小学数学奥数基础教程(四年级)--25

时间:2019-05-15 01:57:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学数学奥数基础教程(四年级)--25》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学数学奥数基础教程(四年级)--25》。

第一篇:小学数学奥数基础教程(四年级)--25

小学数学奥数基础教程(四年级)--第25讲

本教程共30讲

智取火柴

在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。

例1桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。规定谁取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取,那么谁将获胜?

分析与解:本题采用逆推法分析。获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根„„由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。

在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。

例2在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?

分析与解:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜。因为60÷7=8„„4,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜。

由例2看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜。例3将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?

分析与解:最后留给对方1根火柴者必胜。按照例1中的逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜。甲先取,只要第一次取3根,剩下57根(57除以4余1),以后每次都将除以4余1的根数留给乙,甲必胜。

由例3看出,在每次取1~n根火柴,取到最后一根火柴者为负的规定下,谁能做到总给对方留下(1+n)的倍数加1根火柴,谁将获胜。

有许多游戏虽然不是取火柴的形式,但游戏取胜的方法及分析思路与取火柴游戏完全相同。

例4两人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁胜。你选择先报数还是后报数?怎样才能获胜? 分析与解:对照例

1、例2可以看出,本例是取火柴游戏的变形。因为50÷(1+5)=8„„2,所以要想获胜,应选择先报,第一次报2个数,剩下48个数是(1+5=)6的倍数,以后总把6的倍数个数留给对方,必胜。

例51111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。规定将棋子移到最后一格者输。甲为了获胜,第一步必须向右移多少格?

分析与解:本例是例3的变形,但应注意,一开始棋子已占一格,棋子的右面只有1111-1=1110(个)空格。由例3知,只要甲始终留给乙(1+7=)8的倍数加1格,就可获胜。

(111-1)÷(1+7)=138„„6,所以甲第一步必须移5格,还剩下1105格,1105是8的倍数加1。以后无论乙移几格,甲下次移的格数与乙移的格数之和是8,甲就必胜。因为甲移完后,给乙留下的空格数永远是8的倍数加1。

例6今有两堆火柴,一堆35根,另一堆24根。两人轮流在其中任一堆中拿取,取的根数不限,但不能不取。规定取得最后一根者为赢。问:先取者有何策略能获胜?

分析与解:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同。

先取者在35根一堆火柴中取11根火柴,使得取后剩下两堆的火柴数相同。以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴。只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到。这样先取者总可获胜。

请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗? 例7有3堆火柴,分别有1根、2根与3根火柴。甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜。如果采用最佳方法,那么谁将获胜?

分析与解:根据例6的解法,谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能取胜。

甲先取,共有六种取法:从第1堆里取1根,从第2堆里取1根或2根;第3堆里取1根、2根或3根。无论哪种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴(同学们不妨自己试试),所以乙采用最佳方法一定获胜。

练习25

1.桌上有30根火柴,两人轮流从中拿取,规定每人每次可取1~3根,且取最后一根者为赢。问:先取者如何拿才能保证获胜?

2.有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输。如果甲先取,那么谁将获胜?

3.甲、乙二人轮流报数,甲先乙后,每次每人报1~4个数,谁报到第888个数谁胜。谁将获胜?怎样获胜?

4.有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜。如果甲后取,那么他一定能获胜吗?

5.黑板上写着一排相连的自然数1,2,3,„,51。甲、乙两人轮流划掉连续的3个数。规定在谁划过之后另一人再也划不成了,谁就算取胜。问:甲有必胜的策略吗?

6.有三行棋子,分别有1,2,4枚棋子,两人轮流取,每人每次只能在同一行中至少取走1枚棋子,谁取走最后一枚棋子谁胜。问:要想获胜是先取还是后取?

