小学四年级奥数下册教案

时间:2019-05-15 04:53:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学四年级奥数下册教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学四年级奥数下册教案》。

第一篇:小学四年级奥数下册教案

小学四年级奥数下册教案:行程问题

在本讲中,我们研究两个运动物体作方向相同的运动时,路程、速度、时间这三个基本量之间有什么样的关系.例1 下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).分析 若经过5分钟,弟弟已到了A地,此时弟弟已走了40×5=200(米);哥哥每分钟比弟弟多走20米,几分钟可以追上这200米呢?

解: 40×5÷(60-40)

=200÷20

=10(分钟)

答:哥哥10分钟可以追上弟弟.我们把类似例1这样的题,称之为追及问题.如果我们把开始时刻前后两物体(或人)的距离称为路程差(如例1中的200米),从开始时刻到后者追上前者路程差这一段路程所用的时间称为追及时间,则从例1容易看出:追及问题存在这样的基本关系:

路程差=速度差×追及时间.如果已知其中的两个量,那么根据上式就很容易求出第三个量.例2 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?

分析 若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:

解: 乙的速度为:10÷5×4÷2=4(米/秒)

甲的速度为:10÷5+4=6(米/秒)

答:甲的速度为6米/秒,乙的速度为4米/秒.例3 某人沿着一条与铁路平行的笔直的小路由西向东行走,这时有一列长520米的火车从背后开来,此人在行进中测出整列火车通过的时间为42秒,而在这段时间内,他行走了68米,则这列火车的速度是多少?

分析 整列火车通过的时间是42秒,这句话的意思是:从火车的车头追上行人时开始计时,直到车尾超过行人为止共用42秒,因此,如果我们把火车的运动看作是车尾的运动的话,则本题实际上就是一个车尾与人的追及问题,开始时刻,它们的路程差就等于这列火车的车长,追及时间就等于42秒,因此可以求出它们的速度差,从而求出火车的车速.解: 520÷42+68÷42

=(520+68)÷42

=588÷42

=14(米/秒)

答:火车的车速为14米/秒.例4 幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?

分析 这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致.因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长(200米),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程.解: ①冬冬第一次追上晶晶所需要的时间:

200÷(6-4)=100(秒)

②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)

③晶晶第一次被追上时所跑的路程:

4×100=400(米)

④冬冬第二次追上晶晶时所跑的圈数:

(600×2)÷200=6(圈)

⑤晶晶第2次被追上时所跑的圈数:

(400×2)÷200=4(圈)

答:略.解答封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰是一圈的长度.例5 军事演习中,“我”海军英雄舰追击“敌”军舰,追到A岛时,“敌”舰已在10分钟前逃离,“敌”舰每分钟行驶1000米,“我”海军英雄舰每分钟行驶1470米,在距离“敌”舰600米处可开炮射击,问“我”海军英雄舰从A岛出发经过多少分钟可射击敌舰?

分析 “我”舰追到A岛时,“敌”舰已逃离10分钟了,因此,在A岛时,“我”舰与“敌”舰的距离为10000米(=1000×10).又因为“我”舰在距离“敌”舰600米处即可开炮射击,即“我”舰只要追上“敌”舰9400(=10000米-600米)即可开炮射击.所以,在这个问题中,不妨把9400当作路程差,根据公式求得追及时间.解:(1000×10-600)÷(1470-1000)

=(10000-600)÷470

=9400÷470

=20(分钟)

答:经过20分钟可开炮射击“敌”舰.例6 在一条直的公路上,甲、乙两个地点相距600米,张明每小时行4公里,李强每小时行5公里.8点整,张李二人分别从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再经过3分钟,他们又调头相向而行,依次按照1,3,5,…(连续奇数)分钟数调头行走,那么张、李二人相遇时是8点几分?

