第一篇:小学三年级奥数下册年龄问题教案
小学三年级奥数下册年龄问题教案
发布:佚名 时间:2009-9-25 15:38:00 来源:京翰教育中心 录入:杨 人气:7960
【文字:大 小】
年龄问题
年龄问题是小学数学中常见的一类问题.例如:已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等.年龄问题又往往是和倍、差倍、和差等问题的综合.它有一定的难度,因此解题时需抓住其特点。
年龄问题的主要特点是:大小年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住差不变这个特点,再根据大小年龄之间的倍数关系与年龄之和等条件,解答这类应用题。
解答年龄问题的一般方法是:
几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差。
例1 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?
分析 五年后,爸比妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题。
解:①爸爸年龄:(72+6)÷2=39(岁)
②妈妈的年龄:39-6=33(岁)
答:爸爸的年龄是39岁,妈妈的年龄是33岁。
例2 在一个家庭里,现在所有成员的年龄加在一起是73岁.家庭成员中有父亲、母亲、一个女儿和一个儿子.父亲比母亲大3岁,女儿比儿子大2岁.四年前家庭里所有的人的年龄总和是58岁.现在家里的每个成员各是多少岁?
分析 根据四年前家庭里所有的人的年龄总和是58岁,可以求出到现在每个人长4岁以后的实际年龄和是58+4×4=74(岁)。
但现在实际的年龄总和只有73岁,可见家庭成员中最小的一个儿子今年只有3岁.女儿比儿子大2岁,女儿是3+2=5(岁).现在父母的年龄和是73-3-5=65(岁).又知父母年龄差是3岁,可以求出父母现在的年龄。
解:①从四年前到现在全家人的年龄和应为:
58+4×4=74(岁)
②儿子现在几岁? 4-(74-73)=3(岁)
③女儿现在几岁?3+2=5(岁)
④父亲现在年龄:(73-3-5+3)÷2=34(岁)
⑤母亲现在年龄: 34-3=31(岁)
答:父亲现在34岁,母亲31岁,女儿5岁,儿子3岁。
例3 父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?
分析 父女年龄差是50-14=36(岁).不论是几年前还是几年后,这个差是不变的.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁.这36岁是父亲比女儿多的5-1=4(倍)所对应的年龄。
解:(50-14)÷(5-1)=9(岁)
当时女儿9岁,14-9=5(年),也就是5年前。
答:5年前,父亲年龄是女儿的5倍.例4 6年前,母亲的年龄是儿子的5倍.6年后母子年龄和是78岁.问:母亲今年多少岁?
分析 6年后母子年龄和是78岁,可以求出母子今年年龄和是 78-6×2=66(岁).6年前母子年龄和是 66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄。
解:①母子今年年龄和: 78-6× 2=66(岁)
②母子6年前年龄和: 66-6×2=54(岁)
③母亲6年前的年龄:54÷(5+1)×5=45(岁)
④母亲今年的年龄:45+6=51(岁)
答:母亲今年是51岁。
例5 10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?
分析 根据15年后吴昊的年龄是他儿子年龄的2倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于10年前儿子的年龄加上25岁。
10年前吴昊的年龄是他儿子年龄的7倍,父子年龄差相当于儿子当时年龄的7-1=6倍。
由于年龄差不变,所以儿子10年前的年龄的6-1=5倍正好是25岁,可以求出儿子当时的年龄,从而使问题得解。
解:①儿子10年前的年龄:(10+15)÷(7-2)=5(岁)
②儿子现在年龄:5+10=15(岁)
③吴昊现在年龄: 5×7+10=45(岁)
答:吴昊现在45岁,儿子15岁.例6 甲对乙说:“我在你这么大岁数的时候,你的岁数是我今年岁数的一半.”乙对甲说:“我到你这么大岁数的时候,你的岁数是我今年岁数的2倍减7.”问:甲、乙二人现在各多少岁?
