和疱疹等。例如,由于气温升高,在南美洲和中美洲由吸血蝙蝠传染的狂犬病、登莱热和黄热病有可能传播到北美洲。例外据证实,臭氧层的臭氧量减少1%,放射到地面的紫外线则增多2%,皮肤癌的发病率相应增多4%—6%,过量的紫外线还可以加速艾滋病的发病率,甚至引起天然电磁场的变化,影响人类的整个健康。
温室效应的应对策略
温室效应已引起全世界的密切关注并就此展开了热烈讨论。近年来各有关专家已相继展开了一系列的地区性和国际性会议,共同商讨具体措施和对策。现总结如下:
(1)减少CO2的排放量 此是最有生命力的预防,能措施、替代能源(太阳能如光电池、生物质能),或从煤、石油改为天然气和其他含碳量低的然料,停止焚烧和砍伐森林并大面植树造林。提出并制定“空气法”,即向每个国家规定污染权,使二氧化碳等的排放量保持在一个全球标准之下。
(2)改变交通工具,完善机动车辆 汽车尾气是大气中CO2的主要来源,因而改变交通工具由机械代替机动对控制温室效应将起重大作用;另外加速研究新的装置安装在各种机动车辆上来吸收、净化其所排放的废气也是控制温室效应的重要措施。
(3)限制氯氟烃的生产,研制新的制冷剂,代替传统的气雾剂,是缓解温室效应的途径之一。另外,面对着如此严重的挑战,仅仅是某一个个人或国家的努力是不可能取得成功的,它需要我们全世界全人类的共同努力,通力合作。温室效应和臭氧层的破坏是全球性的“灾难”,因此,各国有关的专家、学者应通力合作,共同研究,并制定出科学的方法,缓解现存问题,控制未来新的温室效应的再形成。(4)保护森林的对策方案
今日以热带雨林为生的全球森林,正在遭到人为持续不断的急剧破坏。有效的因应对策,便是赶快停止这种毫无节制的森林破坏,另一方面实施大规模的造林工作,努力促进森林再生。目前由於森林破坏而被释放到大气中的二氧化碳,根据估计每年约在1~2gt.碳量左右。倘若各国认真推动节制砍伐与森林再生计划,到了二○五○年,可能会使整个生物圈每年吸收相当於0.7gt.碳量的二氧化碳。具结果得以降低七%左右的温室效应。
(5)改善其他各种场合的能源使用效率 是要改善其他各种场合的能源使用效率。今日人类生活,到处都在大量使用能源,其中尤以住宅和办公室的冷暖气设备为最。因此,对於提升能源使用效率方面,仍然具有大幅改善余地,这对二○五○年为止的地球温暖化,预计可以达到八%左右的抑制效果。
(6)鼓励使用天然瓦斯作为当前的主要能源 因为天然瓦斯较少排放二氧化碳。最近日本都市也都普遍改用天然瓦斯取代液化瓦斯,此案则是希望更进一步推广这种运动。惟其抑制温暖化的效果并不太大,顶多只有一%的程度左右。(7)鼓励使用太阳能
譬如推动所谓「阳光计划」之类。这方面的努力能使化石燃料用量相对减少,因此对於降低温室效应具备直接效果。不过,就算积极推动此项方案,对於二○五○年为止的温暖化,只具四%左右的抑制效果。其效果似乎未如人们的期待。
(8)开发替代能源
利用生物能源(Biomass Energy)作为新的乾净能源。亦即利用植物经由光合作用制造出来的有机物充当燃料,藉以取代石油等既有的高污染性能源。燃烧生物能源也会产生二氧化碳,这点固然是和化石燃料相同,不过生物能源系从大自然中不断吸取二氧化碳作为原料,故可成为重覆循环的再生能源,达到抑制二氧化碳浓度增长的效果。
结论
伴随着人类社会文明进步而来的温室效应已在无声无息地危及着人类的生存环境,因此加速对其形成原因及后果的研究对实施合理的对策来缓和清除由此而产生的后果具有重要的实际意义。控制温室气体排放,保护大气环境,不仅与我国经济可持续发展的战略目标是一致,同时也是全世界人民的共同愿望。我们每个人的手里都紧握着珍贵的资源、能源,掌握着一份民族生息发展的“命脉”。已有52位诺贝尔奖获得者和700多名美国权威科学家签名上书政府,力促联合各国通力合作,采取对策,以“稳定”全球的气候,“遏住”地球的危机。成之毁之、爱损之在于我们的一举一动。为了我们的今天更为了我们后代的明天,为了地球的长久,全世界人民更应该团结起来,共同应对日益严重的温室效应。
参考文献:
[1] 田景春.浅谈温室效应.岩相古地理.1996,15(5):54-58.[2] 王文香.温室效应对生物多样性的影响及对策.中国民营科技与经济.2007,11:95-96.[3] 张 峥, 张 涛,郭海涛.温室效应及其生态影响综述.环境保护科学.2000,99(26):36-38.[4] 阎志德.浅论温室效应及其灾害和对策.甘肃科学学报.1991,3(3):85-89.[5] 孙玉清,张永波,陈熙.浅析温室效应加剧的原因、后果及对策.苏州城建环保学院学报.1999,12(4):55-58.[6] 余国泰.温室效应及其生态影响.环境化学.1990,9(5):71-78.[7] 陈中元.逐渐增大的温室效应危险及其对策的研究.云南化工.2005,32(6):53-56.
