第一篇:四年级奥数-数数图形-教案
四年级奥数第十三章《数数图形》教案
教学目标:
1、在学过一些基本的几何图形的基础上,通过观察掌握数线段、角、三角形、长方形的规律和方法。
2、学生通知亲身体验明白数图形时不重复、不遗漏的规律,锻炼数学思维的严谨性。教学重、难点:
在观察的基础上,自己总结出数图形的规律和方法。教学过程:
一、复习:
复习以前所学的数简单的线段、三角形、角的方法。
二、新授:
例1:数一数,下图中有多少条线段?(1)
(2)解答:(1)4+3+2+1=10(条)答:有10个线段。
(2)6+5+4+3+2+1=21(条)答:有21条线段。
总结:如果线段上有5个点,就构成了4条基本线段,线段总数为:4+3+2+1这4个连续自然数的和。以此类推。练习:
数线段:师在黑板上画图(线段上有8个点)。
7+6+5+4+3+2+1=28(条)例2:数角、数三角形。
(1)数角。
(2)数三角形。
(2)数三角形。
解答:(1)4+3+2+1=10(个)答:有10个角。
(2)4+3+2+1=10(个)答:有10个三角形。
(3)(4+3+2+1)×2=20(个)答:有20个三角形。总结:数角、三角形规律的数线段类似。练习:
数线段:师在黑板上画图(数角和数三角形的)。例3:数长方形。
(1)
(2)
(3)(3)1 解答:(1)6个 6=6×1(6=3+2+1)(2)18个 18=6×3(6=3+2+1,3=2+1)(3)60个 60=10×6(10=4+3+2+1,6=3+2+1)总结:数长方形的个数可以用公式:
长边上的线段数×宽边上的线段数=长方形的个数 练习:师在黑板上画图(数长方形的)。
(如果学生接受好,还可以补充数正方形的方法。不过,数正方形的方法将在五年级奥数里会学到。)
方法学会了,那么,会有什么用途呢?接下来学习数图形的应用。
例4:从成都到南京的某次快车,中途要停靠9个站。铁路局要为这次快车准备多少种不同的车票?这些车票中有多少种不同的票价?
分析:这道题实际上也是数线段的问题。中途要停靠9个站,连同成都、南京两个站,共可看作有11个点,进而有10条基本线段,共要准备
10+9+8+7+6+5+4+3+2+1=(10+1)×10÷2=55(种)想一想,上面的计算运用了我们学过的什么知识点? 答:共要准备55种不同的车票,共有55种不同的票价。练习:P75,第5题、第9题。
作业:练习十三:1,2,6,10大题。
第二篇:小学奥数数数图形教案
我是闯关小达人
关卡一:握手游戏
有6个小朋友,每2人握一次手并且只能握一次手,一共要握几次手?
关卡二:你知道怎么算吗
从青岛到上海的直达列车,中途停靠5个大站,这趟列车共有多少种不同的车票?
关卡三:和爸爸妈妈合影
如果让你和爸爸妈妈一起并排站着合影,你知道你们有几种不同的排列顺序吗?
关卡四:我不会上当的哦
老师在黑板上写下了0,2,4,6这四个数字,请同学们想想它们能组成几个三位数?
数数图形教案 例1:数一数,图中有多少个锐角?
如何做到不重复又不遗漏呢? 第一种方法:列举法
第二种方法:图示法
小朋友们,你们发现什么规律了吗?
例2:数一数,下面图形中共有几个三角形?
(1)
(2)
方法解析:按照三角形的拼组方式或者形状的大小将给定的图形分类数数。(1)
(2)
例3:动动脑,数数下图中有几个长方形?
例4:数数下图中有几个正方形?
例5:数一数,下图中的大长方体是由多少个小长方体组成的?
例6:下图所示的“塔”由四层没有缝隙的小立方块垒成,求塔中共有多少个小立方块?
练习
1.你知道下图中共有几个角吗?
(1)
(2)
2.数一数,下面的图形有几条线段?(1)
(2)
3.你知道下图中共有几个三角形吗?(1)
(2)
4.下面图形有多少个长方形?
(1)
(2)
5.下图是由小立方块码放起来的,其中有一些小立方体被压住看不见,请你数一数共有多少小立方体?
第三篇:四年级奥数
一个木器厂要生产一批课桌,原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌?
(1)电视机厂接到一批生产任务,计划每天生产90太,可以按期完成。实际每天多生产5台,结果提前一天完成任务。这批电视机共有多少台?
