第一篇:【百分闯关】华东师大版九年级数学下册教案:28.3《借助调查作决策》
30.3《借助调查作决策》学案
教学目标:
1了解媒体是获取信息的一个重要渠道,2学会从媒体上获取数据信息,包括上网、看电视、读报、听广播等,并通过对 这些数据的分析进行决策.
3学会对来自媒体的数据信息进行合理的分析,发表自己的观点.
4通过对来自媒体的数据的分析与交流,在分析信息、提高分析辩别能力的同时,增强合作学习的意识与能力. 教学重难点:
1综合运用所学统计知识读取媒体信息,并进行适当的分析能够对信息中数据的来源及处理数据的方法以及由此得到的结果进行合理的质疑.2从统计(数学)的角度对媒体信息进行质疑,并能有条理地阐述自己的观点.研讨过程:
一、引入
获取信息的一个重要渠道,通过媒体可以便捷地获取丰富、实时的信息
举例:如果明天我们要郊游,可以留意报纸、广播、电视中的天气预报或者上网查询,要是天气预报说“明天降雨概率为90%”,那我们可能都会带上雨具.
请同学再举几个通过媒体获取数据进行决策的例子
第一课时
1.借助调查作决策
问题1 2001年“五·一”前夕,小明一家准备购买一台彩电.是买国产的还是进口的?是考虑价格便宜还是追求功能全面?最后决定在甲、乙、丙三个国产品牌中选择一个最畅销的品牌.小明上网查得截至2001年第一季度的最新数据,如表28.1.1所示.
如果你是小明,会怎样取舍呢?
分析
把这三个品牌彩电自1999年以来截至2001年第一季度的总销量和平均月销售量用图形表示.
图1
图2
1999年以来彩电销售总量比较
1999年以来彩电历年月平均销量比较
思 考
(1)以2001年第一季度三个品牌销量的4倍分别作为2001年它们全年的估计销量,这样比较年销售量合适吗?
(2)为了进一步了解这三个品牌的销售情况,小明与他的爸爸特地在一家电器商场观察了一个小时,在这一小时中,他们发现甲与丙各卖出了两台,而乙一台也没有卖出.为什么他们在商场观察的结果与小明在媒体上查到的数据不成比例?这是否意味着网上公布的数据不可靠?为什么?
解:(1)不合适,因为不同季节对不同产品的需求不一定一样,同一品牌在不同季节的销售量也不一定相同,第一季度是销售的淡季,因次它不具有代表性,不能用它的4倍作为全年的估计销量,可以每个季度取一个月或一个月中随机抽取几天来比较年销售量.
(2)小明和他爸只在一个商店里统计了一个小时的销售情况,因此他选择的样本既没有随机性也没有代表性,样本的容量有太小,而媒体上公布的数据是作了大量的调查得出的结果,因此网上的数据依然可靠. 练习:爸爸妈妈计划在周末带小明去旅游.首先,希望天气适宜;其次,游览的地方最好离居住地近一些.下图是小明在报纸上查询到的周末部分旅游区天气预报.
此外,小明还通过上网查询列车时刻表,获得了各旅游区与自己居住地之间的里程如下(单位:m). 大连2 255,青岛1 359,泰山890,洛阳1 122,黄山674,杭州201,武夷山631,厦门1 395,桂林1 645,湛江2 280.
(1)请你帮小明分析一下,哪个旅游景点是最佳选择?
(2)如果你要在本周末旅行,那么基于路程和天气两方面的原因,你将怎样查询数据做出决策呢?把你的决策过程和同学们进行交流. 答:
(1)天气适宜的有湛江、青岛、泰山、洛阳、黄山、桂林、五夷山,在这些天气适宜的旅游区中,五夷山离居住地最近、所以五夷山是最佳选择。
(2)可以先查询天气、及各景点的路程,以天气适宜且路程近者为目标。
媒体中的数据很多,只要我们留心,会从其中获得许多有用的信息.但出现在媒体中的信息不一定都是可靠的,我们在获取信息的同时,需要进行全面的分析.
第二课时
2.容易误导决策的统计图
例2 一则广告说:据调查,使用本厂牙膏可以使蛀牙率减少20%,并以图28.1.3示意其调查得到的数据.你怎样看待这则广告?
图28.1.3 分 析
第一,我们注意到图中的柱形图的纵轴是从30%开始的,它容易留给我们一个错误的印象:使用该厂牙膏会使蛀牙率减少一半.
第二,我们不知道调查对象是否有可比性,如果使用该厂牙膏的人群是幼儿园小朋友,而使用非该厂牙膏的人群却是成年人,那么所得的结论就不可信了.
第三,我们也不知道样本容量有多大,如果只调查了10个人,那么所得的结论可能就不太可靠了. 从这个很小的例子可以看出,数据虽然给我们带来了有利于决策的各种信息,但有些时候也可能误导我们.所以,比较规范的统计报告应该说明调查的细节,如调查了多少人,是怎样选取调查对象的,等等.