答案与提示练习

1.先取者取两根,以后每次把4的倍数根火柴留给对方取。先取者获胜。

2.乙胜。无论甲取几个球,只要乙接着取的球数与甲所取的球数之和为6即可。因为1999÷6余1,所以最后一个球被甲取走。

3.甲胜。甲先报3个数,以后每次与乙合报5个数即可获胜。

4.甲必胜。

5.甲先划,把中间25,26,27这三个数划去,就将1到51这51个数分成了两组,每组有24个数。这样,只要乙在某一组里有数字可划,那么甲在另一组里相对称的位置上就总有数字可划。因此,若甲先划,且按上述策略去进行,则甲必能获胜。

6.先取。从4枚棋子的行中取走1枚,变为例7的情形。

第二篇:小学数学奥数基础教程(五年级)--17

小学数学奥数基础教程(五年级)

本教程共30讲

位值原则

同一个数字,由于它在所写的数里的位置不同,所表示的数也不同。也就是说,每一个数字除了本身的值以外,还有一个“位置值”。例如“5”,写在个位上,就表示5个一;写在十位上,就表示5个十;写在百位上,就表示5个百;等等。这种把数字和数位结合起来表示数的原则,称为写数的位值原则。

我们通常使用的是十进制计数法,其特点是“满十进一”。就是说,每10个某一单位就组成和它相邻的较高的一个单位,即10个一,叫做“十”,10个十叫做“百”,10个百叫做“千”,等等。写数时,从右端起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,等等(见下图)。

用阿拉伯数字和位值原则,可以表示出一切整数。例如,926表示9个百,2个十,6个一,即926=9×100+2×10+6。根据问题的需要,有时我们也用字母代替阿拉伯数字表示数,如:

其中a可以是1~9中的数码,但不能是0,b和c是0~9中的数码。

下面,我们利用位值原则解决一些整数问题。

个数之差必然能被9整除。例如,(97531-13579)必是9的倍数。

例2有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。求原来的两位数。

分析与解:由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1。

设这个两位数为x。由题意得到

(10x+1)-(100+x)=666,10x+1-100-x=666,10x-x=666-1+100,9x=765,x=85。

原来的两位数是85。

例3 a,b,c是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?

分析与解:用a,b,c组成的六个不同数字是

这六个数的和等于将六个数的百位、十位、个位分别相加,得到

所以,六个数的和是(a+b+c)的222倍。

例4用2,8,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?

解:由例3知,可以组成的六个三位数之和是(2+8+7)×222,所以平均值是(2+8+7)×222÷6=629。

例5一个两位数,各位数字的和的5倍比原数大6,求这个两位数。

(a+b)×5-(10a+b)=6,5a+5b-10a-b=6,4b-5a=6。

当b=4,a=2或b=9,a=6时,4b-5a=6成立,所以这个两位数是24或69。

例6将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数。

分析与解:设原来的三位数的三个数字分别是a,b,c。若

由上式知,所求三位数是99的倍数,可能值为198,297,396,495,594,693,792,891。经验证,只有495符合题意,即原来的三位数是495。

练习17

1.有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数之和是970。求原来的两位数。

2.有一个三位数,将数码1加在它的前面可以得到一个四位数,将数码3加在它的后面也可以得到一个四位数,这两个四位数之差是2351,求原来的三位数。

5.从1~9中取出三个数码,用这三个数码组成的六个不同的三位数之和是3330。这六个三位数中最小的能是几?最大的能是几?

6.一个两位数,各位数字的和的6倍比原数小9,求这个两位数。

7.一个三位数,抹去它的首位数之后剩下的两位数的4倍比原三位数大1,求这个三位数。

练习17

1.79。

解:设原来的两位数为x,则(100+x)+(10x+1)=970。

解得x=79。

2.372。

解:设原来的三位数为x,则

(10x+3)-(1000+x)=2351。解得x=372。

3.6。

=100a+10b+c-(a+b+c)

4.3814。

5.159;951。

提示:由例3知,a+b+c=3330÷222=15。

6.63。

(10a+b)-(a+b)×6=9,化简得4a-5b=9。解得a=6,b=3,所求两位数为63。

7.267。

解:设三位数的百位数字为a,后两位数为x,则有

4x-(100a+x)=1,3x=100a+1。

因为x是两位数,所以3x<300,推知a=1或2。

若a=1,则x=101÷3不是整数,不合题意;

若a=2,则x=201÷3=67。所求三位数为267。

第三篇:小学数学奥数基础教程(三年级)--14

小学数学奥数基础教程(三年级)--第14讲

本教程共30讲

第14讲 火柴棍游戏(二)

火柴棍游戏的另一种形式是摆算式。

用火柴棍可以摆出下列数字和符号:

这些数字和符号,在去掉或添加或移动火柴棍后有些可以相互变化。例如:

添加1根火柴,可以得到

去掉1根火柴,可以得到

移动1根火柴,可以得到

其中“→”表示“可变为”。

做火柴棍算式游戏就是利用这些变化,改变算式,使之符合题目要求。

下面举的几个例子,只要仔细观察答式,就可以明白是如何按规定变化的,因此就不再进行过细说明了。

游戏1下面火柴棍摆的算式都是错的。请在各式中去掉或添加1根火柴棍,使各式成立:

解:(1)去掉1根,可变为

(2)添加1根,可变为

(3)去掉1根,可变为

游戏2在下列各式中只移动1根火柴棍,使错误的式子变成正确的算式:

解:(1)把221中的1移到等号右边使1变成7。

(2)把17前面的“+”变成“-”,这1根移到等号右边使71变成21。

(3)移动7中1根到4前面去。

游戏3下面的两个算式都是错误的,各移动2根火柴,使它们都变成正确的算式:

解:(1)右边移2根到左边,变为正确算式。

(2)左边的2根火柴移动后,变为正确算式。

游戏4 每式移动3根火柴棍,使各式都变为正确的算式:

为了锻练同学们变换算式的灵活性,我们再做一个游戏。

游戏5 下面是一个不正确的不等式,请移动其中1根火柴,使不等式成立。要求找到尽可能多的不同的移动方法。

分析与解:因为右边的21无法通过移动一根火柴变小,所以只考虑左边算式,或使被减数变大,或使减数变小,或改变“-”、“>”等符号。

将“-”号变为“+”号,有

改变“>”号,有

改变被减数与减数,有

练习14

1.在下面各式中去掉或添加1根火柴棍,使各式变成正确的算式:

2.在下面各式中,只移动1根火柴棍,使各式变为正确的算式:

3.移动2根火柴棍,使下面的不等式反向:

4.在下列各式中移动2根火柴,使它们成立:

5.移动3根火柴棍,使下式成立:

6.在下面的等式中,移动3根火柴棍,使其成为一个新的等式:

7.下面是一个不正确的不等式,请移动其中1根火柴,使不等式成立。请找出尽量多的不同移法。

答案与提示练习14

1.(1)12-2=10;(2)14+1=15。

2.(1)7+7=7+7;(2)12-2+1=11;

(3)14-7+4=11。

3.4+1<7。

4.(1)2+3=5;(2)19+10+9=38。

5.19×7=133。

6.86-63=23。

7.93-91<32,93-31<92,93+31>32,33+31<92,53+31<92。

第四篇:小学四年级奥数习题

1、两个自然数相除的商是47.余数是3.被除数.除数.商及余数的和等于629,你知道除数是多少吗?

2、一个化肥厂计划12天生产一批化肥,由于每天多生产3吨,结果9天就完成了这批化肥的生产任务,这批化肥一共有多少吨?

3、15年前父亲的年龄是儿子的7倍,10年后父亲的年龄是儿子的2倍。父亲、儿子现在的年龄各是多少?

4、一笔奖金芬一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖的2倍,每个二等奖的奖金是每个三等奖的2倍。如果评一、二、三等奖各两个,那么每个一等奖的奖金是308元。如果只评一个一等奖、两个二等奖和三个三等奖,那么一等奖的奖金是多少元?

5、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.80元。当超过四吨时,超过部分每吨3元。某月甲乙两户共交水费26.40元,用水量之比为5:3。甲乙两户各应交水费多少元?

6、一个山清水秀的村子里有三个好朋友:小明、小刚和小强,他们常在一起合伙打鱼。一次,他们忙碌了大半天,打了一堆鱼。实在太累了,就坐在河边的柳树下休息,一会儿都睡着了。小明醒了想起家里有事,看小刚和小强睡得正香,没有吵醒他们。他把鱼分成三份,自己拿一份走了。不一会儿小刚也醒了,要回家。他也把鱼分成三份,自己拿一份走了。太阳快落山了,小强才醒来。他想,小明和小刚上哪去了?这么晚了,我得回家劈柴去。于是,他又把鱼分成三份,自己拿走一份。最后还剩下8条鱼。

第二天,他们又合伙到河边打鱼,才知道昨天分的鱼不合理。小明立即把剩下的8条鱼给小刚3条,小强5条。你能算出他们原来共打多少条鱼吗

7、一次,小明从山里来了一筐山梨,他把小刚和小强找来,对他们说:“我把这筐梨先分给你们一些,剩下的便是我的。”于是,他把山梨的一半给了小刚,然后又给小刚加了1个。接着,他又把剩下的给了小强一半,也同样给小强加了1个,最后剩下5个山梨,他自己留下了。

你来算算,小明这一筐山梨共有多少个?