分析 从已知条件中可以看出甲比乙年龄大,甲乙年龄差这是一个不变的量。
甲对乙说“我在你这么大岁数的时候”,意思是说几年以前.这几年就是甲乙的年龄差.因此,甲整句话可理解为:乙今年的岁数,减去年龄差,正好是甲今年岁数的一半.乙对甲说“我到你这么大岁数的时候”,意思是说几年后.因此,乙整句话可理解为:甲今年的岁数,加上年龄差,正好是乙今年岁数的2倍减去7。
即 甲今+年龄差=2×乙今-7(2)
把甲乙的对话用下图表示为:
由(1)得甲今=2×乙今-2×年龄差(3)
由(2)得 甲今=2×乙今-7一年龄差(4)
由(3)(4)年龄差=7(岁)
…
从上图不难看出,甲现在的年龄是乙几年前年龄的2倍,1倍相当于2个年龄差,2倍相当于4个年龄差.乙现在的年龄相当3个年龄差。
乙几年后的年龄和甲现在的年龄相等,所以乙几年后相当4个年龄差.甲几年后的年龄比乙几年后的年龄多一个年龄差,正好是7岁,从而得出年龄差是7岁。
解:①乙现在年龄: 7×3=21(岁)
②甲现在年龄:7×4=28(岁)
答:乙现在21岁,甲现在28岁.
第二篇:奥数 年龄问题
三 年 级
上 学 期
数 学 练习
年龄问题
一、父亲36岁,儿子4岁。几年后父亲年龄是儿子年龄的3倍?
二、现在哥哥25岁,弟弟15岁,几年前哥哥的年龄为弟弟年龄的2倍?
三、女儿8岁,母亲38岁。母亲多少岁时是女儿年龄的3倍?
四、甲对乙说:“现在我的年龄是你的年龄的2倍。”乙对甲说:“我6年后的年龄和你10年前的年龄一样。”甲、乙年龄各是多少?
五、小江14岁,爸爸41岁。几年前时爸爸的年龄比小江年龄大3倍?
六、甲在银行存款4000元,乙在银行存款2000元。两人从银行中取出同样多钱后,甲的存款数是乙存款的5倍。两人各取出多少元?
七、哥哥年龄是弟弟年龄的3倍,但3年前哥哥的年龄等于弟弟3年后的年龄。现在年龄各是几岁? 三 年 级
上 学 期
数 学 练习
八、母亲现在的年龄是儿子年龄的4倍。母亲27岁时生的这个孩子,问母子现在各多少岁?
九、10年前母亲的年龄是女儿的7倍,15年后母亲的年龄是女儿的2倍。现在母女两人的年龄各是多少岁?
十、哥哥与弟弟两人3年后的年龄和是27岁。弟弟今年的年龄等于两人年龄差。问哥哥和弟弟今年各几岁?
十一、今年哥哥、弟弟两人岁数和是50.曾有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的岁数正好是弟弟当年的岁数的2倍。问哥哥和弟弟今年各多少岁?
十二、父亲与弟弟的年龄和是58岁,父亲比哥哥大23岁,哥哥比弟弟大5岁。问三人的年龄各是多少岁?
十三、四人年龄和是77岁,最小的10岁,他与最大的年龄之和比另外两个人年龄和大7岁。最大的年龄是多少岁? 三 年 级
上 学 期
数 学 练习
十四、姐妹两人,当姐姐像妹妹这么大年龄时,妹妹才9岁;当妹妹像姐姐现在这么大年龄时,姐姐就27岁了。求姐姐和妹妹现在各多少岁?
十五、同学们问王老师年龄。王老师说:“我已过半百。3年前,我的年龄时6的倍数;3年后,我的年龄是5的倍数。”请问王老师现在的年龄是多少岁?
十六、甲比乙小4岁,丙比甲小4岁,丁比丙小4岁,丁的年龄正好是乙的一半。他们各多少岁?