分析 无论相向还是反向,张李二人每分钟都共走4000÷60+5000÷60=150(米).如果两人一直相向而行,那么从出发经过600÷150=4(分钟)两人相遇.显然,按现在的走法,在16分钟(=1+3+5+7)之内两人不会相遇.在这16分钟之内,他们相向走了6分钟(=1+5),反向走了10分钟(=3+7),此时两人相距600+[150×(3+7-1-5)]=1200米,因此,再相向行走,经过1200÷150=8(分钟)就可以相遇.解: 600+150×(3+7-1-5)=1200(米)

1200÷(4000÷60+5000÷60)=8(分钟)

1+3+5+7+8=24(分钟)

答:两人相遇时是8点24分.例7 自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队,然后通信员立即返回出发点;随后又返回去追自行车队,再追上时恰好离出发点18千米,求自行车队和摩托车的速度.分析 在第一次追上自行车队与第二次追上自行车队之间,摩托车所走的路程为(18+9)千米,而自行车所走的路程为(18-9)千米,所以,摩托车的速度是自行车速度的3倍(=(18+9)÷(18-9));摩托车与自行车的速度差是自行车速度的2倍,再根据第一次摩托车开始追自行车队时,车队已出发了12分钟,也即第一次追及的路程差等于自行车在12分钟内所走的路程,所以追及时间等于12÷2=6(分钟);联系摩托车在距出发点9千米的地方追上自行车队可知:摩托车在6分钟内走了9千米的路程,于是摩托车和自行车的速度都可求出了.解:(18+9)÷(18-9)=3(倍)

12÷(3-1)=6(分钟)

9÷6=1.5(千米/分钟)

1.5÷3=0.5(千米/分钟)

答:摩托车与自行车的速度依次为1.5千米/分钟,0.5千米/分钟.例8 A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?

分析 由上图容易看出:在第一次相遇与第一次追上之间,乙在100-80=20(分钟)内所走的路程恰等于线段FA的长度再加上线段AE的长度,即等于甲在(80+100)分钟内所走的路程,因此,乙的速度是甲的9倍(=180÷20),则BF的长为AF的9倍,所以,甲从A到B,共需走80×(1+9)=800(分钟)乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB全程,因此,追及时间也变为200分钟(=100×2),所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.解:(略).

第二篇:小学四年级奥数习题

1、两个自然数相除的商是47.余数是3.被除数.除数.商及余数的和等于629,你知道除数是多少吗?

2、一个化肥厂计划12天生产一批化肥,由于每天多生产3吨,结果9天就完成了这批化肥的生产任务,这批化肥一共有多少吨?

3、15年前父亲的年龄是儿子的7倍,10年后父亲的年龄是儿子的2倍。父亲、儿子现在的年龄各是多少?

4、一笔奖金芬一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖的2倍,每个二等奖的奖金是每个三等奖的2倍。如果评一、二、三等奖各两个,那么每个一等奖的奖金是308元。如果只评一个一等奖、两个二等奖和三个三等奖,那么一等奖的奖金是多少元?

5、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.80元。当超过四吨时,超过部分每吨3元。某月甲乙两户共交水费26.40元,用水量之比为5:3。甲乙两户各应交水费多少元?

6、一个山清水秀的村子里有三个好朋友:小明、小刚和小强,他们常在一起合伙打鱼。一次,他们忙碌了大半天,打了一堆鱼。实在太累了,就坐在河边的柳树下休息,一会儿都睡着了。小明醒了想起家里有事,看小刚和小强睡得正香,没有吵醒他们。他把鱼分成三份,自己拿一份走了。不一会儿小刚也醒了,要回家。他也把鱼分成三份,自己拿一份走了。太阳快落山了,小强才醒来。他想,小明和小刚上哪去了?这么晚了,我得回家劈柴去。于是,他又把鱼分成三份,自己拿走一份。最后还剩下8条鱼。

第二天,他们又合伙到河边打鱼,才知道昨天分的鱼不合理。小明立即把剩下的8条鱼给小刚3条,小强5条。你能算出他们原来共打多少条鱼吗

7、一次,小明从山里来了一筐山梨,他把小刚和小强找来,对他们说:“我把这筐梨先分给你们一些,剩下的便是我的。”于是,他把山梨的一半给了小刚,然后又给小刚加了1个。接着,他又把剩下的给了小强一半,也同样给小强加了1个,最后剩下5个山梨,他自己留下了。

你来算算,小明这一筐山梨共有多少个?

8、机场上停着10架飞机,第一架飞机起飞后,每隔4分有一架飞机接着起飞。在第一架起飞后2分,有一架飞机在机场上降落,以后每隔6分,有一架飞机在机场上降落,降落在机场上的飞机依次相隔4分在原有的10架飞机之后起飞。问:从第一架飞机起飞以后,经过多少时间,机场上才没有飞机停留?