(2)小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前两天看完。这本故事书有多少页?
(3)修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天完成。一共修了多少米?
有两盒图钉,甲盒有72只,乙盒有48只,从甲盒中拿出多少只放入乙盒,才使两盒中的图钉树相等?
(1)有2袋面粉,第一袋面粉有24千克,第二代面粉有18千克。从第一袋中取出几千克放入第二袋,才能使两袋中的面粉质量相等?
(2)有两盒图钉,甲盒有72只,乙盒有48只,每次从甲盒中拿4只放入乙盒,拿几次后才能使两盒图钉数目相等?
(3)有两袋糖,一袋68粒,另一袋28粒。每次从多的一袋中拿出6粒放入少的一袋里,粒几次才使两袋糖的数目同样多?
第四篇:小学四年级奥数下册教案
小学四年级奥数下册教案:行程问题
在本讲中,我们研究两个运动物体作方向相同的运动时,路程、速度、时间这三个基本量之间有什么样的关系.例1 下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).分析 若经过5分钟,弟弟已到了A地,此时弟弟已走了40×5=200(米);哥哥每分钟比弟弟多走20米,几分钟可以追上这200米呢?
解: 40×5÷(60-40)
=200÷20
=10(分钟)
答:哥哥10分钟可以追上弟弟.我们把类似例1这样的题,称之为追及问题.如果我们把开始时刻前后两物体(或人)的距离称为路程差(如例1中的200米),从开始时刻到后者追上前者路程差这一段路程所用的时间称为追及时间,则从例1容易看出:追及问题存在这样的基本关系:
路程差=速度差×追及时间.如果已知其中的两个量,那么根据上式就很容易求出第三个量.例2 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?
分析 若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:
解: 乙的速度为:10÷5×4÷2=4(米/秒)
甲的速度为:10÷5+4=6(米/秒)
答:甲的速度为6米/秒,乙的速度为4米/秒.例3 某人沿着一条与铁路平行的笔直的小路由西向东行走,这时有一列长520米的火车从背后开来,此人在行进中测出整列火车通过的时间为42秒,而在这段时间内,他行走了68米,则这列火车的速度是多少?
分析 整列火车通过的时间是42秒,这句话的意思是:从火车的车头追上行人时开始计时,直到车尾超过行人为止共用42秒,因此,如果我们把火车的运动看作是车尾的运动的话,则本题实际上就是一个车尾与人的追及问题,开始时刻,它们的路程差就等于这列火车的车长,追及时间就等于42秒,因此可以求出它们的速度差,从而求出火车的车速.解: 520÷42+68÷42
=(520+68)÷42
=588÷42
=14(米/秒)
答:火车的车速为14米/秒.例4 幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?
分析 这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致.因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长(200米),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程.解: ①冬冬第一次追上晶晶所需要的时间:
200÷(6-4)=100(秒)
②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)
③晶晶第一次被追上时所跑的路程:
4×100=400(米)
④冬冬第二次追上晶晶时所跑的圈数:
(600×2)÷200=6(圈)
⑤晶晶第2次被追上时所跑的圈数:
(400×2)÷200=4(圈)
答:略.解答封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰是一圈的长度.例5 军事演习中,“我”海军英雄舰追击“敌”军舰,追到A岛时,“敌”舰已在10分钟前逃离,“敌”舰每分钟行驶1000米,“我”海军英雄舰每分钟行驶1470米,在距离“敌”舰600米处可开炮射击,问“我”海军英雄舰从A岛出发经过多少分钟可射击敌舰?
分析 “我”舰追到A岛时,“敌”舰已逃离10分钟了,因此,在A岛时,“我”舰与“敌”舰的距离为10000米(=1000×10).又因为“我”舰在距离“敌”舰600米处即可开炮射击,即“我”舰只要追上“敌”舰9400(=10000米-600米)即可开炮射击.所以,在这个问题中,不妨把9400当作路程差,根据公式求得追及时间.解:(1000×10-600)÷(1470-1000)
=(10000-600)÷470
=9400÷470
=20(分钟)
答:经过20分钟可开炮射击“敌”舰.例6 在一条直的公路上,甲、乙两个地点相距600米,张明每小时行4公里,李强每小时行5公里.8点整,张李二人分别从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再经过3分钟,他们又调头相向而行,依次按照1,3,5,…(连续奇数)分钟数调头行走,那么张、李二人相遇时是8点几分?