问题3见教材 练习
以下是一些来自媒体的信息,谈谈你读了之后有什么想法.
(1)报纸刊载:高校毕业生平均年收入为5万元.(数据来源于对某高校校友的一次问卷调查)(2)某房产广告称:本地区居民年收入6万元.(事实上该地区居住了许多普通工人家庭,只有几户富翁家庭)
(3)某杂志刊载消息解释其价格上涨原因:10年来,原材料上涨10%,印刷费增加10%,推销广告费上升10%.这样一来,成本增加30%,零售价格怎能不上涨?
五、小结
在本节学期中,我们主要学习了在对某件事情作决策前,如何借助媒体,查询数据,媒体是获取信息的一个重要渠道,既要从中获得尽可能多的有用信息,还要保持理智的心态,要对数据的来源、收集数据的方法、数据的呈现方式和由此得出的结论进行合理的辨析。课后作业: 板书设计:
教学反思:
第二篇:九年级数学下册27.4正多边形和圆教案3新华东师大版
27.4正多边形和圆
教学目标:1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形. 2.复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容.
3、通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;通过正多边形有关概念的教学,培养学生的阅读理解能力.
重难点:正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系. 教学过程
一、探索新知
如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.
因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.
外接圆的半径叫做正多边形的半径.
正多边形每一边所对的圆心角叫做正多边形的中心角.
中心到正多边形的一边的距离叫做正多边形的边心距.
例1.已知正六边形ABCDEF,如图所示,其外接圆的半径
ED是a,•求正六边形的周长和面积.
O
CF
AMB 现在我们利用正多边形的概念和性质来画正多边形.
例2.利用你手中的工具画一个边长为3cm的正五边形.
分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.
二、尝试应用
例3.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.
(1)求△ABC的边AB上的高h.
(2)设DN=x,且hDNNF,当x取何值时,水池DEFN的面积最大? hAB(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否
位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.
CNhADGE
分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题.
三、归纳小结(学生小结,老师点评)本节课你有什么收获?
四、当堂达标
1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().
A.60° B.45° C.30° D.22.5°
FB
(1)(2)(3)2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是(). A.36° B.60° C.72° D.108° 3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18° B.36° C.72° D.144°
4.已知正六边形边长为a,则它的内切圆面积为_______. 5.正五边形ABCDE的对角线AC、BE相交于M.
(1)求证:四边形CDEM是菱形;(2)设MF=BE·BM,若AB=4,求BE的长.
教后反思:
第三篇:九年级数学上解直角三角形教案(华东师大版)
九年级数学上解直角三角形教案(华东
师大版)本资料为woRD文档,请点击下载地址下载全文下载地址
解直角三角形
【知识与技能】
.理解仰角、俯角的含义,准确运用这些概念来解决一些实际问题.2.培养学生将实际问题抽象成数学模型并进行解释与应用的能力.【过程与方法】
通过本章的学习培养同学们的分析、研究问题和解决问题的能力.【情感态度】
在探究学习过程中,注重培养学生的合作交流意识,体验从实践中来到实践中去的辩证唯物主义思想,激发学生学习数学的兴趣.【教学重点】
理解仰角和俯角的概念.【教学难点】
能解与直角三角形有关的实际问题.一、情境导入,初步认识
如图,为了测量旗杆的高度Bc,小明站在离旗杆10米的A处,用高1.50米的测角仪DA测得旗杆顶端c的仰角α=52°,然后他很快就算出旗杆Bc的高度了.(精确到0.1米)
你知道小明是怎样算出的吗?
二、思考探究,获取新知
想要解决刚才的问题,我们先来了解仰角、俯角的概念.【教学说明】学生观察、分析、归纳仰角、俯角的概念.现在我们可以来看一看小明是怎样算出来的.【分析】在Rt△cDE中,已知一角和一边,利用解直角三角形的知识即可求出cE的长,从而求出cB的长.解:在Rt△cDE中,∵cE=DE•tanα=AB•tanα=10×tan52°≈12.80,∴Bc=BE+cE=DA+cE≈12.80+1.50=14.3(米).答:旗杆的高度约为14.3米.例如图,两建筑物的水平距离为32.6m,从点A测得点D的俯角α为35°12′,测得点c的俯角β为43°24′,求这两个建筑物的高.(精确到0.1m)
解:过点D作DE⊥AB于点E,则∠AcB=β=43°24′,∠ADE=35°12′,DE=Bc=32.6m.在Rt△ABc中,∵tan∠AcB=,∴AB=Bc•tan∠AcB=32.6×tan43°24′≈30.83(m).在Rt△ADE中,∵tan∠ADE=,∴AE=DE•tan∠ADE=32.6×tan35°12′≈23.00(m).∴Dc=BE=AB-AE=30.83-23.00≈7.8(m)
答:两个建筑物的高分别约为30.8m,7.8m.【教学说明】关键是构造直角三角形,分清楚角所在的直角三角形,然后将实际问题转化为几何问题解决.三、运用新知,深化理解
.如图,一只运载火箭从地面L处发射,当卫星达到A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°,1s后火箭到达B点,此时测得BR的距离是6.13km,仰角为45.54°,这个火箭从A到B的平均速度是多少?(精确到0.01km/s)
2.如图所示,当小华站在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B处,这时他看到自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3≈1.73)
【答案】1.0.28km/s
2.1.4米
四、师生互动,课堂小结
.这节课你学到了什么?你有何体会?
