第一篇:九年级数学上册 23.3.1 实践与探索(二)教案 华东师大版
23.3.1实践与探索(二)
教学目标:
1、使学生利用一元二次方程的知识解决实际问题,学会将实际问题转化为数学模型。
2、让学生经历由实际问题转化为数学模型的过程,领悟数学建模思想,体会如何寻找实际问题中等量关系来建立一元二次方程。
3、通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神。重点难点:
1、重点:列一元二次方程解决实际问题。
2、难点:寻找实际问题中的相等关系。教学过程:
一、考考你
1、有一个两位数,它的十位上的数学字比个位上的数字大3,这两个数位上的数字之积等2于这两位数的7,求这个两位数。(这个两位数是63)
2、如图,一个院子长10cm,宽8cm,要在它的里沿三边辟出宽度相等的花圃,使花圃的面积等于院子面积的30%,试求这花圃的宽度。(花圃的宽度为1m)
二、创设问题情境
阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?
三、尝试探索,合作交流,解决问题
1、翻一番,你是如何理解的?
(翻一番,即为原净收入的2倍,若设原值为1,那么两年后的值就是2)
2、“平均年增长率”你是如何理解的。
(“平均年增长率”指的是每一年净收入增长的百分数是一个相同的值。即每年按同样的百分数增加,而增长的绝对数是不相同的)
3、独立思考后,小组交流,讨论。
4、展示成果,相互补充。
解:设平均年增长率应为x,依题意,得
2(1x)2
1x2 x121,x221 x10.414,x23.414
因为增长率不能为负数 所以增长率应为41.4%。
四、拓展应用
若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?
又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?
独立思考完成后,与同伴交流,教师分析示范与学生交流。
五、做一做
1、某钢铁厂去年1月某种钢产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?
2、某种药品,原来每盒售价96元,由于两次降价;现在每盒售价54元。平均每次降价百分之几? 小结:
谈谈你对本节所探讨的知识有何体会,你能否结合你的体会编制一道应用题,在小组内交流。请一些小组展示成果。
第二篇:【华东师大版】九年级数学上册教案22.3实践与探索第2课时
百度文库
教学设计
22.3 实践与探索
第二课时
教学目标: 知识技能目标
通过探索,学会解决有关增长率的问题.过程性目标
经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标
通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:
重点:列一元二次方程解决实际问题.难点:寻找实际问题中的相等关系.教学过程:
一、创设情境
我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q元,比去年同期增长x%;环境污染比去年降低y%;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.
二、探究归纳
例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?
分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2. 解 设原值为1,平均年增长率为x,则根据题意得
1(1x)22
解这个方程得 x121,x221.
因为x221不合题意舍去,所以
x2141.4%.
答 这两年的平均增长率约为41.4%.
探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?
又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?
例2 为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级每年植树数的平均增长率.(精确到0.1%)
分析 至今已成活2000棵,指的是连续三年春季上山植树的总和.解 设这个年级每年植树数的平均增长率为x,则
第二年种了400(1+x)棵;
2第三年种了400(1+x)棵;
2三年一共种了400+400(1+x)+400(1+x)棵;
2三年一共成活了[400+400(1+x)+400(1+x)]×95%棵.根据题意列方程得
2[400+400(1+x)+400(1+x)]×95%=2000 解这个方程得
教学资料
应有尽有
百度文库
教学设计
x1≈0.624=62.4% x2≈-3.624=-362.4% 但x2=-362.4%不合题意,舍去,所以 x=62.4%.
答 这个年级每年植树数的平均增长率为62.4%.课堂练习
1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2.某服装店花1200元进了一批服装,按40%的利润定价,无人购买,决定打折出售,但仍无人购买,结果又一次打折后才售完,经结算这批服装共盈利280元,若两次打折相同,问每次打了多少折?
三、交流反思
这节课学习了两个有关增长率的问题,通过探索,掌握了增长率问题的解题方法,学会了解相同增长率合不同增长率的问题.四、检测反馈
1.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)
2.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.问这批演出服共生产了多少套?
3.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?