十七、祖孙三人的年龄和正好是100岁。祖父过的年数正好等于孙子过的月数,儿子过的星期数正好等于孙子过的天数。问祖父、儿子、孙子各多少岁?
十八、一个中学生说,我的年龄减去10,再乘以5,恰好等于我的年龄加上10.问这位中学生的年龄多大? 三 年 级
上 学 期
数 学 练习
练习
1、甲、乙两人的年龄和是33岁,四年后,甲比乙大3岁。问甲、乙两人各多少岁?
2、父子的年龄和是64岁,儿子年龄的3倍比父亲的年龄多8岁。求父子两人各多少岁?
3、甲、乙两人年龄和为35岁,乙、丙两人年龄和为45岁。甲、丙两人年龄和为40岁。求甲、乙、丙各多少岁?
4、父亲47岁,儿子21岁。几年前父亲年龄是儿子年龄的3倍?
5、小红11岁时,也有68岁。今年小红考上了大学,爷爷的年龄刚好是小红的4倍。问爷爷今年多大岁数?
6、小明和叔叔今年共40岁,曾有一年叔叔的岁数是今年小明的岁数,那时叔叔的岁数恰好是小明岁数的3倍,叔叔和小明今年各多少岁?
7、妈妈今年32岁,儿子今年6岁,问:在几年后,妈妈的年龄是儿子年龄的3倍?
8、父亲今年45岁,儿子23岁,几年前父亲的岁数是儿子的3倍? 三 年 级
上 学 期
数 学 练习
年龄问题一 三 年 级
上 学 期
数 学 练习
年龄问题二 三 年 级
上 学 期
数 学 练习
年龄问题三
第三篇:小学三年级奥数下册鸡兔同笼问题教案 2
小学三年级奥数下册鸡兔同笼问题教案
鸡兔同笼问题
例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?
分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和 42人。
分析2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3
=147÷3
=49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
想一想:根据解法
1、解法2的思路,还可以怎样假设?怎样求解?
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
分析 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条)
10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
分析 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.
第四篇:三年级暑假奥数练习题(13)年龄问题
三年级暑假奥数练习题(13)年龄问题姓名
(1)甲、乙两人的年龄和是33岁,甲比乙大3岁,那么甲乙各多少岁?
(2)父亲今年47岁,儿子21岁,几年前父亲的年龄是儿子年龄的3倍?
(3)明明比爸爸小28岁,爸爸今年的年龄是明明年龄的5倍,明明和爸爸今年各多少岁?
(4)爸爸比小强大30岁,明年爸爸的年龄是小强的3倍,今年小强多少岁?
(5)父亲现年43岁,儿子现年13岁。问几年以前,父亲的年龄是儿子的4倍?
(6)叔叔比红红大19岁,叔叔的年龄比红红的年龄的3倍多1岁,叔叔和红红各多少岁?
(7)父子两人的年龄相差20岁,父亲的年龄是儿子的6倍。问:父子各多少岁?
(8)今年叔叔21岁,小强5岁,几年后叔叔的年龄是小强的3倍?
(9)小江14岁,爸爸41岁。几年前爸爸的年龄比小江大3倍?
(10)今年儿子比爸爸小30岁。2年后,爸爸的年龄正好是儿子的6倍。问父子两人今年各多少岁?
(11)小红和小明现在的年龄和为29岁,小红年龄比小明年龄的2倍少1岁,问小红、小明各几岁?
(12)小明今年14岁,奶奶今年74岁,奶奶多少岁时,正好是小明的7倍?
第五篇:三年级下册奥数教案
三年级下册奥数教案
导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦!第一课时
1、一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米? 答案与解析:
实际上青蛙每爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦!