9、甲、乙、丙三艘船共运货9400箱,甲船比乙船多运300箱,丙船比乙船少运200箱。求三艘船各运多少箱货?

10、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

11、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

12、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

1.设除数是x,则被除数是47x+3

x+(47x+3)+47+3=629

48x+53=629

48x=576

x=12

除数是12

2.12x=9,则x=9 一共有108吨

3.设15年前父亲的年龄是7x,则15年前儿子的年龄是x.现在父亲的年龄是7x+15,儿子的年龄是x+15

10年后父亲的年龄是7x+15+10,儿子的年龄是x+15+10

根据题意,得

7x+15+10=2(x+15+10)

5x=50-25

x=5

现在父亲的年龄是7*5+15=50岁,儿子的年龄是5+15=20岁

1.一等奖的奖金是308元

308÷2=154元,二等奖的奖金是154元

154÷2=77元,三等奖的奖金是77元

(308+154+77)*2=1078元,总奖金额1078元

一等奖=2倍二等奖=4倍三等奖

所以2个二等奖=1个一等奖,3个三等奖=3/4个一等奖

1078÷(1+1+3/4)=392元,一等奖的奖金是392元

方程:

如果按第一种分配方法每个一等奖的奖金是308元时,则可知总金额是(308+154+77)*2=1078元。按另一种设置办法后,设三等奖奖金为x元,则有2*2x+2*2x+3x=1078 则x =98

则可算得是:三等奖是98元,二等奖是196元,一等奖是392元。

2.由于最后剩的8条是小强分的三份中的两份,所以小强拿走的鱼是8÷2条。那么小刚拿走自己分的一份鱼后剩下的鱼是8÷2×3条,这占小刚分的三份中的两份,所以小刚拿走的鱼是(8÷2×3)÷2;同样可得知小明拿走的鱼是〔(8÷2×3)÷2×3〕÷2条。所以打的鱼一共是〔(8÷2×3)÷2×3〕÷2×3=27(条)。

当然,我们还可以从小强第一天拿走的鱼是8一条和第二天又拿了5条知道,每人平均拿了8÷2+5条,所以打的鱼一共是(8÷2+5)×3=27(条)。

然后列出算式:

〔(5+l)×2+1]×2

=[6×2+1〕×2

=26(个)

答:筐里一共有26个山梨。

36+24+16+12+8+4+4+4=108(分)

或者为:

4×〔(10-l)+6+4+3+2+l+l+l〕=108(分)

这道题就可以这样来思考:根据已知甲船比乙船多运30O箱,假设甲船同乙船运的一样多,那么甲船就要比原来少运300箱,结果三船运的总箱数就要减少300箱,变成(9400-300)箱。

又根据丙船比乙船少运200箱,假设丙船也同乙船运的一样多,那么丙船就要比原来多运200箱,结果三船总箱数就要增加200箱,变成(9400-300+200)箱。

经过这样调整,三船运的总箱数为(9400-300+200)。根据假设可知,这正好是乙船所运箱数的3倍,从而可求出动船运的箱数。

解:典型的和差问题,铁路桥=(11270+2270)÷2=6770米公路桥=11270-6770=4500米

解:先把第一、二小组看成一个整体,他们与第三小组和为180,差为20,三小组人数=(180-20)÷2=80

一二小组合起来为180-80=100人,一小组与二小组的差为2,一小组人数=(100-2)÷2=49二小组人数=100-49=51

解:因为甲乙现在筐里的苹果数量未知,所以可以直接设数,就设甲筐有19千克苹果,那么乙筐有0千克苹果。此时甲乙和为19千克。变动后,和仍然为19千克,此时乙筐与甲筐的差为3,则乙筐=(19+3)÷2=11千克

