九年级数学下册 27_1 圆的认识教案1 (新版)华东师大版(推荐5篇)

时间:2019-05-15 00:53:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《九年级数学下册 27_1 圆的认识教案1 (新版)华东师大版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《九年级数学下册 27_1 圆的认识教案1 (新版)华东师大版》。

第一篇:九年级数学下册 27_1 圆的认识教案1 (新版)华东师大版

圆的对称性

教学目标:

使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。重点难点:

1、重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系。

2、难点:运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题。教学过程:

一、由问题引入新课:要同学们画两个等圆,并把其中一个圆剪下,让两个圆的圆心重合,使得其中一个圆绕着圆心旋转,可以发现,两个圆都是互相重合的。如果沿着任意一条直径所在的直线折叠,圆在这条直线两旁的部分会完全重合。

由以上实验,同学们发现圆是中心对称图形吗?对称中心是哪一点?圆不仅是中心对称圆形,而且还是轴对称图形,过圆心的每一条直线都是圆的对称轴。

二、新课

1、同一个圆中,相等的圆心角所对的弧相等、所对的弦相等。垂直于弦的直径平分弦,并且平分弦所对的两条弧。

图23.1.3 图23.1.4 实验

1、将图形23.1.3中的扇形AOB绕点O逆时针旋转某个角度,得到图23.1.4中的图形,同学们可以通过比较前后两个图形,发现AOBAOB,ABAB,ABAB。实质上,AOB确定了扇形AOB的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。

问题:在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦是否相等呢?

C在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧是否相等呢?

实验

2、如图23.1.7,如果在图形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,比较AP与PB、AC与CB,你能发现什么结论?

显然,如果CD是直径,AB是⊙O中垂直于直径的弦,那么

︵︵

OAD图23.1.7BAPBP,ACBC,ADBD。请同学们用一句话加以概括。

(垂直于弦的直径平分弦,并且平分弦所对的两条弧)

2、同一个圆中,圆心角、弧、弦之间的关系的应用。(1)思考:如图,在一个半径为6米的圆形花坛里,准备种植六种不同颜色的花卉,要求每种花卉的种植面积相等,请你帮助设计种植方案。(2)如图23.1.5,在⊙O中,ACBC,145,求2的度数。

3、课堂练习

图 23.1.5(1)如图,在⊙O中,AB=AC,∠B=70°.求∠C度数.(第1题)︵︵

OCA第5题DB

(第2题)

(2)如图,AB是直径,BC=CD=DE,∠BOC=40°,求∠AOE的度数

(3)已知,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。

三、课堂小结

本节课我们通过实验得到了圆不仅是中心对称图形,而且还是轴对称图形,而由圆的对称性又得出许多圆的许多性质,即(1)同一个圆中,相等的圆心角所对弧相等,所对的弦相等。(2)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。(4)垂直于弦的直径平分弦,并且平分弦所对的两条弧。

四、作业

P52习题1、2、3、4、5

︵︵︵ 2

第二篇:九年级数学下册27.4正多边形和圆教案3新华东师大版

27.4正多边形和圆

教学目标:1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形. 2.复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容.

3、通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;通过正多边形有关概念的教学,培养学生的阅读理解能力.

重难点:正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系. 教学过程

一、探索新知

如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.

因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.

为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.

外接圆的半径叫做正多边形的半径.

正多边形每一边所对的圆心角叫做正多边形的中心角.

中心到正多边形的一边的距离叫做正多边形的边心距.

例1.已知正六边形ABCDEF,如图所示,其外接圆的半径

ED是a,•求正六边形的周长和面积.

O

CF

AMB 现在我们利用正多边形的概念和性质来画正多边形.

例2.利用你手中的工具画一个边长为3cm的正五边形.

分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.

二、尝试应用

例3.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.

(1)求△ABC的边AB上的高h.

(2)设DN=x,且hDNNF,当x取何值时,水池DEFN的面积最大? hAB(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否

位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.

CNhADGE

分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题.

三、归纳小结(学生小结,老师点评)本节课你有什么收获?

四、当堂达标

1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().