2、有两桶油,从第一桶倒20千克给第二桶,两桶就同样多了。已知第一桶原有50千克油,求两桶油共重多少千克? 答案与解析:
第一桶油倒20千克给第二桶,两桶就同样多,说明第一桶比第二桶多了2个20千克的油,一共多20*2=40千克油,他们一共有:50+50+40=140千克油。
第二课时
3、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学? 答案与解析:
增加一条和减少一条,前后相差2条,也就是说,每条船坐6人正好,每条船坐9人则空出两条船。这样就是一个盈亏问题的标准形式了。
增加一条船后的船数=9*2/(9-6)=6条,这个班共有6*6=36名同学。4、7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆? 答案与解析:
要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。
解:①一辆卡车一次能运多少吨沙土?
336÷6÷7=56÷7=8(吨)
②560吨沙土,5趟运完,每趟必须运走几吨?
560÷5=112(吨)
③需要增加同样的卡车多少辆?
112÷8-7=7(辆)
列综合算式:560÷5÷(336÷6÷7)-7=7(辆)答:需增加同样的卡车7辆。
第三课时
5、在两座楼中间每隔3米种一棵树,共种了20棵,这两座楼之间距离是多少米? 答案与解析:
在两座楼中种树,首、尾两头都不种树。
(1)一共有多少个间隔?
20+1=21(个)
(2)两座楼之间的距离是多少?
3×21=63(米)
答:两座楼之间的距离是63米。
6、一条小道两旁,每隔5米种一棵,共种202棵,这条路长多少米? 答案与解析:
202÷2=101(棵)
101-1=100(段)
5×100=500(米)
答:这条小道长500米。
第四课时
7、某校三年级同学参加植树活动,每种4棵树之间的距离是9米。照这样计算,种18棵树的距离是多少米? 答案与解析:4棵树之间的距离是9米,相当于在9米长的距离上平均分成3段,那么一段长的距离是9÷(4-1)=3(米)。种18棵树,相当于把一段路平均分成17段,再根据“总路线长=株距×段数”把这个数量关系求出总路线长。
解:种4棵树,把9米分成了几段:
4-3=1(段)
每段的长是几米:
9÷3=3(米)
18棵树的距离分成了几段:18-1=17(段)
18棵树的全长是多少米:3×17=51(米)
答:18棵树的距离是51米。
8、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米? 答案与解析:
第一根剪成的每段比第二根剪成的每段长2米。那么,如果同样是5段的话,第二种就要比第一种少5*2=10米,现在第二种7段和第一种5段一样长,说明第二种的两段长是10米,也就是说每一段为10/2=5米。所以,绳子长为5*7=35米。
原来每根绳子长为7*(2*5/2)=35米。
第五课时
9、一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元? 答案与解析:
分析:每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。每个一等奖就是每个三等奖的4倍,如果评一、二、三等奖各两人,我们把每个三等奖的奖金看成1份,那么,总奖金就相当于分成了2*4+2*2+2=14份,因为这时的一等奖奖金是3080元,也就是说三等奖奖金是每个308/4=77元,所以总奖金等于14*77=1078元,如果评一个一等奖,两个二等奖,三个三等奖,还是以每个三等奖的奖金看成1份,那么这时总奖金就被分成了1*4+2*2+3=11份,每份三等奖奖金就等于1078/11=98元,所以,这时的一等奖奖金等于980*4=392元。
10、甲乙两队共同挖一条长8250米的水渠,乙队比甲队每天多挖150米。已知先由甲队挖4天后,余下的由两队共同挖了7天,便完成了任务。那么甲队每天挖多少米? 答案与解析:
分析:余下的由两队共同挖了7天,这7天中,乙队比甲队多挖了150*7=1050米,那么,我们可以把总数减去1050米,然后看成甲和乙每天挖同样多,这样,就相当于甲队一个队挖7*2+4=18天,共挖了8250-1050=7200米,说明甲每天挖7200/18=400米。
第六课时
11、华侨小学某班有60人,在收看“邓小平同志追悼大会”实况时,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人? 答案与解析:
分析:有34人穿黑裤子,那么穿蓝裤子的有60-34=26人,有12人穿白上衣蓝裤子,说明还有26-12=14人是穿黑上衣蓝裤子,有29人穿黑上衣,那么,有29-14=15人穿黑上衣黑裤子。
12、三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选? 答案与解析:
分析:在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。说明一共统计了17+16+11=44张选票,还有52-44=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投给丙的,那么甲就必须得到4张才能确保比乙多。因此,甲最少再得到4票就能够保证当选了。
(这里特别要注意到“保证”两个字,必须从最坏的情况考虑)
第七课时13、3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名? 答案与解析:
分析:3名工人5小时加工零件90个,就是说每人每小时加工(90/3)/5=6个,那么一个人10小时可以加工6*10=60个,540个零件在10小时做完就需要540/60=9个人。
14、有20人修筑一条公路,计划15天完成。动工3天后抽出5人植树,留下的人继续修路。如果每人工作效率不变,那么修完这段公路实际用多少天? 答案与解析:
分析:有20人修筑一条公路,计划15天完成,说明这条公路的工作量按每天计算有20*15=300人次,动工3天后抽出5人植树,20人修3天完成了20*3=60人次,那么总工作量还剩下300-60=240人次,这些剩下的工作给15人做,每人就还需要工作240/15=16天,这样,前后加起来,实际工作就有3+16=19天。
第八课时
15、小明一家五口人去登山,带了2个包,五人轮流背,走了15千米,则平均每人背包走了多少千米? 答案与解析:15×2÷5=6(千米)
16、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 答案与解析:
60/7=8......4,60/8=7......4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8*8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44/4==11,说明有11人。
60/7=8......4,60/8=7......4,卡片有8盒,小朋友人数有(4+5*8)/4=11人。导语:三年级正是拓展思维的好时机,多做奥数题有助于我们这方面能力的锻炼,所以同学们要每天坚持做奥数练习。
第九课时
17、小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○„你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢? 答案与解析:
第90个球为白球,第100个球为黑球
18、张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人? 答案与解析:
做对第一题的13个人里,有8个人也做对第二题,那么做对第二题的22个人里这8个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8个人。算式:13+22-8=27(人)。所以这个班一共有27人。
第十课时
19、一只鸡有1个头2条腿,一只兔子有1个头4条腿,如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗? 答案与解析:假设10个动物都是兔子,那么就有10X4=40(条)腿。但实际是26条腿,与实际相差40-26=14(条)腿。每将一个兔子变成一只鸡总的腿数就减少两只,需要转化14(4-2)=7(只)那么鸡就有7只,兔子就有10-7=3(只)。
导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给希望同学们能够认真做题哦!20、明明给在外地工作的妈妈发一封信,要贴2角钱的邮票。他手中的邮票有1张1角的、2张8分的、5张4分的和2张1分的。那么明明要把这些邮票经过搭配选出2角钱的邮票来,一共有多少种不同的搭配的方法。
答案与解析:明明手中的邮票可以按下面的几种搭配方法,得到2角钱的邮票。
1张1角的、1张8分的、2张1分的,合起来是2角。
1张1角的、2张 4分的、2张 1分的,合起来也是2角。
2张8分的、1张4分的,合起来也是2角。
1张8分的、3张4分的,合起来也是2角。
5张4分的也是2角。
由以上分析得出:贴2角钱邮票,共有5种不同的搭配方法。
第十一课时
21、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵? 答案与解析:
当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。所以,原有树苗=200-8=192棵。有同学12+8=20名,原有树苗20*10-8=192棵。
22、“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 答案与解析:
花球原价1元钱2个,白球原价1元钱3个。即花球原价10元钱20个,白球原价10元钱30个。那么,同样买花球和白球各30个,花球要比白球多花10/2=5元,共需要30/2+30/3=25元。现在两种球的售价都是2元钱5个,花球和白球各买30个需要(30/5)*2*2=24元,说明花球和白球各买30个能省下25-24=1元。现在共省了4元,说明花球和白球各有30*4=120个,共买了120*2=240个。
花球和白球各买30个时,可比原来省下=(30/2+30/3)-(30/5)*2*2=1元,省下4元,花球和白球各买30*4=120个。所以,小明共买了240个球。
第十二课时
23、红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,他们戴的帽子一个是红的,一个是黄的,一个是蓝的。只知道红红没有戴黄帽子。聪聪既不戴黄帽子,也不戴蓝帽子,请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子? 答案与解析:
先确定聪聪既不戴黄帽子,也不戴蓝帽子,那么他戴的只能是红帽子,红红没有戴黄帽子,而红帽子已经是聪聪戴的,因此红红戴的是蓝帽子,最后剩下黄帽子肯定是颖颖戴的。
24、一条大河上游与下游的两个码头相距240千米,一艘航船顺流而下的速度为每小时航行30千米,逆流而上的速度为每小时航行20千米。那么这艘船在两码头之间往返一次的平均速度是多大? 答案与解析:航行中的速度有两种,然而所求的平均速度并非是这两种速度之和除以2。
按往返一次期间的平均速度,就要分别计算总航程与经历的总时间,然后按平均速度的意义求出答案来。
解 总航程 240×2=480(千米)
总时间 240÷30+240÷20
=8+12
=20(小时)
平均速度 480÷20=24(千米)
答 往返一次的平均速度为每小时航行24千米。
第十三课时
25、一个三位数,它的个位上的数是百位上的数的3 倍,它的十位上的数是百位上的数的 2倍.这个数可能是多少? 答案与解析:
如果百位是 1,个位上的数是百位上的数的 3倍,个位就是3;十位上的数是百位上的数的 2倍,十位就是 2,这个数就是 123.如果百位是2,个位上的数是百位上的数的3 倍,个位就是6;十位上的数是百位上的数的2 倍,十位就是4,这个数就是246.如果百位是3,个位上的数是百位上的数的 3倍,个位就是9;十位上的数是百位上的数的 2倍,十位就是6,这个数就是369.这样的数有3 个,分别是123、246、369
26、某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士? 答案与解析:
后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是(17+1)÷2=9(人),因此可以求出总人数:9×9=81(人).第十四课时
导语:多做奥数题有助于我们数学思维的拓展,也能让我们的数学成绩得到提升,所以同学们要勤加练习哦!现在就开始做奥数老师给我们带来的这道题吧!
27、小明、小华和小光三个人都是少先队的干部。他们中一个是大队长,一个是中队长,一个是小队长。在一次体育比赛中,他们的一百米赛跑的结果是:
(1)小光比大队长的成绩好;
(2)小明和中队长的成绩不相同;
(3)中队长比小华的成绩差。
根据以上情况,你能知道小明、小华、小光三个人中,谁是大队长吗? 答案与解析:
根据(2)小明和中队长的成绩不相同,(3)中队长比小华成绩差,我们可以知道,小明和小华都不是中队长,那小光一定是中队长。
又根据(1)小光比大队长成绩好,也就是中队长比大队长成绩好。还根据(3)中队长比小华成绩差,我们可以知道,小华不是大队长,那么小华一定是小队长,当然小明就是大队长了。
28、小花猫钓到了鲤鱼、草鱼、鲫鱼,三种鱼一共12条,放在小桶里往家走。路上遇到小白猫。小花猫问小白猫:“你最爱吃哪种鱼?”小白猫说:“那当然是鲤鱼了。”小花猫说:“好,你只要从我的桶里,随便拿出3条鱼来,一定会有你最爱吃的鲤鱼。不过,你可要先告诉我,我钓到了几条鲤鱼?”这下可难住小白猫了。小花猫钓了几条鲤鱼呢?不过聪明的小白猫,稍稍动了动脑筋,就说出来了。小白猫到底怎样想的呢? 答案与解析:
小花猫一共钓了12条鱼,只要知道草鱼、鲫鱼各几条,那么要求出钓了几条鲤鱼就容易了,难就难在不知道有几条草鱼,也不知道有几条鲫鱼。别忙,想想小花猫还说了什么话?对!小花猫说,随便拿出三条鱼,就一定会有鲤鱼。解答这题就从这里突破。
小花猫的话可以这样理解:至少有一条鲤鱼,含意是也可能有2条鲤鱼,或者3条都是鲤鱼。这就是说,小花猫钓到的三种鱼中,草鱼、鲫鱼是各有1条,其余的12-1-1=10条都是鲤鱼。
要是钓到的草鱼和鲫鱼合起来是3条或是比3条多行吗?不行!要是合起来是3条或是比3条多,那么随便拿3条就不一定有鲤鱼了。你说对吗?