第三篇:小学四年级奥数智力题

小熊开店

小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。

它们来到小熊的水果店。“桃子怎么卖呀?”小猴问。

“第一筐里6元3公斤,第二筐里6元2公斤。”小熊回答。小猴又说:“如果我从两筐里拿5公斤,要付你12元,对吗?” 小熊点点头。

“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,对不对?” “正是,正是。”小熊讲。

于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。

晚上回到家,小熊结帐,怎么算都是亏本的。第二天,小猴、小兔找到小熊把情况说了,笑着说:“都是你学习不好,我们才来教训你一下”,并把少给的钱补给了小熊。

小熊惭愧地低下了头,从此每天上课都很认真。它们三个成了好朋友。

旅游团多少人

有一个年轻的小伙子来找刘先生,并自我介绍说:“我叫于江,这次我带领了一个旅游团到香港旅游,听说您的大酒店环境舒适,服务周到,我们想来住你们酒店。”

刘先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?” “人嘛,还可以,是一个大团。”

刘先生心里一阵惊喜:一个大团,又是一笔大生意,真是太好了。

作为一个导游,于江看出了刘先生的心思,他慢条斯理地说:“先生,如果你能算出我团的人数,我们就住您们酒店了。”

“你请说吧。”刘先生自信地说。

“如果我把我的团平均分成四组,多出一人,再把每小组平均分成四份,结果又多出一人,再把分成的四小组分成四份,结果又多出一人,当然,也包括我,请问我们至少有多少人?”

“一共多少呢?”刘先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,该如何下手呢?”他是精明的生意人,很快说出答案:“至少八十五人,对不对?”

于江先生高兴地说:“一点不错,就是八十五人。请说说您的算法。” “人数最少的情况是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)。”

“好,我们今天就住在您这儿了。” “那你们有多少男的和女的?” “有55个男的,30个女的。”

“我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?” “当然是先生您给安排了,但必须男女分开,也不能有空床位。”

又出了一个题目,刘先生还从没碰到过这样的客人,他只好又得花一番心思了。

瞑思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房,一间5人房;女的一间11人房间,两间7人房,一间5人的,一共11间。

于江先生看了他的安排后,非常满意,马上办了住宿手续。

一桩大生意做成了,虽然复杂了一点,但刘先生的心里还是十分高兴的。

聪明的小男孩

从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。

一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。

正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”

大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗?

其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水„„”

小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!

第四篇:四年级奥数

一个木器厂要生产一批课桌,原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌?

(1)电视机厂接到一批生产任务,计划每天生产90太,可以按期完成。实际每天多生产5台,结果提前一天完成任务。这批电视机共有多少台?

(2)小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前两天看完。这本故事书有多少页?

(3)修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天完成。一共修了多少米?

有两盒图钉,甲盒有72只,乙盒有48只,从甲盒中拿出多少只放入乙盒,才使两盒中的图钉树相等?

(1)有2袋面粉,第一袋面粉有24千克,第二代面粉有18千克。从第一袋中取出几千克放入第二袋,才能使两袋中的面粉质量相等?

(2)有两盒图钉,甲盒有72只,乙盒有48只,每次从甲盒中拿4只放入乙盒,拿几次后才能使两盒图钉数目相等?

(3)有两袋糖,一袋68粒,另一袋28粒。每次从多的一袋中拿出6粒放入少的一袋里,粒几次才使两袋糖的数目同样多?

第五篇:三年级下册奥数教案

三年级下册奥数教案

导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦!第一课时

1、一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米? 答案与解析:

实际上青蛙每爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦!

2、有两桶油,从第一桶倒20千克给第二桶,两桶就同样多了。已知第一桶原有50千克油,求两桶油共重多少千克? 答案与解析:

第一桶油倒20千克给第二桶,两桶就同样多,说明第一桶比第二桶多了2个20千克的油,一共多20*2=40千克油,他们一共有:50+50+40=140千克油。

第二课时

3、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学? 答案与解析:

增加一条和减少一条,前后相差2条,也就是说,每条船坐6人正好,每条船坐9人则空出两条船。这样就是一个盈亏问题的标准形式了。

增加一条船后的船数=9*2/(9-6)=6条,这个班共有6*6=36名同学。4、7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆? 答案与解析:

要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。

解:①一辆卡车一次能运多少吨沙土?

336÷6÷7=56÷7=8(吨)

②560吨沙土,5趟运完,每趟必须运走几吨?

560÷5=112(吨)

③需要增加同样的卡车多少辆?