分析 无论相向还是反向,张李二人每分钟都共走4000÷60+5000÷60=150(米).如果两人一直相向而行,那么从出发经过600÷150=4(分钟)两人相遇.显然,按现在的走法,在16分钟(=1+3+5+7)之内两人不会相遇.在这16分钟之内,他们相向走了6分钟(=1+5),反向走了10分钟(=3+7),此时两人相距600+[150×(3+7-1-5)]=1200米,因此,再相向行走,经过1200÷150=8(分钟)就可以相遇.解: 600+150×(3+7-1-5)=1200(米)
1200÷(4000÷60+5000÷60)=8(分钟)
1+3+5+7+8=24(分钟)
答:两人相遇时是8点24分.例7 自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队,然后通信员立即返回出发点;随后又返回去追自行车队,再追上时恰好离出发点18千米,求自行车队和摩托车的速度.分析 在第一次追上自行车队与第二次追上自行车队之间,摩托车所走的路程为(18+9)千米,而自行车所走的路程为(18-9)千米,所以,摩托车的速度是自行车速度的3倍(=(18+9)÷(18-9));摩托车与自行车的速度差是自行车速度的2倍,再根据第一次摩托车开始追自行车队时,车队已出发了12分钟,也即第一次追及的路程差等于自行车在12分钟内所走的路程,所以追及时间等于12÷2=6(分钟);联系摩托车在距出发点9千米的地方追上自行车队可知:摩托车在6分钟内走了9千米的路程,于是摩托车和自行车的速度都可求出了.解:(18+9)÷(18-9)=3(倍)
12÷(3-1)=6(分钟)
9÷6=1.5(千米/分钟)
1.5÷3=0.5(千米/分钟)
答:摩托车与自行车的速度依次为1.5千米/分钟,0.5千米/分钟.例8 A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?
分析 由上图容易看出:在第一次相遇与第一次追上之间,乙在100-80=20(分钟)内所走的路程恰等于线段FA的长度再加上线段AE的长度,即等于甲在(80+100)分钟内所走的路程,因此,乙的速度是甲的9倍(=180÷20),则BF的长为AF的9倍,所以,甲从A到B,共需走80×(1+9)=800(分钟)乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB全程,因此,追及时间也变为200分钟(=100×2),所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.解:(略).
第五篇:四年级奥数 鸡兔同笼
学科:奥数
教学内容:第14讲 鸡兔同笼问题
知识网络
鸡兔同笼问题是我国古代数学著作《孙子算经》中的一个流传甚广的数学趣题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?翻译成现代汉语语言为:今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有几只?这一古老的数学问题在现实生活中普遍存在,解法也多种多样,但一般采用的是假设法。
在解答应用题时,有时要采用“假设”的思想来分析,以找到解题途径。用假设思想解应用题,首先要根据题意去正确地判断应该怎样假设,并根据所做的假设,注意数量关系发生的变化,从所给的条件与变化了的数量关系的比较中做出适当的调整,来找到正确答案。
重点·难点
运用假设法是求解这类可以转化为鸡兔同笼问题的应用题的关键。
学法指导
用假设法解应用题的步骤:一是要根据题意正确地判断怎样“假设”,二是依据假设,按照题目所给的数量关系进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的已知量加以调整,三是进而得出正确的答案。
经典例题
[例1]一个农夫有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?