29、把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段? 答案:对折一次: 2*2-1=3段
对折二次:4*2-3=5段
对折三次:8*2-5=11段
绳子被折成8股,因此相当于未对折时被剪8刀,应该成9段吧
一方面三折以后成8股,中间一剪成16;
另一方面,第一折产生1个弯头,第二折产生2个弯头,第三折产生4个弯头;
最后剪成:16-1-2-4=9根。
第十五课时
30、用数字1,1,2,2,3,3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字 答案:312132 231213
31、树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原 来每棵树上各落多少只鸟? 答案与解析:
分析 倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16-6=10(只).同理,第二棵树上原有鸟16+6-8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48÷3=16(只)
②第一棵树上原有鸟只数.16+8=24(只)
③第二棵树上原有鸟只数.16+6-8=14(只)
④第三棵树上原有鸟只数.16-6=10(只)
答:第一、二、三棵树上原来各落鸟24只、14只和10只
第十六课时
32、一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空? 答案与解析:
分析:要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。
解:①进水速度:480÷8=60(吨/小时)
②排水速度:480÷6=80(吨/小时)
③排空全池水所需的时间:480÷(80-60)=24(小时)
列综合算式:
480÷(480÷6-480÷8)=24(小时)
答:两管齐开需24小时把满池水排空。
33、妈妈上楼,从1楼走到3楼需要走40级台阶,如果各层楼之间的台阶数相同,那么妈妈从第1层走到第6层需要走多少级台阶? 答案与解析: 要求妈妈从第1层走到第6层需要走多少级台阶,必须先求出每一层楼梯有多少台阶,还要知道从一层走到6层需要走几层楼梯。
从1楼到3楼有3-1=2层楼梯,那么每一层楼梯有40÷2=20(级)台阶,而从1层走到6层需要走6-1=5(层)楼梯.解:每一层楼梯有:40÷(3-1)=20(级台阶)
妈妈从1层走到6层需要走:20×(6-1)=100(级)台阶。
答:妈妈从第1层走到第6层需要走100级台
第十七课时
导语:今天奥数老师为同学们带来了一道有趣的试题,希望同学们在找到乐趣的同时也能提升我们的数学能力,同学们加油吧!
34、今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币与真币和重量不同。现需弄清楚伪币究竟比真币轻,还是比真币重,但只有一架没有砝码的天平。那么怎样利用这架天平称两次,来达到目的? 答案与解析:
答案:分成50、50、1三堆:
第一次称两个50,如果平了,第二次从这100个任意拿1个(当然是真的)与第三堆的1个称,自然会出结果;
第一次称两个50不平是正常的,第二次我们把其中的一堆(或重的或轻的都行)分成25、25、称第二次:
1、把轻的分成25、25,如果平了,说明那堆重的有假,当然假的是超重;如果不平,说明这50个轻的有假,假的是轻了;
2、把重的分成25、25,道理同上。
所以两次可以发现轻重,但是找不出哪个是假的。
35、小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 答案与解析:假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是
50×10÷(75-50)=20(分钟)·
因此,小张走的距离是
75×20=1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法