第四篇:传热学答案
2-4 一烘箱的炉门由两种保温材料A及B组成,且A2B(见附图)。已知A0.1W/(m.K),B0.06W/(m.K),烘箱内空气温度tf1400℃,内壁面的总表面传热系数h150W/(m.K)。为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。环境温度tf225℃,外表面总传热系数h29.5W/(m.K)。
qtf1tfw2AABBh1tf1th2ttf2解:热损失为又tfw50
℃;AB
3联立得A0.078m;B0.039m
2-16 一根直径为3mm的铜导线,每米长的电阻为2.2210。导线外包有厚为1mm导热系数为0.15W/(m.K)的绝缘层。限定绝缘层的最高温度为65℃,最低温度为0℃。试确定在这种条件下导线中允许通过的最大电流。
Q2lq2l(t1t2)ln(r2/r1)210.15650ln2.5/1.5119.8W解:根据题意有:
119.86IR 解得:I232.36A
-40 试由导热微分方程出发,导出通过有内热源的空心柱体的稳态导热热量计算式及壁中的温度分布。为常数。
解:有内热源空心圆柱体导热系数为常数的导热微分方程式为
1tr0rrr
2经过积分得
tc1lnrc2rr
r3/t0tw0lnr01r3因为所以得 trr0,ttw;r0,tt0r3/t0tw0lnr01lnrt0对其求导得
2-53 过热蒸气在外径为127mm的钢管内流过,测蒸气温度套管的布置如附图所示。已知套管外径d=15mm,壁厚=0.9mm,导热系数49.1W/(m.K)。蒸气与套管间的表面传热系数h=105有的长度。W/(m.K)2。为使测温误差小于蒸气与钢管壁温度差的0.6%,试确定套管应
h01chmh0.6100, 解:按题意应使h00.6%,chmh166.7,查附录得:mharcch(166.7)5.81,mhU。
3-7 如图所示,一容器中装有质量为m、比热容为c的流体,初始温度为tO。另一流体在管内凝结放热,凝结温度为t。容器外壳绝热良好。容器中的流体因有搅拌器的作用而可认为任一时刻整个流体的温度都是均匀的。管内流体与容器中流体间的总传热系数k及传热面积A均为以知,k为常数。试导出开始加热后任一时刻t时容器中流体温度的计算式。
解:按集总参数处理,容器中流体温度由下面的微分方程式描述 A10549.10.910348.75,H5.8148.750.119mhA(TT1)cvtt1dtd
kA此方程的解为 t0t1exp(c)
0
03-10 一热电偶热接点可近似地看成为球形,初始温度为25C,后被置于温度为200C地气流中。问欲使热电偶的时间常数c1s热接点的直径应为多大?以知热接点与气流间的表面传热系数为35W/(mK),热接点的物性为:20W/(mk),c400J/(kgk),8500kg/m32,如果气流与热接点之间还有辐射换热,对所需的热接点直径有何影响?热电偶引线的影响忽略不计。
解:由于热电偶的直径很小,一般满足集总参数法,时间常数为:V/AR/3tch1350850040010.29105ccvhA
5 故cm
0.617m 热电偶的直径: d2R2310.2910 验证Bi数是否满足集总参数法 Bivh(V/A)35010.2910205 0.00180.0333
故满足集总参数法条件。
若热接点与气流间存在辐射换热,则总表面传热系数h(包括对流和辐射)增加,由ccvhA知,保持c不变,可使V/A增加,即热接点直径增加。
3-12 一块单侧表面积为A、初温为t0的平板,一侧表面突然受到恒定热流密度q0的加热,另一侧表面受到初温为t的气流冷却,表面传热系数为h。试列出物体温度随时间变化的微分方程式并求解之。设内阻可以不计,其他的几何、物性参数均以知。解:由题意,物体内部热阻可以忽略,温度只是时间的函数,一侧的对流换热和另一侧恒热流加热作为内热源处理,根据热平衡方程可得控制方程为: dtcvhA(tt)Aqw0d t/t0t0
引入过余温度tt则: cvddhAAqw0 /t00
hABecvqwh 上述控制方程的解为:B0qw 由初始条件有:
h,故温度分布为: tt0exp(hAcv)qwh(1exp(hAcv))
3-13 一块厚20mm的钢板,加热到5000C后置于200C的空气中冷却。设冷却过程中钢板两侧面的平均表面传热系数为35W/(mK),钢板的导热系数为45W/(mK),若扩散率为1.37510522m/s。试确定使钢板冷却到空气相差100C时所需的时间。2 解:由题意知BihA0.00780.1