思路剖析
鸡兔同笼问题适用的基本方法是假设法。假设这笼里全是鸡,那么鸡脚的总数应为:50×2=100(只),与实际相比较,脚减少的数为140-100=40(只)。脚减少的原因是每把一只兔当作一只鸡时,要少4-2=2(只)脚。所以实际的兔数是40÷(4-2)=20(只),若先假设的全是鸡,则先求出的是兔数。
解答
☆解法一:
设全是鸡,那么相应的鸡脚数:50×2=100(只)与实际相比,脚减少的数:140-100=40(只)
兔脚与鸡脚的差4-2=2(只)
实际兔数为40÷2=20(只)
那么实际的鸡数:50-20=30(只)
答:有鸡30只,有兔20只。
☆解法二:
利用方程求解:
设农夫有鸡x只,那么有免(50-x)只。那么鸡有脚2×x只,兔有脚4×(50-x)只。
列方程为2×x+4×(5-x)=140
解方程2×x+200-4×x=140
2×x=60 x=30
50-x=50-30=20
则鸡有30只,兔有20只。
☆解法三:
(不拘于传统的解法,让我们的思维发散,更具有创造性。)
农夫想知道鸡、兔分别有多少只,他做了一个有趣的设想,就是假设每只兔子又长出一个头来,把它劈开,变成“一头两脚”的两只“半兔”,半免和鸡都有两只脚,因而共有140÷2=70(只)头,从而多出了70-50=20(只)头,这就是兔子的数目,鸡的只数就是50-20=30(只)。
☆解法四:
兔有4只脚,而鸡有2只脚,不过鸡有2只翅膀,如果把翅膀也当作脚,则鸡、兔都有4只脚,于是脚有50×4=200(只),但题中翅膀不算脚,因而有翅膀200-140=60(只),每只鸡有两只翅膀,则鸡数为60÷2=30(只),兔有50-30=20(只)。
☆解法五:
农夫惊讶地看到鸡、兔们非凡的表演:每只鸡都用一只脚站立着,每只兔都用两只后腿站立起来。这种情况下,地上的总腿数是原来的一半,即70只腿,鸡的脚数与头数相同,而兔的脚数是头数的两倍,因此从70里减去总的头数,剩下来的就是兔的头数:70-50=20(只),即有20只兔,那么有鸡30只。
☆解法六:
我们还可以想像鸡、兔们经过专门训练后具有一些“特殊技能”,当它们听到哨音后,鸡飞起来,兔立即双脚站立起来。这时立在地上的应该都是兔,它的脚数:140-50×2=40(只)。因此有免:40÷2=20(只),鸡有:50-20=30(只)。
[例2]现有2分和5分的硬币共40枚,共值125分,问两种硬币各多少放?
思路剖析
利用假设法,假设40枚硬币全是2分的,则面值为80分,与实际相比减少了125-80=45(分),是由于把每个5分硬币少算了5-2=3(分)造成的,则可知有5分硬币45÷3=15(枚)。
解答
设全为2分的,则共值2×40=80(分)
与实际相比少125-80=45(分)
由于假设造成的差值5-2=3(分)
则有5分硬币45÷3=15(枚),2分硬币40-15=25(枚)。
答:有5分硬币15枚,2分硬币25枚。
点津
由假设造成的与实际的差值45分,是与把5分硬币当作2分硬币产生的差值相关的,而不是仅与5分硬币有关。
[例3]某次的小学数学奥林匹克竞赛,共有20道题,评分标准是:每做对一题得5分,每做错或不做一题扣3分。小贝贝参加了这次竞赛,得了68分,问:小贝贝做对了几道题?
思路剖析
假设小贝贝20道题全做对了,他应该得20×5=100(分),比实际上多了100-68=32(分),产生这一差异的原因是把做错或没做的题也算作做对的了,需要注意的是,做错或不做一题比做对一题应少得5+3=8(分),因此小贝贝做错或不做的题数:
32÷8=4(道)。
解答
20-(5×20-68)÷(5+3)
=20-32÷8=20-4
=16(道)
答:小贝贝做对了16道题。
点津
由于做错和不做的题不但不得分,还要扣掉分数,那么与做对一道题相比,就不是简单相减的关系,而应该求和得出。类似于零上5℃与零下3℃相差是8℃,而不是2℃。
[例4]农场工人上山植树造林,绿化祖国,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。问:张宁植树这些天共有几个雨天?
思路剖析
题目中虽然没有问张宁工作了几天,但总共做了多少天是一个关键量,须先求出来。天数=总量÷平均数=112÷14=8(天)。要求有多少个雨天,可假设每天都是晴天,那么应植20×8=160(棵),与实际相比,多植160-112=48(棵),是把雨天植树量当作20棵造成的,20-12=8(棵)是实际植树量与假设的差值。因此有雨天:48÷8=6(天)。
解答
[20×(112÷14)-112]÷(20-12)
=(160-112)÷8=48÷8
=6(天)
答:张宁植树这些天总共有6个雨天。
[例5]“和尚分馒头”题,记载于我国明代《算法统宗》。现代文译文:大和尚与小和尚共100名,分配100个馒头,大和尚每位给3个,小和尚3个人给1个,问大、小和尚各有多少人?