8、机场上停着10架飞机,第一架飞机起飞后,每隔4分有一架飞机接着起飞。在第一架起飞后2分,有一架飞机在机场上降落,以后每隔6分,有一架飞机在机场上降落,降落在机场上的飞机依次相隔4分在原有的10架飞机之后起飞。问:从第一架飞机起飞以后,经过多少时间,机场上才没有飞机停留?

9、甲、乙、丙三艘船共运货9400箱,甲船比乙船多运300箱,丙船比乙船少运200箱。求三艘船各运多少箱货?

10、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

11、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

12、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

1.设除数是x,则被除数是47x+3

x+(47x+3)+47+3=629

48x+53=629

48x=576

x=12

除数是12

2.12x=9,则x=9 一共有108吨

3.设15年前父亲的年龄是7x,则15年前儿子的年龄是x.现在父亲的年龄是7x+15,儿子的年龄是x+15

10年后父亲的年龄是7x+15+10,儿子的年龄是x+15+10

根据题意,得

7x+15+10=2(x+15+10)

5x=50-25

x=5

现在父亲的年龄是7*5+15=50岁,儿子的年龄是5+15=20岁

1.一等奖的奖金是308元

308÷2=154元,二等奖的奖金是154元

154÷2=77元,三等奖的奖金是77元

(308+154+77)*2=1078元,总奖金额1078元

一等奖=2倍二等奖=4倍三等奖

所以2个二等奖=1个一等奖,3个三等奖=3/4个一等奖

1078÷(1+1+3/4)=392元,一等奖的奖金是392元

方程:

如果按第一种分配方法每个一等奖的奖金是308元时,则可知总金额是(308+154+77)*2=1078元。按另一种设置办法后,设三等奖奖金为x元,则有2*2x+2*2x+3x=1078 则x =98

则可算得是:三等奖是98元,二等奖是196元,一等奖是392元。

2.由于最后剩的8条是小强分的三份中的两份,所以小强拿走的鱼是8÷2条。那么小刚拿走自己分的一份鱼后剩下的鱼是8÷2×3条,这占小刚分的三份中的两份,所以小刚拿走的鱼是(8÷2×3)÷2;同样可得知小明拿走的鱼是〔(8÷2×3)÷2×3〕÷2条。所以打的鱼一共是〔(8÷2×3)÷2×3〕÷2×3=27(条)。

当然,我们还可以从小强第一天拿走的鱼是8一条和第二天又拿了5条知道,每人平均拿了8÷2+5条,所以打的鱼一共是(8÷2+5)×3=27(条)。

然后列出算式:

〔(5+l)×2+1]×2

=[6×2+1〕×2

=26(个)

答:筐里一共有26个山梨。

36+24+16+12+8+4+4+4=108(分)

或者为:

4×〔(10-l)+6+4+3+2+l+l+l〕=108(分)

这道题就可以这样来思考:根据已知甲船比乙船多运30O箱,假设甲船同乙船运的一样多,那么甲船就要比原来少运300箱,结果三船运的总箱数就要减少300箱,变成(9400-300)箱。

又根据丙船比乙船少运200箱,假设丙船也同乙船运的一样多,那么丙船就要比原来多运200箱,结果三船总箱数就要增加200箱,变成(9400-300+200)箱。

经过这样调整,三船运的总箱数为(9400-300+200)。根据假设可知,这正好是乙船所运箱数的3倍,从而可求出动船运的箱数。

解:典型的和差问题,铁路桥=(11270+2270)÷2=6770米公路桥=11270-6770=4500米

解:先把第一、二小组看成一个整体,他们与第三小组和为180,差为20,三小组人数=(180-20)÷2=80

一二小组合起来为180-80=100人,一小组与二小组的差为2,一小组人数=(100-2)÷2=49二小组人数=100-49=51

解:因为甲乙现在筐里的苹果数量未知,所以可以直接设数,就设甲筐有19千克苹果,那么乙筐有0千克苹果。此时甲乙和为19千克。变动后,和仍然为19千克,此时乙筐与甲筐的差为3,则乙筐=(19+3)÷2=11千克

