初中《四边形》知识点归纳

时间:2019-05-14 23:00:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中《四边形》知识点归纳》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中《四边形》知识点归纳》。

第一篇:初中《四边形》知识点归纳

初中《四边形》知识点归纳

四边形性质探索

定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

平行四边形:两组对边分别平行的四边形。对边相等,对角相等,对角线互相平分。两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形

菱形:一组邻边相等的平行四边形„„。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。

矩形:有一个内角是直角的平行四边形。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。

正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。

梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。

等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形。

直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。

多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于×180

多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。

定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

几何表达式举例:

∵∠=90°A=B

∴ΔAB是等腰直角三角形

∵ΔAB是等腰直角三角形

∴∠=90°A=B

10全等三角形的性质:

全等三角形的对应边相等;

全等三角形的对应角相等

八年级数学上册期末复习提纲

几何表达式举例:

∵ΔAB≌ΔEFG

∴AB=EF………

∵ΔAB≌ΔEFG

第二篇:初中四边形知识点总结

一、平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:(1)平行四边形是中心对称图形,对角线的交点是它的对称中心;

(2)平行四边形的对边平行且相等;

(3)平行四边形的对角相等,邻角互补;

(4)平行四边形的对角线互相平分.平行四边形的判定:

平行四边形面积公式:S=ah(a为一边长,矩形定义:有一个角是直角的平行四边形叫做矩形.矩形的性质:(1)具有平行四边形的所有性质;

(2)对角线相等;

(3)四个角都是直角;

(4)是轴对称图形,它有两条对称轴.矩形的判定方法:(1)有一个角是直角的平行四边形;

(2)有三个角是直角的四边形;

(3)对角线相等的平行四边形;

(4)对角线相等且互相平分的四边形.矩形面积公式:S=ab(a为一边长,菱形定义:有一组邻边相等的平行四边形叫做菱形。菱形的性质:(1)具有平行四边形的性质;(2)四边形相等;

(3)对角线互相垂直,且每一条对角线平分一组对角;(4)既是中心对称图形又是轴对称图形。菱形的判定方法:(1)四条边相等的四边形是菱形;(2)对角线垂直的平行四边形是菱形;(3)定义。

菱形面积公式:①S=ah(a为一边长,正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形正方形的性质:具有平行四边形、矩形、菱形的性质:(1)四个角是直角,四条边相等;(2)对角线相等,互相垂直平分,每一条对角线平分一组对角;(3)既是中心对称图形又是轴对称图形。正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)定义。

正方形面积公式:①(a为边长h为这条边上的高)))②(b、c为对角线的长

; ②(b为对角线长)

二、b为另一边长

三、h为这条边上的高)

四、)

第三篇:三角形、四边形知识点总结

相交线、平行线

一、相交线

1.线段的垂直平分线:

(1)定义:垂直且平分一条线段的直线,叫做线段的垂直平分线。

(2)性质:线段垂直平分线上的点,到线段两端点的距离相等。

角的平分线性质:角平分线上的点到角两边的距离相等。

二、平行线

1.定义:在同一平面内不相交的两条直线,叫平行线。

2.性质:(1)两直线平行,同位角相等。(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补(4)平行线间的距离相等(5)平行线截相交两条直线,对应线段成比例。

3.判定:(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行

(4)平行于同一直线的两直线平行。(5)垂直于同一直线的两直线平行。第二节 三角形 一、三角形的分类 二、三角形的边角关系 1.边与边的关系

(1)△两边之和大于第三边(2)△两边之差小于第三边 2.角与角关系

(1)△三个内角的和等于180°

(2)△的一个外角等于和它不相邻的两个内角的和

(3)△的一个外角大于任何一个和它不相邻的内角

五、特殊三角形 1.等腰△

(1)性质:1)两腰相等2)两个底角相等3)底边上“三线合一”4)轴对称图形(1条对称轴)

(2)判定:1)两边相等的三角形是等腰△ 2)两个角相等的三角形是等腰△ 2.等边△

性质:1)三边相等2)三个角相等,都等于60° 3)三边上都有“三线合一”4)轴对称图形(3条对称轴)

3.Rt△

(1)性质:1)两个锐角互余 2)勾股定理 3)斜边上中线等于斜边的一半 4)30°角所对的直角边等于斜边的一半

(2)判定:1)有一个角是直角的三角形 2)勾股定理逆定理

第三节 全等三角形

1.对应边相等 2.对应角相等

3.对应线段(高线、中线、角平分线)相等 4.全等三角形面积相等

三、判定:(SAS)(AAS)(ASA)(SSS)(HL)