思路剖析
假设都是小和尚。因为小和尚3个人给1个馒头,分配100个馒头,应该有小和尚3×l00=300(人),比实际多了300-100=200(人)。是由于把大和尚看做小和尚造成的,由于大和尚每位给3个馒头,相当于给9位小和尚的量。由于假设出现的差值即为9-l=8(人),那么大和尚的人数220÷8=25(人)。
解答
(3×100-100)÷(3×3-1)
=(300-100)÷8=200÷8
=25(人)
100-25=75(人)
答:大和尚有25人,小和尚有75人。
点津
本题中给出的条件“大和尚每位给3个,小和尚3个人给1个”,无法直接求出大、小和尚在人数或在馒头数上的差值,需通过条件中给出的比例关系求得。
[例6]四年级某班有学生68人,为了更好地学习,同学们自愿结成了14个学习小组。这些小组有的3人,有的5人,有的7人。而且3人组与5人组的组数相同。问三种学习小组各有几组?
思路剖析
前面的例题中,总体中的数量总是“非此即彼”只有两种,而本题中出现了3种,似乎有些复杂。但题目中有个很重要的条件“而且3人组与5人组的组数相同”,是否可以利用这个条件将此题也转化成我们熟悉的鸡兔同笼题呢?我们将“3人组与5人组组数相同”这个条件,转化为将他们组成4人组,那么组数应为这两组的组数和,因为4是3和5的平均数。
那么分组情况可以看做是两类:4人组和7人组。假设都是4人组,那么应有人数:4×14=56(人),与实际人数的差值:68-56=12(人),由于假设出现的差值:7-4=3(人),则7人组的组数:12÷3=4(组)。
解答
(68-4×14)÷(7-4)
=(68-56)÷3=12÷3
=4(组)
那么3人组与5人组的组数(14-4)÷2=5(组)
答:学习小组中3人组和5人组各有5组,7人组有4组。
[例7]有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜒有多少只?
思路剖析
依照例6的思路,我们应当将三种昆虫分成两类,从而将题目转化成与鸡兔同笼结构相同的题。分析题中的已知条件,找到可以归成一类的突破口。三种昆虫有两种有翅膀,一种没翅膀,显然不能按此划分。三种昆虫都有腿,而且其中两种腿数相同,与例6思路相同,将三种昆虫按腿数分成两类:8腿虫和6腿虫。假设18只昆虫都是8腿虫,则有腿8×18=144(条),与实际腿数的差值144-118=26(条),由于假设造成的差值8-6=2(条),那么有6腿虫:26÷2=13(只),知道了6腿虫的总数,就可以按翅膀对数再将它们分成两类:2对翅膀和1对翅膀。则又转化成一道鸡兔同笼结构的题目。假设13只昆虫都有2对翅膀,则有2×13=26(对),与实际翅膀数的差值26-20=6(对),由于假设造成的差值2-1=1(对),那么蝉(一对翅膀)有:6÷1=6(只)。
解答
(8×18-118)÷(8-6)
=(144-118)÷2=26÷2
=13(只)„„6腿虫数
(2×13-20)÷(2-1)
=(26-20)÷1
=6(只)„„1对翅膀虫数
13-6=7(只)„„2对翅膀虫数
答:蜻蜓有7只。
点津
恰当地把多组事物根据其特点划分成两类,转化成鸡兔同笼结构的题目是解题的关键。当组数大于2时,有时需要在同一题中解决多于1次的鸡兔同笼结构的题目,才能求得最终结果。
发散思维训练
1.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?
2.养殖场共养鸡、兔180只,已知鸡脚总数比兔脚总数多180只。问养的鸡、兔各多少只?
3.学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。问象棋与跳棋各有多少副?
4.鸡、兔共有脚140只,若将鸡换成兔,兔换成鸡,则共有脚160只。问原有鸡、兔各几只?
5.老师教同学们练跳绳,若一次能连续跳8个,老师奖给同学4块巧克力;若跳不够8个,则退给老师2块。王芳同学一共练了10次,得到28块巧克力。问王芳有几次没跳够8个?
6.有6个谜语,让50人猜,共猜对了202个。已知每人至少猜对2个,且猜对2个的有5人,猜对4个的有9人,猜对3个和5个的人数一样多,那么,6个全猜对的有多少人?
7.现有大、小水桶共50个,每个大桶可装水6千克,每个小桶可装水3千克,大桶比小桶总共多装水30千克。问大、小桶各多少个?
8.小张是车工,平均每天车某种零件50个,每车好一个正品,可为企业创造财富14元,但车坏一个要损失96元。某天,他为企业创造了480元的财宝,这一天他车出的正品是多少个?