A.60° B.45° C.30° D.22.5°

FB

(1)(2)(3)2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是(). A.36° B.60° C.72° D.108° 3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18° B.36° C.72° D.144°

4.已知正六边形边长为a,则它的内切圆面积为_______. 5.正五边形ABCDE的对角线AC、BE相交于M.

(1)求证:四边形CDEM是菱形;(2)设MF=BE·BM,若AB=4,求BE的长.

教后反思:

第三篇:九年级数学上解直角三角形教案(华东师大版)

九年级数学上解直角三角形教案(华东

师大版)本资料为woRD文档,请点击下载地址下载全文下载地址

解直角三角形

【知识与技能】

.理解仰角、俯角的含义,准确运用这些概念来解决一些实际问题.2.培养学生将实际问题抽象成数学模型并进行解释与应用的能力.【过程与方法】

通过本章的学习培养同学们的分析、研究问题和解决问题的能力.【情感态度】

在探究学习过程中,注重培养学生的合作交流意识,体验从实践中来到实践中去的辩证唯物主义思想,激发学生学习数学的兴趣.【教学重点】

理解仰角和俯角的概念.【教学难点】

能解与直角三角形有关的实际问题.一、情境导入,初步认识

如图,为了测量旗杆的高度Bc,小明站在离旗杆10米的A处,用高1.50米的测角仪DA测得旗杆顶端c的仰角α=52°,然后他很快就算出旗杆Bc的高度了.(精确到0.1米)

你知道小明是怎样算出的吗?

二、思考探究,获取新知

想要解决刚才的问题,我们先来了解仰角、俯角的概念.【教学说明】学生观察、分析、归纳仰角、俯角的概念.现在我们可以来看一看小明是怎样算出来的.【分析】在Rt△cDE中,已知一角和一边,利用解直角三角形的知识即可求出cE的长,从而求出cB的长.解:在Rt△cDE中,∵cE=DE•tanα=AB•tanα=10×tan52°≈12.80,∴Bc=BE+cE=DA+cE≈12.80+1.50=14.3(米).答:旗杆的高度约为14.3米.例如图,两建筑物的水平距离为32.6m,从点A测得点D的俯角α为35°12′,测得点c的俯角β为43°24′,求这两个建筑物的高.(精确到0.1m)

解:过点D作DE⊥AB于点E,则∠AcB=β=43°24′,∠ADE=35°12′,DE=Bc=32.6m.在Rt△ABc中,∵tan∠AcB=,∴AB=Bc•tan∠AcB=32.6×tan43°24′≈30.83(m).在Rt△ADE中,∵tan∠ADE=,∴AE=DE•tan∠ADE=32.6×tan35°12′≈23.00(m).∴Dc=BE=AB-AE=30.83-23.00≈7.8(m)

答:两个建筑物的高分别约为30.8m,7.8m.【教学说明】关键是构造直角三角形,分清楚角所在的直角三角形,然后将实际问题转化为几何问题解决.三、运用新知,深化理解

.如图,一只运载火箭从地面L处发射,当卫星达到A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°,1s后火箭到达B点,此时测得BR的距离是6.13km,仰角为45.54°,这个火箭从A到B的平均速度是多少?(精确到0.01km/s)

2.如图所示,当小华站在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B处,这时他看到自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3≈1.73)

【答案】1.0.28km/s

2.1.4米

四、师生互动,课堂小结

.这节课你学到了什么?你有何体会?

2.这节课你还存在什么问题?

.布置作业:从教材相应练习和“习题24.4”中选取.2.完成练习册中本课时练习.本节课从学生接受知识的最近发展区出发,创设了学生最熟悉的旗杆问题情境,引导学生发现问题、分析问题.在探索活动中,学生自主探索知识,逐步把生活实际问题抽象成数学模型并进行解释与应用的学习方法,养成交流与合作的良好习惯.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学数学的信心.