五、布置作业
习题22.3的第3,4题.教学资料
应有尽有
第三篇:华东师大版九年级数学上册24.1《测量》教案
解直角三角形
24.1 测量
【知识与技能】
利用前面学习的相似三角形的有关知识,探索测量距离的几种方法,初步接触直角三角形的边角关系.【过程与方法】
使学生经历测量旗杆高度的方法探索、实际测量和计算,归纳、总结出测量高度的不同方法.【情感态度】
使学生经历测量过程,从而获得成功的体验,懂得数学来源于实际并用之于实际的道理;培养学生的合作和勇于探索精神.【教学重点】
探索测量距离的几种方法.【教学难点】
解决实际问题时学生对数学实践活动的原理的理解和对方法的掌握.一、情境导入,初步认识
当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许想知道操场旗杆有多高.你可能会想到利用相似三角形的知识来解决这个问题,但如果在阴天,你一个人能测量出旗杆的高度吗?
二、思考探究,获取新知
例1 教材100页“试一试”.如图所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC=34°,并已知目高AD为1.5米.现在请你按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?
解:∵△ABC∽△A′B′C′,∴AC∶A′C′=BC∶B′C′=500∶1 ∴只要用刻度尺量出纸上B′C′的长度,就可以计算出BC的长度,加上AD长即为旗
杆的高度.若量得B′C′=acm,则BC=500acm=5am.故旗杆高(1.5+5a)m.【教学说明】利用相似三角形的性质测量物体高度或宽度时,关键是构造和实物相似的三角形,且能直接测量出这个三角形各条线段的长,再列式计算出实物的高或宽等.例2为了测出旗杆的高度,设计了如图所示的三种方案,并测得图(a)中BO=6m,OD=3.4m,CD=1.7m;图(b)中CD=1m,FD=0.6m,EB=1.8m;图(c)中BD=9m,EF=0.2;此人的臂长为0.6m.(1)说明其中运用的主要知识;(2)分别计算出旗杆的高度.【分析】图(a)和图(c)都运用了相似三角形对应边成比例的性质,图(b)运用了同一时刻的物高与影长成正比的性质.【教学说明】测量物体的高度可利用自己的身高、臂长等长度结合相似形的性质求出物高,也可以运用同一时刻的物高与影长成正比的性质测量物体的高度.三、运用新知,深化理解
1.已知小明同学身高1.5m,经太阳光照射,在地面的影长为2m,若此时测得一塔在同一地面的影长为60m,则塔高为()A.90m B.80m C.45m D.40m 2.如图,A、B两点被池塘隔开,在A、B外任选一点C,连结AC、BC,分别取其三等分点M、N,量得MN=38m,则AB的长为()
A.76m B.104m C.114m D.152m 3.在平静的湖面上,有一枝红莲,高出水面1米,一阵风吹来,红莲被风吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深多少?
4.某同学想测旗杆的高度,他在某一时刻测得1m长的竹竿竖起时的影长为1.5m,同一时刻测量旗杆影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为9m,留在墙上的影长为2m,求旗杆的高度.【答案】1.C 2.C 3.1.5米 4.8米 【教学说明】引导学生独立完成,在黑板上展示,教师点评.四、师生互动,课堂小结
这节课你学到了哪些测量物体高度的方法? 【教学说明】小组讨论展示,教师归纳总结.1.布置作业:从教材相应练习和“习题24.1”中选取.2.完成练习册中本课时练习.本课时从学生身边所熟悉的测量旗杆的高度入手,通过探究设计各种测量方案,让学生学会利用所学的相似三角形、勾股定理的有关知识来解决问题,经历测量过程从而获得成功的体验,懂得数学来源于生活实际并用之于实际的道理,激发学生的学习兴趣,培养学生的动手操作能力.