故可采用集总参数法处理。由平板两边对称受热,板内温度分布必以其中心对称,建立微分方程,引入过余温度,则得: dcvhA0d(0)tt0
解之得:00exp(hAcv)exp(hc(V/A))exp(h)
当10C时,将数据代入得,=3633s
3-24 一高H=0.4m的圆柱体,初始温度均匀,然后将其四周曲面完全绝热,而上、下底面暴露于气流中,气流与两端面间的表面传热系数均为50W/(mK)。圆柱体导热系数20W/(mk),热扩散率5.6106m2/s。试确定圆柱体中心过余温度下降到初值
2一半时间所需的时间。解:因四周表面绝热,这相当于一个厚为20.4m的无限大平壁的非稳态导热问题,m00.5,Bih500.2200.5 F01.7,F0由图3-6查得
2a1.70.2265.61012142s3.37h6-
11、已知:平均温度为100℃、压力为120kPa的空气,以1.5m/s的流速流经内径为25mm电加热管子。均匀热流边界条件下在管内层流充分发展对流换热区Nu=4.36。
求:估计在换热充分发展区的对流换热表面传热系数。
pRT1200002873731.121kg/m3解:空气密度按理想气体公式计算,空气的与压力关系甚小,仍可按一物理大气压下之值取用,100℃时:
21.9106
kg/ms,Re1.1211.521.90.025100.03210.025619192300,故为层流。按给定条件得:
h4.36d4.365.6W/mK2。
6-
13、已知:一直管内径为16cm,流体流速为1.5m/s,平均温度为10℃,换热进入充分发展阶段。管壁平均温度与液体平均温度的差值小于10℃,流体被加热。
求:试比较当流体分别为氟利昂134a及水时对流换热表面传热系数的相对大小。解:由附录10及13,10℃下水及R134a的物性参数各为:
R134a:0.0888W/mK,0.201810水:0.574W/mK,1.30610对R134a:
Re1.50.0160.2018100.86626m/s,Pr3.915;
2m/s,Pr9.52;
1.1893100.45,2531.3W/mKh0.0231189303.9150.08880.0162
对水:
Re1.50.0161.306100.8618376,0.4h0.023183769.520.5740.0165241W/mK2
对此情形,R134a的对流换热系数仅为水的38.2%。
25、已知:冷空气温度为0℃,以6m/s的流速平行的吹过一太阳能集热器的表面。该表面尺寸为1m1m,其中一个边与来流方向垂直。表面平均温度为20℃。
求:由于对流散热而散失的热量。
tf020210解:℃
610℃空气的物性 14.1610Reul61.014.1610112,2.511052,Pr0.705
x64.2372810
Nu0.664RehPr3384.68
2384.682.51101.0
29.655w(mk)2
s111.0m
hs(twt0)9.655(200)193.1
6-27、已知:一个亚音速风洞实验段的最大风速可达40m/s。设来流温度为30℃,平板壁温为70℃,风洞的压力可取1.01310Pa。
求:为了时外掠平板的流动达到510的Rex数,平板需多长。如果平板温度系用低
55压水蒸气在夹层中凝结来维持,平板垂直于流动方向的宽度为20cm时。试确定水蒸气的凝结量。
tm7030250解:℃,查附录8得:
6
0.0283W/mK,17.9510Re40x17.95100.56m/s,Pr0.698,1 x5105,x17.95104050.50.224m,416.5,Nu0.664RePr1/30.6645100.6981/h416.50,0283/0.22452.62W/mK, 2hAt52.620.20.224703094.3W,在t70℃时,气化潜热r2334.110J/kg,凝结水量G94.336002334.11030.1454kg/h。
6-33、已知:直径为0.1mm的电热丝与气流方向垂直的放置,来流温度为20℃,电热丝温度为40℃,加热功率为17.8W/m。略去其它的热损失。
求:此时的流速。
解:
qlhdtwtf,hdtwtf30ql17.80.110540202833W/mK2
定性温度tm20402℃,60.0267W/mK,1610Nu28330.02670.1101/0.4663m/s,Pr0.701