第四节 四边形

一、特殊四边形

二、平行四边形

(1)性质:1)边:对边平行且相等2)角:对角相等,邻角互补3)对角线:互相平分4)对称性:中心对称图形

(2)判定:1)边:两组对边分别平行 两组对边分别相等 一组对边平行且相等 2)对角线:对角线互相平分 3)角:两组对角分别相等。

三、矩形

1.性质:(1)具有平行四边形的一切性质(2)4个角都是直角(3)对角线相等(4)既是中心对称图形,又是轴对称图形

2.判定:(1)有一个角是直角的平行四边形是矩形(2)有三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形

四、菱形

1.性质:(1)具有平行四边形的一切性质(2)四条边都相等(3)对角线互相垂直,且平分内对角 2.判定:(1)邻边相等的平行四边形是菱形(2)四边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形。

五、正方形:

(1)具有平行四边形、矩形、菱形的一切性质。

六、梯形

1.等腰梯形的性质:(1)两腰相等(2)两底角相等(3)两条对角线相等(4)轴对称图形 2.直角梯形的性质:一腰与底垂直 3.梯形中常用辅助线

七、多边形

1.n边形内角和(n-2)·180° 2.n边形外角和为360° 3.n边形对角线条数

例1 已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°,求:∠AOC与∠EOD的度数。(画出图形,结合图形计算)

1.如图:在□ABCD中,M和N分别为AD、BC的中点,AE⊥BD于E,CF⊥BD于F。求证:四边形ENFM是平行四边形

2.如图:在正方形ABCD中,AB=3,过边AB上的一个三等分点N作NE//AD,交CD于E,以过A的一条直线为折痕,将点B折至NE上,这个落点为P,折痕与BC交于F,求:BF的长。

5.)如图,四边形ABCD是平行四边形,EF分别是BC、AD上的点,∠1=∠2.求证:△ABE≌△CDF.【答案】∵四边形ABCD是平行四边形,∴∠B=∠D,AB=DC,又∵∠1=∠2,∴△ABE≌△CDF(ASA).2.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.(1)证明:∵四边形ABCD是平行四边形

∴AD∥BC AB∥CD ∴∠ADF=∠CED ∠B+∠C=180°

∵∠AFE+∠AFD=180 ∠AFE=∠B ∴∠AFD=∠C ∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形

∴AD∥BC CD=AB=4 又∵AE⊥BC ∴ AE⊥AD 在Rt△ADE中,DE= ∵△ADF∽△DEC ∴

AD2AE2(33)2326

ADAF33AF AF=23 ∴64DECD

第四篇:第十九章四边形知识点

第十九章四边形的知识点

1、平行四边形的性质:

平行四边形的判定:

2、三角形的中位线:

三角形的中位线定理:

3、矩形的性质:

矩形的判定:

4、直角三角形斜边上的中线等于斜边的一半。

5、菱形的性质:

菱形的判定:

6、正方形的性质:

正方形的判定:(定义)

7、梯形的定义:(判定)

等腰梯形的性质:

等腰梯形的判定:

辅助线的引法:

8、重心:A、线段的重心就是线段的中点。B、平行四边形的重心是对角线的交点。C、三角形的重心是三条中线的交点。D、任意图形的重心用线锤法寻找。

9、中点四边形-----形状:A、任意四边形的中点四边形是。B、对角线相等的四边形的中点四边形是。C、对角线垂直的四边形的中点四边形是。D、对角线垂直且相等的四边形的中点四边形是。

第五篇:证明方法四边形必备初中

证明线段垂直

一.相交线、平行线: 1.相交直线邻补角相等。

2.a垂直b,c平行a,则c垂直b

二.三角形中:

1.等腰三角形三线合一。2.勾股定理逆定理。

3.三角形三条边上的高所在直线交于同一点。

三.四边形中:

1.菱形对角线互相垂直。2.矩形邻边互相垂直。

四.圆中: 1.垂径定理。2.切线性质定理。3.圆周角定理推论。

4.相交两圆连心线垂直平分公共弦。

五.图形运动:

1.图形翻折,对称轴垂直平分对应点连线。

六.角度计算:

证明线段平行

一.相交线、平行线: 1.同位角相等。2.内错角相等。3.同旁内角互补。4.平行线的传递性。

5.垂直同一条直线的两条直线平行。

6.比例线段。

二.三角形中: 1.三角形中位线。

三.四边形中:

1.平行四边形对边平行。2.梯形两底平行。3.梯形中位线平行两底。

四.图形运动:

1.图形平移对应边平行,对应点连线平行。2.图形翻折对应点连线平行。

五.平面直角坐标系:

1.一次函数斜率相等,两直线平行。六.向量:

1.向量a=k向量b,k不等于0,向量a,向量b不为0向量,向量a所在直线与向量b所在直线平行或重合。

证明角相等的方法 一.相交线、平行线: 1.对顶角相等。

2.等角的余角(或补角)相等。

3.两直线平行,同位角相等、内错角相等。4.凡直角都相等。

5. 角的平分线分得的两个角相等。

二.三角形中:

1.等腰三角形的两个底角相等。

2.等腰三角形底边上的高(或中线)平分顶角(三线合一)。3.三角形外角和定理:三角形外角等于和它不相邻的内角之和。4.全等形中,一切对应角都相等。5.相似三角形的对应角相等。

三.四边形中:

1.平行四边形对边相等,对角线相互平分。2.菱形的每一条对角线平分一组对角。3.等腰梯形在同一底上的两个角相等。

四.圆中:

1.在同圆或等圆中,若有两条弧相等或有两条弦相等,那么它们所对的圆心角相等。2.在同圆或等圆中,等弧所对的圆周角相等.。

3.圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半。4.圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角。5.三角形的内心的性质:三角形的内心与角顶点的连线平分这个角。6.正多边形的性质:正多边形的外角等于它的中心角.。

7.从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角。五.角运算:

1.利用等量代换、等式性质 证明两角相等。2.利用三角函数计算出角的度数相等。

证明线段相等的方法 一.常用轨迹中:

1.两平行线间的距离处处相等。

2.线段中垂线上任一点到线段两端点的距离相等。3.角平分线上任一点到角两边的距离相等。

4.若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等。

二.三角形中:

1.同一三角形中,等角对等边。(等腰三角形两腰相等、等边三角形三边相等)2.任意三角形的外心到三顶点的距离相等。3.任意三角形的内心到三边的距离相等。

4.等腰三角形顶角的平分线(或底边上的高、中线)平分底边。5.直角三角形中,斜边的中点到直角顶点的距离相等。6.有一角为60°的等腰三角形是等边三角形。

7.过三角形一边的中点与另一边平行的直线,必平分第三边。

8.同底或等底的三角形,若面积相等,则高也相等。同高或等高的三角形,若面积相等,则底也相等。

三.四边形中:

1.平行四边形对边相等,对角线相互平分。

2.矩形对角线相等,且其的交点到四顶点的距离相等。3.菱形中四边相等。

4.等腰梯形两腰相等、两对角线相等。

5.过梯形一腰的中点与底平行的直线,必平分另一腰。

四.正多边形中:

1.正多边形的各边相等。且边长

2.正多边形的中心到各顶点的距离(外接圆半径R)相等、各边的距离(边心距)相等。且

五.圆中:

1.同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等。2.同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等。3.任意圆中,任一弦总被与它垂直的半径或直径平分。4.自圆外一点所作圆的两切线长相等。

5.两相交或外切或外离圆的二公切线的长相等;两外离圆的二内公切线的长也相等。6.两相交圆的公共弦总被连心线垂直平分。7.两外切圆的一条外公切线与内公切线的交点到三切点的距离相等。8.两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都被切点平分。

六.全等形中:

1.全等形中,一切对应线段(对应的边、高、中线、外接圆半径、内切圆半径……)都相等。

七.线段运算:

1.对应相等线段的和相等;对应相等线段的差相等。

2.对应相等线段乘以的相等倍数所得的积相等;对应相等线段除以的相等倍数所得的商相等。

3.两线段的长具有相同的数学解析式,或二解析式相减为零,或相除为1,则此二线段相等。

下载初中《四边形》知识点归纳word格式文档
下载初中《四边形》知识点归纳.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    四边形初中数学教案(精选五篇)

    1.教材分析 (1)知识结构: (2)重点和难点分析: 重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用. 难点:四边形......

    初二学期下册知识点归纳:四边形(精选五篇)

    初二学期下册知识点归纳:四边形 对于初中学生朋友,学习是一个循序渐进的过程,需要日积月累。查字典数学网提供了初二学期下册知识点归纳,希望对大家学习有所帮助。 1平行四边形......

    初中数学知识点

    定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 ①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 切线的判定定理 经过半径的外端并且垂直......

    初中物理化学知识点

    初中物理重要知识点总结 记住的常量 1.光(电磁波)在真空中传播得最快,c=3×105Km/s=3×108m /s。光在其它透明物质中传播比在空气中传播都要慢 2.15℃的空气中声速:340m/s,振动发声......

    《四边形》教案

    《四边形》教案1 教学内容:人教版五年级上册教材P87~88例1及练习十九第1、2、3题。教材分析:《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形......

    认识四边形

    “四边形的认识”教学设计 一、教学内容:人教版三年级上册第34-36页。 二、教学目标: 1.直观感知四边形,能区分和辨认四边形,知道四边形的特征。并进一步认识长方形和正方形,知道它......

    备课四边形

    大智慧教育系列资料029大智慧教育教师备课专用稿纸教育您的孩子需要大智慧电话: ***6教育您的孩子需要大智慧电话: ***6教育您的孩子需要大智慧电话:......

    认识四边形

    认识四边形课题认识四边形课型新授课设计说明四边形的认识是学生对“图形与几何”认识的扩展,由抽象思维发展到形象思维,通过实践探究,提高学生的感知能力和分辨能力。在教学本......