9.模拟考试已举行了24次,共出了试题426道,每次出的试题数不同,或者25题,或者16题,或者20题,那么,其中有25道试题的有多少次?
10.传说九头鸟有九头一尾,九尾鸟有九尾一头。今有头510个,尾590个,问:两种鸟各有多少个?
参考答案
发散思维训练
1.解:
由于每只动物有两只眼睛,由题意可知动物园里鸵鸟和大象的总数为:36÷2=18(只),假设鸵鸟和大象一样也有4只脚,那么脚总数为:18×4=72(只),与实际的差值为:72-52=20(只),由假设引起的差值:4-2=2(只),则鸵鸟数:20÷2=10(只),大象数:18-10=8(头)。
答:鸵鸟有10只,大象有8头。
2.解:
假设180只全是鸡,则兔脚数为0,则鸡脚数比兔脚数多:2×180=360(只),与实际相比:360-180=180(只),由假设造成的差值:2+4=6(只)。
那么实际的兔数是:180÷6=30(只)
鸡数为:180-30=150(只)
答:养的鸡为150只,兔为30只。
3.解:
假设象棋也可供6个人下,则可供6×20=120(人)学生进行活动。与实际相比,120-60=60(人),由假设造成的差值:6-2=4(人)。
那么实际的象棋数为60÷4=15(副)
跳棋数为20-15=5(副)
答:象棋有15副,跳棋有5副。
4.解:
由于鸡换成兔,兔换成鸡,脚的只数增加了20只。故原来的兔比鸡少20÷2=10(只),减去这10只鸡,则鸡、兔一样多,并且共有脚:140-2×10=120(只)。假设鸡、兔各有3只脚(鸡、兔脚数的平均数),那么鸡、兔共有120÷3=40(只),鸡、兔各有40÷2=20(只),实际的鸡数为:
20+10=30(只)。
答:原有鸡30只、兔20只。
5.解:
假设王芳10次都跳够8个,则应得巧克力4×10=40(块)。与实际相比,40-28=12(块)。由于跳不够,不但没得到巧克力,还要返还2块。
那么由假设造成的差值为4+2=6(块)。王芳没有跳够的次数:12÷6=2(次)。
答:没跳够8个的次数为2次。
6.解:
猜谜情况总共有5种,其中已知猜对2个的有5人、猜对4个的有9人,则猜对3、5、6个的人数:50-5-9=36(人),共猜对的题数:202-2×5-4×9=156(个)。
由于猜对3个和5个的人数一样多,可以把他们看作为猜对4个的人。
假设36个人都猜对了6个,那么共猜对的题数为6×36=216(个),与实际相比,216-156=60(个),由假设造成的差值6-4=2(个),则猜对4个的人数:60÷2=30(人),那么猜对6个的人数:36-30=6(人)。
答:有6人全猜对。
7.解:
假设50个桶都是大桶,则共装水6×50=300(千克),而此时小桶装水为0,与实际相比,相差300-30=270(千克)。若将大桶换成小桶,则每换一个,大桶装的水就减少6千克,小桶装的水增加3千克,大桶比小桶多装的重量就减少:6+3=9(千克),那么小桶的个数:270÷9=30(个)大桶的个数:50-30=20(个)
答:大桶有20个,小桶有30个。
8.解:
假设小张这天车出的零件全部是正品,那么应创造的财富为:14×50=700(元),可实际只有480元,其差额是700-480=220(元)。
根据题意:如果车坏一个零件要减少14+96=110(元),那么车坏零件的个数:220÷l10=2(个),零件正品个数:50-2=48(个)。
答:他车出的正品是48个。
9.解:
假设24次考试,每次都是16题,则并考了试题16×24=384(题),与实际考题数相比,426-384=42(题)。而考25题的每次多考25-16=9(题),考20题的每次多考20-16=4(题),这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据奇偶性分析,A只能是2。
答:考25题的次数是2次。
10.解:
尾数590个大于头数510个,说明九尾鸟多于九头鸟。590-510=80(个),两种鸟的尾数差为9-l=8(个),那么九尾鸟比九头鸟多80÷8=10(只)。除去这10只,剩下九头鸟与九尾鸟的数量相等,为(510-10)÷(9+l)=50(只),九尾鸟有50+10=60(只)。
答:九尾鸟有60只,九头鸟有50只。