210.61。先按表5-5中的第三种情况计算,10.610.6836NuRe0.683侧u2.1459360,符合第二种情形的适用范围。
57.6m/sd故得:Re161036030.110。
34、已知:可以把人看成是高1.75m、直径为0.35m的圆柱体。表面温度为31℃,一个马拉松运动员在2.5h内跑完全程(41842.8m),空气是静止的,温度为15℃。不计柱体两端面的散热,不计出汗散失的部分。
求:此运动员跑完全程后的散热量。
u41842.842.536004.649m/s
解:平均速度,定性温度
62tm3115223℃,空气的物性为:0.0261W/mK,15.3410Re4.6490.3515.3416m/s,Pr0.702,1060724104,按表5-5.有:
0.02661060720.805 Nu0.0266Re0.805295.5,h295.50.0261/0.3522W/mK, Aht3.14160.351.75223115677.3W
在两个半小时内共散热2.53600677.360959606.09610J6-
37、已知:如图,最小截面处的空气流速为3.8m/s,tf2635℃,肋片的平均表面温度为65℃,98W/mK,肋根温度维持定值:s1/ds2/d2,d10mm,规定肋片的mH值不应大于1.5.在流动方向上排数大于10.求:肋片应多高
解:采用外掠管束的公式来计算肋束与气流间的对流换热,定性温度“
tm3565250℃,0.0283W/mK,17.951021176m/s,Re3.80.0117.95106,由表(5-7)查得C0.482,m0.556,34.050.02830.0196.4W/mKNu0.48221170.55634.05,h
,d980.018-
15、已知材料AB的光谱发射率与波长的关系如附图所示,试估计这两种材料的发射率m4h496.419.83,H1.随温度变化的特性,并说明理由。
解:A随稳定的降低而降低;B随温度的降低而升高。理由:温度升高,热辐射中的短波比例增加。9—30、已知:如图,(1)所有内表面均是500K的黑体;(2)所有内表面均是=0.6的漫射体,温度均为500K。求:从小孔向外辐射的能量。解:设小孔面积为2A2,内腔总表面壁为
2A1,则:
2A2r13.14160.0168.0410m1,A1r2d1Hr2r12222223.14160.020.040.040.020.016x1,2A2A18.0410436.736103m,42
4x2,11,6.736100.11941,2A20T1T2。,4411/21x2,11/11x1,2211,28.0410(1)1,1,25.6752.85W4;
8.04105.6754(2)21,10.6,10.11941/0.612.64W9-
45、已知:用裸露的热电偶测定圆管气流的温度,热电偶的指示值为t1=170℃。管壁温度tw=90℃,气流对热节点的对流换热系数为h=50W/(m·K),热节点表面发射率为=0.6。求:气流的真实温度及测温误差。解:htft10T1Tw442
,tft14C0T1h40.65.67Tw441704.433.6350100100
184.41704
17014.1℃84,测温误差:.4184.4100%7.8%
第五篇:中国科学技术大学
中国科学技术大学(肖像绘制机器人技术研究)
2011年中国科学技术大学研制了一款肖像绘制机器人。其目标是研制出一台能够自动绘制人脸肖像画的机器人,用于科技馆的展览,起到娱乐、教育和科普的作用。
该研究的主要内容包括:硬件系统的选型与设计——包括根据功能需求选择机械臂,机械臂与画笔连接部分的结构设计,整体系统布局设计,图像采集系统的选型。图像采集与提取算法研究——研究如何使用选定的图像采集系统实时采集观众人脸图像,保存以及从中提取数据。人脸轮廓提取算法研究——主要包括 YCBCR 色彩空间图像的分解,迭代阈值法求最佳分割阈值,外轮廓分割算法,轮廓提取算法,人脸特征提取算法,领子轮廓提取算法,去除头发算法,眼睛和眉毛定位及优化提取算法研究,另外还要研究大量图像的算法通用性和稳定性,目的是提高针对不同观众的脸型特点算法成功率的提升,和系统稳定性的测试工作。机械臂绘画控制系统方法研究——包括人脸轮廓像素的矢量化处理,绘画动作规划算法,机械臂的控制方法研究。
[1]孟盼盼.肖像绘制机器人技术研究[D]:合肥:中国科学技术大学,2011:1-49