第四篇:九年级数学下册 小结与复习教案1 新人教版

小结与复习1

一、素质教育目标(一)知识教学点

使学生学过的知识条理化、系统化,同时通过复习找出平时的缺、漏,以便及时弥补.(二)能力训练点

培养学生综合、概括等逻辑思维能力及分析问题、解决问题的能力.(三)德育渗透点 渗透事物之间相互联系、互相转化的辩证唯物主义观点.

二、教学重点、难点和疑点

1.重点:锐角三角函数的概念、特殊角的三角函数值、余角余函数关系、同角三角函数关系、查表等知识及简单应用.

2.难点:知识的应用.

3.疑点:学生对tgA·tg(90°-A)=1的应用易出错,原因是tgA·ctgA=1和tgA=ctg(90°-A)这一知识点不够熟练.

三、教学步骤(一)明确目标

开门见山明确课题,引导学生加以总结.(二)整体感知

学生在直角三角形性质(两锐角互余,勾股定理)、全等判定、作图方法、相似判定、相似比等已有知识的基础上,又研究了边角关系——锐角三角函数.这样使学生对直角三角形的概念有一个更全面、完整的认识,使本章知识起承上启下的作用.

全章分两大节,第一大节锐角三角函数部分着重于正弦、余弦、正切、余切的概念,这些概念是第二节解题的基础,而第二大节解直角三角形,又是在第一节基础上,对概念的加深认识,从而起到巩固的作用.

从以上分析可知,本节课在概括总结锐角三角函数概念后,应着重复习解直角三角形知识,在应用中加深对概念的理解.

(三)重点、难点的学习与目标完成过程

复习课教师应着重引导学生自己对所学知识加以概括、总结,形成知识网络,从而提高学生归纳、概括等逻辑思维能力.

1.结合图6-38,请学生回答:什么是∠A的正弦、余弦、正切、余切?

这四个概念是全章灵魂,因此要求全体学生掌握,这里不妨请成绩较差的学生回答,教师板书

2.互余两角的正弦、余弦及正切、余切间具有什么关系?

这一知识点为了便于学生查表和以后解直角三角形,对学生来说,可能一部分学生易混淆,这里不妨先请中等学生口答,教师板书:

sinA=cos(90°-A),cosA=sin(90-A). tgA=ctg(90°-A),ctgA=tg(90-A). 然后教师可出示投影片:

(2)在△ABC中,∠A、∠B都是锐角,且sinA=cosB,那么△ABC一定是______三角形. 以上两个小题的配备,主要目的是使学生加深对余角余函数的关系的理解. 3.教师出示投影片,请学生填空:

这不仅可以考查学生是否牢记这些函数值,起查缺补漏的作用,而且通过表格记忆,引导学生掌握记忆方法.

出示练习题(最好制作幻灯片)(1)tg30°+cos45°+tg60°-ctg30°;(2)tg30°·ctg60°+cos30°;

2以上小题的配置,使学生在计算含特殊角的函数值式子及由特殊角的三角函数值求锐角的度数的过程中,进一步加深特殊角三角函数值的记忆.

4.本章用了一定篇幅,教学生利用中学《数学用表》中的“正弦和余弦表”、“正切和余切表”来求任意锐角的三角函数值.其中,因为正弦、正切是增函数,而余弦、余切是减函数,这两种函数在查表求值时修正值的加与减成为学生学习的难点,极易混淆.因此,本节课应针对这一点加以复习.

首先,教师应引导学生回忆:在0°~90°之间,正弦、余弦及正切、余切随角度的变化而变化的规律是什么?

在学生正确的回答后,教师可出示一组投影片: 练习:(1)不查表,比较大小: sin20°______sin20°15′,tg51°______tg51°2′,cos6°48′______cos78°12′,3 ctg79°8′______ctg18°2′,sin52°-sin23°______0,cos78°-sin45°______0,ctg20°-tg70°______.

此题中,前五小题判断的依据就是正弦、余弦及正切、余切的增减性,教师可找成绩较差学生回答,如果没有问题,可不多作说明,一旦回答中出现问题,可请其他学生讲评即可.后二小题实际是对余角余函数及锐角三角间函数增减性的综合运用,应请学生回答时说明其思考过程,培养学生分析问题、解决问题的能力.