2.这节课你还存在什么问题?
.布置作业:从教材相应练习和“习题24.4”中选取.2.完成练习册中本课时练习.本节课从学生接受知识的最近发展区出发,创设了学生最熟悉的旗杆问题情境,引导学生发现问题、分析问题.在探索活动中,学生自主探索知识,逐步把生活实际问题抽象成数学模型并进行解释与应用的学习方法,养成交流与合作的良好习惯.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学数学的信心.
第四篇:九年级历史下册 4.19《中东战争》教案 华东师大版
历史:第19课《中东战争》教案(华东师大版九年级下)
【内容标准】
(1)以印度等国为例,简述亚洲国家实现国家独立和走上民族振兴道路的概况。
(2)简述战后非洲独立运动和拉丁美洲各国为捍卫国家主权、促进社会经济发展所进行的斗争。
(3)知道中东战争,认识战后中东地区矛盾的复杂性。【考试标准】
识记:印度独立后经济发展的成就;1990年纳米比亚独立,结束了非洲遭受欧洲殖民者长达500年奴役的历史;1999年巴拿马从美国手中收回了巴拿马运河主权。理解:二战后,导致中东地区矛盾复杂的主要因素。【教学目标】
1、知识与能力:知道亚非拉民族国家的振兴,分析中东矛盾的原因。
2、过程与方法:设问—讨论教学法。
3、情感态度与价值观:使学生认识到发展与和平的重大作用。【教学要点】
重点:亚非拉国家的独立和振兴。难点:中东地区矛盾复杂的主要因素。【导入新课】
复习上一课时重点知识导入。【新课探究】 中东问题
1、四大文明古国中有哪几个国家诞生于中东地区? 答:古代埃及、古代巴比伦。
2、世界三大宗教诞生于中东地区的有哪些? 答:基督教、伊斯兰教。
3、中东地区哪一资源最丰富? 答:石油。
4、中东战争的双方是谁?四次中东战争的影响是什么?
答:以色列和阿拉伯国家。历次战争使双方都意识到,都不可能用武力来达到自己的目的,只有相互承认对方的生存权,才有可能为中东地区创造和平发展的环境。
5、当前中东问题的焦点是什么?
答:当前中东问题涉及的国家主要是巴勒斯坦和以色列,其焦点是巴以之间的冲突与和谈。
6、中东地区矛盾错综复杂的主要因素有哪些?
答(1)历史原因:犹太人掀起复国主义运动,要在巴勒斯坦建立国家,引起阿拉伯人的反对,民族矛盾激化。
(2)宗教矛盾激化。(伊斯兰教与犹太教)(3)水资源与领土争端。
(4)大国插手和干涉,使矛盾进一步恶化。
7、你能为中东地区的和平进程提出一些解决法案吗?
提示:(1)应坚持和平共处五项原则和联合国宗旨,发挥联合国的作用。(2)应平等协商,通过谈判解决,不应使用武力或以武力相威胁。(3)应在当事人之间解决,反对大国不公正地介入。
1993年,巴勒斯坦解放组织前领导人阿拉法特与以色列达成了“以土地换和平”的协议。
用心
爱心
专心
第五篇:九年级数学投影教案3
课题:投影
(二)一、教学目标:
1、了解正投影的概念;
2、能根据正投影的性质画出简单的平面图形的正投影
3、培养动手实践能力,发展空间想象能力。
二、教学重、难点
教学重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影 教学难点:归纳正投影的性质,正确画出简单平面图形的正投影
三、教学过程:
(一)复习引入新课
下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2)(3)的投影线与投影面的位置关系有什么区别?
解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。
(二)合作学习,探究新知
1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面,(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状
通过观察,我们可以发现;(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB = A1B1
(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB > A2B2
(3)当线段AB垂直于投影面P时,它的正投影是一个点A3
2、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:
(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面
结论:(1)当纸板P平行于投影面Q时.P的正投影与P的形状、大小一样;
(2)当纸板P倾斜于投影面Q时.P的正投影与P的形状、大小发生变化;
(3)当纸板P垂直于投影面Q时.P的正投影成为一条线段.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.3、例1画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P图(1);(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P图(2).分析口述画图要领 解答按课本板书
4、练习
(1)P112 练习和习题29.1 1、2、5
5、谈谈收获
三、作业
P113 3、4