第五篇:小学四年级奥数智力题

小熊开店

小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。

它们来到小熊的水果店。“桃子怎么卖呀?”小猴问。

“第一筐里6元3公斤,第二筐里6元2公斤。”小熊回答。小猴又说:“如果我从两筐里拿5公斤,要付你12元,对吗?” 小熊点点头。

“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,对不对?” “正是,正是。”小熊讲。

于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。

晚上回到家,小熊结帐,怎么算都是亏本的。第二天,小猴、小兔找到小熊把情况说了,笑着说:“都是你学习不好,我们才来教训你一下”,并把少给的钱补给了小熊。

小熊惭愧地低下了头,从此每天上课都很认真。它们三个成了好朋友。

旅游团多少人

有一个年轻的小伙子来找刘先生,并自我介绍说:“我叫于江,这次我带领了一个旅游团到香港旅游,听说您的大酒店环境舒适,服务周到,我们想来住你们酒店。”

刘先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?” “人嘛,还可以,是一个大团。”

刘先生心里一阵惊喜:一个大团,又是一笔大生意,真是太好了。

作为一个导游,于江看出了刘先生的心思,他慢条斯理地说:“先生,如果你能算出我团的人数,我们就住您们酒店了。”

“你请说吧。”刘先生自信地说。

“如果我把我的团平均分成四组,多出一人,再把每小组平均分成四份,结果又多出一人,再把分成的四小组分成四份,结果又多出一人,当然,也包括我,请问我们至少有多少人?”

“一共多少呢?”刘先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,该如何下手呢?”他是精明的生意人,很快说出答案:“至少八十五人,对不对?”

于江先生高兴地说:“一点不错,就是八十五人。请说说您的算法。” “人数最少的情况是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)。”

“好,我们今天就住在您这儿了。” “那你们有多少男的和女的?” “有55个男的,30个女的。”

“我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?” “当然是先生您给安排了,但必须男女分开,也不能有空床位。”

又出了一个题目,刘先生还从没碰到过这样的客人,他只好又得花一番心思了。

瞑思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房,一间5人房;女的一间11人房间,两间7人房,一间5人的,一共11间。

于江先生看了他的安排后,非常满意,马上办了住宿手续。

一桩大生意做成了,虽然复杂了一点,但刘先生的心里还是十分高兴的。

聪明的小男孩

从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。

一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。

正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”

大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗?

其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水„„”

小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!

下载小学数学奥数基础教程(四年级)--25word格式文档
下载小学数学奥数基础教程(四年级)--25.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    四年级奥数

    一个木器厂要生产一批课桌,原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌? (1) 电视机厂接到一批生产任务,计划每天生产90太,可......

    四年级数学上册奥数题

    四年级数学上册奥数题 1、某五个数的平均值为60,如果将其中一数改为80,这五个数的平均值为70,改的这个数应是多少? 2、30个同学平分一些练习本,后来又来了6人,大家重新分配,每人......

    小学数学奥数教案

    小学奥数基础教程(四年级)小学奥数 第1讲 归一问题与归总问题 第2讲 年龄问题 第3讲 鸡兔同笼问题与假设法 第1讲 归一问题与归总问题 在解答某些应用题时,常常需要先找出“单......

    小学数学奥数教案

    绿藤星教育(***)----小学奥数基础教程小学奥数基础教程 第1讲 速算与巧算(一) 第2讲 速算与巧算(二) 第3讲 高斯求和 第4讲 4,8,9整除的数的特征 第5讲 弃九法 第6讲 数的整......

    小学四年级奥数-逻辑问题

    逻辑问题 例1 小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?例2 刘刚、马辉......

    小学四年级上册奥数题

    小学四年级奥数题 姓名: 1、按规律填数。 1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( ) 3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 2、在数列3,12,21......

    小学四年级奥数下册教案

    小学四年级奥数下册教案:行程问题 在本讲中,我们研究两个运动物体作方向相同的运动时,路程、速度、时间这三个基本量之间有什么样的关系. 例1 下午放学时,弟弟以每分钟40米的......

    人教版小学数学四年级下册奥数题(定稿)

    四年级数学下期尖子生、奥数题(一) 1、小明在计算一道三位数乘两位数的计算题时,把一个乘数个位上的数8错写成3,乘得的结果是2323,实际结果应该是2828,这两个乘数分别是多少?2、甲......