112÷8-7=7(辆)

列综合算式:560÷5÷(336÷6÷7)-7=7(辆)答:需增加同样的卡车7辆。

第三课时

5、在两座楼中间每隔3米种一棵树,共种了20棵,这两座楼之间距离是多少米? 答案与解析:

在两座楼中种树,首、尾两头都不种树。

(1)一共有多少个间隔?

20+1=21(个)

(2)两座楼之间的距离是多少?

3×21=63(米)

答:两座楼之间的距离是63米。

6、一条小道两旁,每隔5米种一棵,共种202棵,这条路长多少米? 答案与解析:

202÷2=101(棵)

101-1=100(段)

5×100=500(米)

答:这条小道长500米。

第四课时

7、某校三年级同学参加植树活动,每种4棵树之间的距离是9米。照这样计算,种18棵树的距离是多少米? 答案与解析:4棵树之间的距离是9米,相当于在9米长的距离上平均分成3段,那么一段长的距离是9÷(4-1)=3(米)。种18棵树,相当于把一段路平均分成17段,再根据“总路线长=株距×段数”把这个数量关系求出总路线长。

解:种4棵树,把9米分成了几段:

4-3=1(段)

每段的长是几米:

9÷3=3(米)

18棵树的距离分成了几段:18-1=17(段)

18棵树的全长是多少米:3×17=51(米)

答:18棵树的距离是51米。

8、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米? 答案与解析:

第一根剪成的每段比第二根剪成的每段长2米。那么,如果同样是5段的话,第二种就要比第一种少5*2=10米,现在第二种7段和第一种5段一样长,说明第二种的两段长是10米,也就是说每一段为10/2=5米。所以,绳子长为5*7=35米。

原来每根绳子长为7*(2*5/2)=35米。

第五课时

9、一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元? 答案与解析:

分析:每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。每个一等奖就是每个三等奖的4倍,如果评一、二、三等奖各两人,我们把每个三等奖的奖金看成1份,那么,总奖金就相当于分成了2*4+2*2+2=14份,因为这时的一等奖奖金是3080元,也就是说三等奖奖金是每个308/4=77元,所以总奖金等于14*77=1078元,如果评一个一等奖,两个二等奖,三个三等奖,还是以每个三等奖的奖金看成1份,那么这时总奖金就被分成了1*4+2*2+3=11份,每份三等奖奖金就等于1078/11=98元,所以,这时的一等奖奖金等于980*4=392元。

10、甲乙两队共同挖一条长8250米的水渠,乙队比甲队每天多挖150米。已知先由甲队挖4天后,余下的由两队共同挖了7天,便完成了任务。那么甲队每天挖多少米? 答案与解析:

分析:余下的由两队共同挖了7天,这7天中,乙队比甲队多挖了150*7=1050米,那么,我们可以把总数减去1050米,然后看成甲和乙每天挖同样多,这样,就相当于甲队一个队挖7*2+4=18天,共挖了8250-1050=7200米,说明甲每天挖7200/18=400米。

第六课时

11、华侨小学某班有60人,在收看“邓小平同志追悼大会”实况时,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人? 答案与解析:

分析:有34人穿黑裤子,那么穿蓝裤子的有60-34=26人,有12人穿白上衣蓝裤子,说明还有26-12=14人是穿黑上衣蓝裤子,有29人穿黑上衣,那么,有29-14=15人穿黑上衣黑裤子。

12、三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选? 答案与解析:

分析:在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。说明一共统计了17+16+11=44张选票,还有52-44=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投给丙的,那么甲就必须得到4张才能确保比乙多。因此,甲最少再得到4票就能够保证当选了。

(这里特别要注意到“保证”两个字,必须从最坏的情况考虑)

第七课时13、3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名? 答案与解析:

分析:3名工人5小时加工零件90个,就是说每人每小时加工(90/3)/5=6个,那么一个人10小时可以加工6*10=60个,540个零件在10小时做完就需要540/60=9个人。

14、有20人修筑一条公路,计划15天完成。动工3天后抽出5人植树,留下的人继续修路。如果每人工作效率不变,那么修完这段公路实际用多少天? 答案与解析:

分析:有20人修筑一条公路,计划15天完成,说明这条公路的工作量按每天计算有20*15=300人次,动工3天后抽出5人植树,20人修3天完成了20*3=60人次,那么总工作量还剩下300-60=240人次,这些剩下的工作给15人做,每人就还需要工作240/15=16天,这样,前后加起来,实际工作就有3+16=19天。

第八课时

15、小明一家五口人去登山,带了2个包,五人轮流背,走了15千米,则平均每人背包走了多少千米? 答案与解析:15×2÷5=6(千米)

16、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 答案与解析:

60/7=8......4,60/8=7......4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8*8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44/4==11,说明有11人。

60/7=8......4,60/8=7......4,卡片有8盒,小朋友人数有(4+5*8)/4=11人。导语:三年级正是拓展思维的好时机,多做奥数题有助于我们这方面能力的锻炼,所以同学们要每天坚持做奥数练习。

第九课时

17、小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○„你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢? 答案与解析:

第90个球为白球,第100个球为黑球

18、张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人? 答案与解析:

做对第一题的13个人里,有8个人也做对第二题,那么做对第二题的22个人里这8个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8个人。算式:13+22-8=27(人)。所以这个班一共有27人。

第十课时

19、一只鸡有1个头2条腿,一只兔子有1个头4条腿,如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗? 答案与解析:假设10个动物都是兔子,那么就有10X4=40(条)腿。但实际是26条腿,与实际相差40-26=14(条)腿。每将一个兔子变成一只鸡总的腿数就减少两只,需要转化14(4-2)=7(只)那么鸡就有7只,兔子就有10-7=3(只)。

导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给希望同学们能够认真做题哦!20、明明给在外地工作的妈妈发一封信,要贴2角钱的邮票。他手中的邮票有1张1角的、2张8分的、5张4分的和2张1分的。那么明明要把这些邮票经过搭配选出2角钱的邮票来,一共有多少种不同的搭配的方法。

答案与解析:明明手中的邮票可以按下面的几种搭配方法,得到2角钱的邮票。

1张1角的、1张8分的、2张1分的,合起来是2角。

1张1角的、2张 4分的、2张 1分的,合起来也是2角。

2张8分的、1张4分的,合起来也是2角。

1张8分的、3张4分的,合起来也是2角。

5张4分的也是2角。

由以上分析得出:贴2角钱邮票,共有5种不同的搭配方法。

第十一课时

21、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵? 答案与解析:

当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。所以,原有树苗=200-8=192棵。有同学12+8=20名,原有树苗20*10-8=192棵。

22、“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 答案与解析:

花球原价1元钱2个,白球原价1元钱3个。即花球原价10元钱20个,白球原价10元钱30个。那么,同样买花球和白球各30个,花球要比白球多花10/2=5元,共需要30/2+30/3=25元。现在两种球的售价都是2元钱5个,花球和白球各买30个需要(30/5)*2*2=24元,说明花球和白球各买30个能省下25-24=1元。现在共省了4元,说明花球和白球各有30*4=120个,共买了120*2=240个。

花球和白球各买30个时,可比原来省下=(30/2+30/3)-(30/5)*2*2=1元,省下4元,花球和白球各买30*4=120个。所以,小明共买了240个球。

第十二课时

23、红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,他们戴的帽子一个是红的,一个是黄的,一个是蓝的。只知道红红没有戴黄帽子。聪聪既不戴黄帽子,也不戴蓝帽子,请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子? 答案与解析:

先确定聪聪既不戴黄帽子,也不戴蓝帽子,那么他戴的只能是红帽子,红红没有戴黄帽子,而红帽子已经是聪聪戴的,因此红红戴的是蓝帽子,最后剩下黄帽子肯定是颖颖戴的。

24、一条大河上游与下游的两个码头相距240千米,一艘航船顺流而下的速度为每小时航行30千米,逆流而上的速度为每小时航行20千米。那么这艘船在两码头之间往返一次的平均速度是多大? 答案与解析:航行中的速度有两种,然而所求的平均速度并非是这两种速度之和除以2。

按往返一次期间的平均速度,就要分别计算总航程与经历的总时间,然后按平均速度的意义求出答案来。

解 总航程 240×2=480(千米)

总时间 240÷30+240÷20

=8+12

=20(小时)

平均速度 480÷20=24(千米)