(2)cos21°30′=0.9304,且表中同一行的修正值是

cos21°32′=______,cos21°29′=______.,则这一小题是学生在查表过程中极易出错之处,如果学生在这里回答的非常准确,说明其全部掌握,教师可不必再强调.否则,还应出示小题:查表得ctg59°54′=0.5015,表中同一行的修正值是 =______.

(3)选择题

则ctg59°56′=______,ctg59°53′下列等式中,成立的是

[

]

A.0°<∠A≤30°

B.30°<∠A≤45° C.45°<∠A≤60°

D.60°<∠A<90°

这两个小题对学生要求较高,课堂上不妨请学生充分讨论,在学生与学生的交流中,将知识学透、学活,分别请成绩较好的学生加以说明.通过这两小题的研究,不仅使成绩较差的学生思维更深刻,同时使成绩较好的学生在敏捷的思维后又条理清晰地讲解一番,培养他们的表达能力.

5.教材在P.19习题6.1B组第1题中出示黑体字sinA+cosA=1,2

2其中学生对tg18°tg72°=1这类问题极易出错,原因是易混淆tgA·ctgA=1和tgA=ctg(90°-A)两个知识点.本节课在复习之后,应该澄清这一问题,为此,可出示投影片:

练习:(1)tgα·ctg54°=1,则α=______度.(2)tg15°·tgβ=1,则β=______度.(3)tg18°·tg30°·tg72°=______.

对学有余力的学生,教师可布置课后思考题以加深sinA+cosA=1印象. 思考题:(1)计算sin35°+2tg60°·ctg60°+cos35°;

(四)总结与扩展

请学生结合板书,将知识加以总结.

四、布置作业

1.看教材P.1~P.32,培养看书习惯. 2.选作P.56中1、2、3、4

第五篇:九年级数学下册《正切和余切》教案1 新人教版

《正切和余切》教案1

一、素质教育目标(一)知识教学点

使学生了解正切、余切的概念,能够正确地用tgA、ctgA表示直角三角形(其中一个锐角为∠A)中两边的比,了解tgA与ctgA成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系.

(二)能力训练点

逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力.(三)德育渗透点

培养学生独立思考、勇于创新的精神.

二、教学重点、难点

1.重点:了解正切、余切的概念,熟记特殊角的正切值和余切值. 2.难点:了解正切和余切的概念.

三、教学步骤(一)明确目标

1.什么是锐角∠A的正弦、余弦?(结合图6-8回答).

2.填表

3.互为余角的正弦值、余弦值有何关系?

4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律? 5.我们已经掌握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻边)与斜边的比值.那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其它一些三角函数,本节课我们学习正切和余切.

(二)整体感知.

正切、余切的概念,也是本章的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要.教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切.像这样,把概念、计算和应用分成两块,每块自成一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于掌握锐角三角函数的有关知识.

(三)重点、难点的学习与目标完成过程 1.引入正切、余切概念

①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?

因为学生在研究过正弦、余弦概念之后,已经接触过这类问题,所以大部分学生能口述证明,并进一步猜测“两直角边的比值一定是正切和余切.”

②给出正切、余切概念如图6-10,在Rt△ABC中,把∠A的对边与邻边的比叫做∠A的正切,记作tgA.

并把∠A的邻边与对边的比叫做∠A的余切,记作ctgA,2.tgA与ctgA的关系 tgA·ctgA=1)这个关系式既重要又易于掌握,必须让学生深刻理解,并与tgA=ctg(90°-A)区别开. 3.锐角三角函数

弦、余弦、正切、余切都叫做∠A的锐角三角函数.

锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目. 问:锐角三角函数能否为负数? 学生回答这个问题很容易. 4.特殊角的三角函数. ①教师出示幻灯片

三角函数/0°/30°/45°/60°/90°

请同学推算30°、45°、60°角的正切、余切值.(如图6-11)

通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使 学生熟记特殊角的正切值与余切值,同时渗透了数形结合的数学思想. 0°,90°正切值与余切值可引导学生查“正切和余切表”,学生完全能独立 查出.

5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互 为余角的正切值与余切值的关系.