第四篇:华东师大版九年级数学上册23.4《中位线》教案
中位线
【知识与技能】
1.经历三角形中位线的性质定理形成过程.2.掌握三角形中位线的性质定理,并能利用它解决简单的问题.3.通过命题的教学了解常用的辅助线的作法,并能灵活运用它们解题,进一步训练说理的能力.【过程与方法】
通过学习,进一步培养自主探究和合作交流的学习习惯.【情感态度】
进一步了解特殊与一般的辩证唯物主义观点、转化的思想.【教学重点】
三角形中位线的性质定理.【教学难点】
三角形中位线的性质定理的应用.一、情境导入,初步认识
在前面23.3节中,我们曾解决过如下的问题:如图,△ABC中,DE∥BC,则△ADE∽△ABC.由此可以进一步推知,当点D是AB的中点时,点E也是AC的中点.现在换一个角度考虑,如果点D、E原来就是AB与AC的中点,那么是否可以推出DE∥BC呢?DE与BC之间存在什么样的数量关系呢?
二、思考探究,获取新知
1.猜想:从画出的图形看,可以猜想: DE∥BC,且DE=1BC.2
2.证明:如图,△ABC中,点D、E分别是AB与AC的中点,∴
ADAE1.∵∠A=ABAC2∠A,∴△ADE∽△ABC(如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),∴∠ADE=∠ABC,对应边成比例),∴DE∥BC且DE=
DE1相似三角形的对应角相等,BC21BC.2思考:本题还有其他的解法吗?
已知:如图所示,在△ABC中,AD=DB,AE=EC.求证:DE∥BC,DE=
1BC.2
【分析】要证DE∥BC,DE=
1BC,可延长DE到F,使EF=DE,于是本题就转化为证明DF=BC,2DE∥BC,故只要证明四边形BCFD为平行四边形.还可以作如下的辅助线.【归纳结论】我们把连结三角形两边中点的线段叫做三角形的中位线,并且有三角形的中位线平行于第三边,并且等于第三边的一半.【教学说明】介绍中位线时,强调它与中线的区别.例1 求证:三角形的一条中位线与第三边上的中线互相平分.已知:如图,在△ABC中,AD=DB,BE=EC,AF=FC.求证:AE、DF互相平分.【分析】要证AE、DF互相平分,即要证四边形ADEF为平行四边形.证明:连结DE、EF.∵AD=DB,BE=EC, ∴DE∥AC,同理可得EF∥BA.∴四边形ADEF是平行四边形.∴AE、DF互相平分.例2 如图,在△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于点G.求证:GEGD1.CEAD3【分析】有两边中点易想到连接两边中点构造三角形的中位线.思考:在例2的图中取AC的中点F,假设BF与AD相交于点G′,如图,那么我们同理可得GD1,即两图中的G与G′是重合的,由此我们可以得出什么结论? AD31.3归纳:三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的连线的长是对应中线长的三、运用新知,深化理解
1.如图,在ABCD中,有E、F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N.求证:MN∥AD,MN=12AD.2.如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.【答案】1.解:连结EF,证四边形ABFE和四边形DCFE均为平行四边形,得FM=AM,FN=DN,∴MN∥AD,MN=1AD.22.解:取BC的中点G,连接EG,FG,1AC,EG∥AC 21∴∠ONM=∠GEF,同理GF=BD,2∵BG=CG,BE=AE,∴GE=∠OMN=∠GFE,∵AC=BD,∴GE=GF,∴∠GEF=∠GFE,∴∠ONM=∠OMN,∴OM=ON.【教学说明】引导学生取BC的中点,构造中位线.四、师生互动,课堂小结
1.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.2.三角形中位线定理的应用.3.三角形重心的性质.1.布置作业:从教材相应练习和“习题23.4”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时从学过的知识入手猜想中位线的性质,并通过动手画图、操作,证明猜想,体会知识的形成过程,加深对知识的理解.在证明的过程中举一反三,用多种方法证明三角形中位线定理,通过具体的实例分析,提高学生应用知识的能力.