答 往返一次的平均速度为每小时航行24千米。

第十三课时

25、一个三位数,它的个位上的数是百位上的数的3 倍,它的十位上的数是百位上的数的 2倍.这个数可能是多少? 答案与解析:

如果百位是 1,个位上的数是百位上的数的 3倍,个位就是3;十位上的数是百位上的数的 2倍,十位就是 2,这个数就是 123.如果百位是2,个位上的数是百位上的数的3 倍,个位就是6;十位上的数是百位上的数的2 倍,十位就是4,这个数就是246.如果百位是3,个位上的数是百位上的数的 3倍,个位就是9;十位上的数是百位上的数的 2倍,十位就是6,这个数就是369.这样的数有3 个,分别是123、246、369

26、某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士? 答案与解析:

后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是(17+1)÷2=9(人),因此可以求出总人数:9×9=81(人).第十四课时

导语:多做奥数题有助于我们数学思维的拓展,也能让我们的数学成绩得到提升,所以同学们要勤加练习哦!现在就开始做奥数老师给我们带来的这道题吧!

27、小明、小华和小光三个人都是少先队的干部。他们中一个是大队长,一个是中队长,一个是小队长。在一次体育比赛中,他们的一百米赛跑的结果是:

(1)小光比大队长的成绩好;

(2)小明和中队长的成绩不相同;

(3)中队长比小华的成绩差。

根据以上情况,你能知道小明、小华、小光三个人中,谁是大队长吗? 答案与解析:

根据(2)小明和中队长的成绩不相同,(3)中队长比小华成绩差,我们可以知道,小明和小华都不是中队长,那小光一定是中队长。

又根据(1)小光比大队长成绩好,也就是中队长比大队长成绩好。还根据(3)中队长比小华成绩差,我们可以知道,小华不是大队长,那么小华一定是小队长,当然小明就是大队长了。

28、小花猫钓到了鲤鱼、草鱼、鲫鱼,三种鱼一共12条,放在小桶里往家走。路上遇到小白猫。小花猫问小白猫:“你最爱吃哪种鱼?”小白猫说:“那当然是鲤鱼了。”小花猫说:“好,你只要从我的桶里,随便拿出3条鱼来,一定会有你最爱吃的鲤鱼。不过,你可要先告诉我,我钓到了几条鲤鱼?”这下可难住小白猫了。小花猫钓了几条鲤鱼呢?不过聪明的小白猫,稍稍动了动脑筋,就说出来了。小白猫到底怎样想的呢? 答案与解析:

小花猫一共钓了12条鱼,只要知道草鱼、鲫鱼各几条,那么要求出钓了几条鲤鱼就容易了,难就难在不知道有几条草鱼,也不知道有几条鲫鱼。别忙,想想小花猫还说了什么话?对!小花猫说,随便拿出三条鱼,就一定会有鲤鱼。解答这题就从这里突破。

小花猫的话可以这样理解:至少有一条鲤鱼,含意是也可能有2条鲤鱼,或者3条都是鲤鱼。这就是说,小花猫钓到的三种鱼中,草鱼、鲫鱼是各有1条,其余的12-1-1=10条都是鲤鱼。

要是钓到的草鱼和鲫鱼合起来是3条或是比3条多行吗?不行!要是合起来是3条或是比3条多,那么随便拿3条就不一定有鲤鱼了。你说对吗?

29、把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段? 答案:对折一次: 2*2-1=3段

对折二次:4*2-3=5段

对折三次:8*2-5=11段

绳子被折成8股,因此相当于未对折时被剪8刀,应该成9段吧

一方面三折以后成8股,中间一剪成16;

另一方面,第一折产生1个弯头,第二折产生2个弯头,第三折产生4个弯头;

最后剪成:16-1-2-4=9根。

第十五课时

30、用数字1,1,2,2,3,3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字 答案:312132 231213

31、树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原 来每棵树上各落多少只鸟? 答案与解析:

分析 倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16-6=10(只).同理,第二棵树上原有鸟16+6-8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48÷3=16(只)

②第一棵树上原有鸟只数.16+8=24(只)

③第二棵树上原有鸟只数.16+6-8=14(只)

④第三棵树上原有鸟只数.16-6=10(只)