结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值.

即 tgA=ctg(90°-A),ctgA=tg(90°-A).

练习:1)请学生回答tg45°与ctg45°的值各是多少?tg60°与ctg30°?tg30°与ctg60°呢?学生口答之后,还可以为程度较高的学生设置问题:tg60°与ctg60°有何关系?为什么?tg30°与ctg30°呢?

2)把下列正切或余切改写成余角的余切或正切:

(1)tg52°;

(2)tg36°20′;

(3)tg75°17′;(4)ctg19°;

(5)ctg24°48′;

(6)ctg15°23′. 6.例题

例1 求下列各式的值:(1)2sin30°+3tg30°+ctg45°;(2)cos45°+tg60°·cos30°. 解:(1)2sin30°+3tg30°+ctg45°

2(2)cos45°+tg60°·cos30° 2

=2.

练习:求下列各式的值:

(1)sin30°-3tg30°+2cos30°+ctg90°;(2)2cos30°+tg60°-6ctg60°;(3)5ctg30°-2cos60°+2sin60°+tg0°;(4)cos45°+sin45°;

学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力.

(四)总结扩展

请学生小结:本节课了解了正切、余切的概念及tgA与ctgA关系.知道特殊角的正切余切值及互为余角的正切值与余切值的关系.本课用到了数形结合的数学思想. 2

2四、布置作业

1.看教材P.20~P.22,培养学生看书习惯. 2.教材P.29中习题6.2A组2、3

下载九年级数学下册 27_1 圆的认识教案1 (新版)华东师大版(推荐5篇)word格式文档
下载九年级数学下册 27_1 圆的认识教案1 (新版)华东师大版(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    九年级历史下册 4.19《中东战争》教案 华东师大版

    历史:第19课《中东战争》教案(华东师大版九年级下) 【内容标准】 (1)以印度等国为例,简述亚洲国家实现国家独立和走上民族振兴道路的概况。 (2)简述战后非洲独立运动和拉丁美洲各国......

    华东师大课标版七年级数学下册教案轴对称的认识

    一、教材分析 在学习了画对称轴,了解了对称轴与轴对称图形的关系的基础上研究画轴对称图形,可以更好地加深学生对轴对称的理解,教材给学生创设了一个循序渐进的探索过程.二、学......

    华东师大版九年级数学上册24.1《测量》教案

    解直角三角形 24.1 测量 【知识与技能】 利用前面学习的相似三角形的有关知识,探索测量距离的几种方法,初步接触直角三角形的边角关系. 【过程与方法】 使学生经历测量旗杆......

    数学:26.2模拟实验教案(华东师大版九年级上)

    §26.2模拟实验 第一课时用替代物做模拟实验 教学内容 本节课主要学习的内容是如何应用替代物进行模拟实验·教学目标 1.知识与技能:学会应用替代物进行模拟实验的方法,感受......

    九年级下册数学教学工作计划(新)

    人教版九年级下册数学教学工作计划 黑水县中学 张映林 一、基本情况分析 1、学生情况 本期我继续授九(1)班的数学课。通过五个个学期的努力,多数同学学习数学的兴趣有所改观,......

    三年级数学下册 认识千米1教案 苏教版

    认识千米 教学目标: 1. 知识目标: 在具体的生活情境中, 感知和了解千米的含义;在丰富的操作活动中建立1千米的长度观念,知道1千米=1000米。 2. 能力目标: 能进行千米和米之间的换算......

    华东师大版九年级数学上册23.4《中位线》教案

    中位线 【知识与技能】 1.经历三角形中位线的性质定理形成过程. 2.掌握三角形中位线的性质定理,并能利用它解决简单的问题. 3.通过命题的教学了解常用的辅助线的作法,并能灵活......

    九年级数学下册《26.4圆周角(二)》教案 新人教版

    安徽省马鞍山市银塘中学九年级数学下册《26.4圆周角(二)》教案 新人教版 一、复习: 圆周角及其相关性质。 二、新授: 1、圆的内接多边形:一个多边形的所有顶点都在同一个圆上,这个......