第五篇:【华东师大版】九年级数学上册教案23.2相似图形
百度文库
教学设计
相似图形
教学目标:
1.理解相似形的概念,了解相似形是两个图形之间的关系.由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力.2.理解并掌握相似图形的性质:对应边成比例,对应角相等.3.知道判别两个多边形相似的方法.教学重点:
相似图形的性质:对应边成比例,对应角相等.教学难点:
1、如何判别两个多边形相似
2、借助相似图形的性质进行有关的计算 导学过程:
一、导入新课
挂上大小不一样的中国地图两张及两张大小不同的花朵图片,供同学观察,并看课本第57
教学资料
应有尽有
百度文库
教学设计
页的图,提出问题:这几组图片有什么相同的地方呢? 这些图片大小虽然不一样,但形状是相同的.两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?【点题】
二、讲解新课
由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同的.同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢? 大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片.对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情.在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形.在数学上,我们把具有相同形状的图形称为相似形.同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星.画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等.如图所示的是一些相似的图形.想一想:放大镜下的图形和原来的图形相似吗?
你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗? 还有一些图形,看起来有点相像,但它们不是相似的图形.为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这节要探索的内容.三、做一做
教学资料
应有尽有
百度文库
教学设计
AA'CBC'B'
1.我们先从这两张相似的地图上研究.在地图上找出北京、上海、福州的位置.如果我们用A、B、C分别表示大地图上的北京、上海、福州的位置,用A′、B′、C′、分别表示小地图上的北京、上海、福州的位置.请用刻度尺在大地图上量一量北京到上海的直线距离,即线段AB=__cm,上海到福州的直线距离,即线段BC=__cm,在小地图上也量一量A′B′=__cm,B′C′=__cm.思考:线段AB、A′B′、BC、B′C′之间什么关系呢? 结论:线段AB、A′B′、BC、B′C′是成比例线段,即 =.实际上,上面两张相似的地图中的对应线段都是成比例的.这样的结论对一般的相似多边形是否成立呢?
2.动动手,下图中两个四边形是相似形,仔细算一算它们的边长,量一量它们的对应角,看看它们的对应边之间是否有以上的关系呢?对应角之间呢?
ADA'D'B CB'C'
3.再看看下图中的两个相似的五边形,是否也具有同样的结果呢?
教学资料
应有尽有
百度文库
教学设计
AEA'BDB'C'C
E'D'结论: 经过观察、计算、度量、比较,我们得出对应边,对应角,【两个相似多边形的性质:对应边成比例,对应角相等】
实际上这两个特征,也是我们识别两个多边形是否相似的方法.即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似.识别两个多边形是否相似的标准有:(边数相同),对应边要(成比例),对应角要(都相等).四、练一练:
例 如图所示的相似四边形中,求未知边x的长度和角度α的大小.
1877°x82°12α117°77°18
分析
利用相似多边形的性质和多边形的内角和公式就可以得到所需结果,但利用相似多边形的性质时,必须分清对应边和对应角.
解:∵两个四边形相似,∴18x,1218∴x=27.
∴α=360°-(77°+82°+117°)=84°.
五、想一想:
1.两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?-2.所有的菱形都相似吗?所有矩形呢?正方形呢? 【提示:实际上,两个相似多边形的性质: 对应边成比例,对应角相等.也是我们判定两个多边形是否相似的方法,即如果_________________,那么这两个多边形相似.】
教学资料
应有尽有
百度文库
教学设计
六、谈一谈:
谈出你的感悟与困惑.七、比一比
1.矩形ABCD与矩形A′B′C′D′中,AB=1.5cm,BC=4.5cm,A′B′=0.8cm,B′C′=2.4cm,这两个矩形相似吗?为什么? 2.矩形ABCD与矩形A′B′C′D′中,已知AB=16cm,AD=10cm,A′D′=6cm,矩形A′B′ C′D′的面积为57cm,这两个矩形相似吗?为什么?
3.如图,四边形ABCD与四边形A′B′C′D′是相似的,且C′D′⊥B′C′,根据图中的条件,求出未知的边x,y及角.八、小结
形状相同而大小不一定相同的图形称为相似形,相似形在日常生活中经常碰到.九、自我反思
备用资料:
1.在比例尺为1:400000地图上,量得甲、乙两地的距离为15厘米,求甲、乙两地的实际距离.2
教学资料
应有尽有