答:第一、二、三棵树上原来各落鸟24只、14只和10只

第十六课时

32、一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空? 答案与解析:

分析:要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

解:①进水速度:480÷8=60(吨/小时)

②排水速度:480÷6=80(吨/小时)

③排空全池水所需的时间:480÷(80-60)=24(小时)

列综合算式:

480÷(480÷6-480÷8)=24(小时)

答:两管齐开需24小时把满池水排空。

33、妈妈上楼,从1楼走到3楼需要走40级台阶,如果各层楼之间的台阶数相同,那么妈妈从第1层走到第6层需要走多少级台阶? 答案与解析: 要求妈妈从第1层走到第6层需要走多少级台阶,必须先求出每一层楼梯有多少台阶,还要知道从一层走到6层需要走几层楼梯。

从1楼到3楼有3-1=2层楼梯,那么每一层楼梯有40÷2=20(级)台阶,而从1层走到6层需要走6-1=5(层)楼梯.解:每一层楼梯有:40÷(3-1)=20(级台阶)

妈妈从1层走到6层需要走:20×(6-1)=100(级)台阶。

答:妈妈从第1层走到第6层需要走100级台

第十七课时

导语:今天奥数老师为同学们带来了一道有趣的试题,希望同学们在找到乐趣的同时也能提升我们的数学能力,同学们加油吧!

34、今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币与真币和重量不同。现需弄清楚伪币究竟比真币轻,还是比真币重,但只有一架没有砝码的天平。那么怎样利用这架天平称两次,来达到目的? 答案与解析:

答案:分成50、50、1三堆:

第一次称两个50,如果平了,第二次从这100个任意拿1个(当然是真的)与第三堆的1个称,自然会出结果;

第一次称两个50不平是正常的,第二次我们把其中的一堆(或重的或轻的都行)分成25、25、称第二次:

1、把轻的分成25、25,如果平了,说明那堆重的有假,当然假的是超重;如果不平,说明这50个轻的有假,假的是轻了;

2、把重的分成25、25,道理同上。

所以两次可以发现轻重,但是找不出哪个是假的。

35、小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 答案与解析:假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是

50×10÷(75-50)=20(分钟)·

因此,小张走的距离是

75×20=1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法

下载小学四年级奥数下册教案word格式文档
下载小学四年级奥数下册教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版小学数学四年级下册奥数题(定稿)

    四年级数学下期尖子生、奥数题(一) 1、小明在计算一道三位数乘两位数的计算题时,把一个乘数个位上的数8错写成3,乘得的结果是2323,实际结果应该是2828,这两个乘数分别是多少?2、甲......

    四年级奥数-数数图形-教案

    四年级奥数第十三章《数数图形》教案 教学目标: 1、在学过一些基本的几何图形的基础上,通过观察掌握数线段、角、三角形、长方形的规律和方法。 2、学生通知亲身体验明白数图......

    小学四年级奥数-逻辑问题

    逻辑问题 例1 小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?例2 刘刚、马辉......

    小学四年级上册奥数题

    小学四年级奥数题 姓名: 1、按规律填数。 1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( ) 3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 2、在数列3,12,21......

    小学奥数教案——循环小数

    小学奥数教案---循环小数 一 本讲学习目标 1、掌握循环小数化分数的法则,还要掌握该法则的推导方法——错位相减法; 2、会进行分数与循环小数的互化; 3、掌握分数与循环小数的......

    小学数学奥数教案

    小学奥数基础教程(四年级)小学奥数 第1讲 归一问题与归总问题 第2讲 年龄问题 第3讲 鸡兔同笼问题与假设法 第1讲 归一问题与归总问题 在解答某些应用题时,常常需要先找出“单......

    小学六年级奥数教案

    小学六年级奥数教案:行程问题 第一讲 行程问题 走路、行车、一个物体的移动,总是要涉及到三个数量: 距离走了多远,行驶多少千米,移动了多少米等等; 速度在单位时间内(例如1小时内......

    小学数学奥数教案

    绿藤星教育(***)----小学奥数基础教程小学奥数基础教程 第1讲 速算与巧算(一) 第2讲 速算与巧算(二) 第3讲 高斯求和 第4讲 4,8,9整除的数的特征 第5讲 弃九法 第6讲 数的整......