第一篇:4.2三年级奥数(教案重叠问题)
能动英语——小学三年级奥数(重叠问题)
学法指导:解答重叠问题,必须从条件入手认真分析,有时可以根据条件画一画图来帮助我们思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解题的方法。分类游戏:1.企鹅,大雁,金鱼,鸽子,小燕子,黑天鹅 师:找同学说出会游泳的动物。
找同学说出会飞的动物。
问:那个动物既会游泳又会飞呢?是不是这个动物重叠了。好的,今天偶们学习重叠问题。练习一
1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。这队小朋友共有多少人? 【解析】
○○○●○○○○○○
如图:4+7-1 = 10(人)
2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。这一行座位有多少个? 【解析】
12+21-1 = 32(个)
3、同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。这一排共有多少个同学? 【解析】
8+8-1 = 15(个)
练习二
1、同学们排队跳舞,每行、每列人数同样多。小红的位置无论从前数从后数,从左数还是从右数起都是第4个。跳舞的共有多少人? 【解析】
每排(列)有:4+4-1 = 7(人)共有:7×7 =49(人)
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人? 【解析】
从左到右人数:2+4-1 = 5 从前到后人数:3+5-1 = 7 5×7 = 35(人)
3、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人? 【解析】 6+5-1 = 10 3+3-1 = 5
练习三
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米? 【解析】
(30+6)÷2 = 18(厘米)
2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。中间重合部分长11厘米,这两块木板各长多少厘米? 【解析】
(35+11)÷2 = 23(厘米)
3、两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。另一根木棍长多少厘米?
【解析】
66-48+12 = 30(厘米)
练习四
1、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人? 【解析】
36+38-55 = 19(人)
2、两块木板各长75厘米,像下图这样钉成一块长130厘米的木板,中间重合部分是多少厘米?
【解析】
(75×2-130)×2 = 40(厘米)
3、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。两种棋都会下的有多少名? 【解析】
21+17-(42-10)= 6(人)
练习五
1、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。三(4)班共有学生多少人? 【解析】
37+42-31 = 48(人)
2、两块木板各长90厘米,像下图这样钉成一块木板,中间重合部分是15厘米,这块钉在一起的木板总长多少厘米?
【解析】
90×2-15 = 165(厘米)
3、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人? 【解析】
78+77-107 = 48(人)
第二篇:三年级奥数《重叠问题》
教学设计方案 XueDa PPTS Learning Center
第九讲:重叠问题
【知识要点】:
三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】 六一儿童节,学校门口挂了一行彩旗。小张从前数起,红旗是第8面;从后数起,红旗是第10面。这行彩旗共多少面?
【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【课堂反馈1】
1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。这队小朋友共有多少人?
2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。这一行座位有多少个?
教学设计方案 XueDa PPTS Learning Center
【例2】 同学们排队做操,每行人数同样多。小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。做操的同学共有多少个?
【思路导航】根据题意画出下图。
由图可看出:
小明的位置从左数第____个,从右数第____个,说明横行有[ ]+[ ]-[ ]=[ ]个人;
从前数第_____个,从后数第_____个,说明竖行有[ ]+[ ]-[ ]=[ ]人。所以做操的同学共有:[ ]×[ ]=[ ]人。
【课堂反馈2】
1、同学们排队跳舞,每行、每列人数同样多。小红的位置无论从前数从后数,从左数还是从右数起都是第4个。跳舞的共有多少人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例3】 把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是____ _厘米,所以这两块木板的总长度是[ ]+[ ]=[ ]厘米,每块木板的长度是[ ]÷[ ]=[ ]厘米。
【课堂反馈3】
教学设计方案 XueDa PPTS Learning Center
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
2、两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。另一根木棍长多少厘米?
【例4】 一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。问两道聪明题都做对的有几人?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得[ ]+[ ]=[ ]人,这____ _人比全班总人数____ _多出了[ ]-[ ]=[ ]人,这多出的____ _人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
【课堂反馈4】
1、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、两块木板各长75厘米,像下图这样钉成一块长130厘米的木板,中间重合部分是多少厘米?
教学设计方案 XueDa PPTS Learning Center
【例5】
三(1)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸。三(1)班有学生多少人?
【思路导航】根据题意,画出下图:
从上图可以看出,中间重叠部分表示两份报纸都订的____ _人,这10人既被包括在订《数学报》的____ _人内,又被包括在订《阅读报》的____ _人内,重复算了____ _次,所以要算出全班人数,必须从[ ]+[ ]=[ ]人中去掉被重复算过的____ _人。所以全班人数应是[ ]-[ ]=[ ]人。
【课堂反馈5】
1、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。三(4)班共有学生多少人?
2、两块木板各长90厘米,像下图这样钉成一块木板,中间重合部分是15厘米,这块钉在一起的木板总长多少厘米?
教学设计方案 XueDa PPTS Learning Center
【课后作业】
1、同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。这一排共有多少个同学?
2、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
3、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。中间重合部分长11厘米,这两块木板各长多少厘米?
4、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。两种棋都会下的有多少名?
5、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
第三篇:三年级奥数重叠问题
重叠问题
例
1、同学们排队做操,从前数丁丁是第6个,从后数他排在第8个,这一队一
共有多少个同学?
同类练习:
1、同学们排队做操,从前数小王是第8个,从后来数小王是第9个,这一队
一共有多少个同学?
2、同学们排队,从前数小明是第9个,从后数乐乐是第7个,小明和乐乐中间
还有5个人,这一队可能是多少个同学?还可能是多少个同学?
例
2、为庆祝“六一”,同学们排成每行人数相等的鲜花队,小华的位置是从左边
是第2个,从右边是第4个,从前数是第3个,从后面数是第5个,鲜花队有多少人?
同类练习:
1、三(4)班排成每行人数相同的队伍参加学校运动会,梅梅位置从前数是第6个,从后数是第4个,从左边、从右边数都是第3个,三(4)班共有多少人?
2、小朋友排成方阵跳集体舞,笑笑不管从前数,从后数,还是从左数、从右
数,都是第5个,这个方阵中一共有多少个小朋友?
例
3、有两块木板,一块长80cm,另一块长70cm,把它们钉在一起,中间重叠的部分是10cm,这块钉在一起的木板全长多少厘米?
同类练习:
1、小张把两根长20cm的彩色纸条粘贴成一根长纸条,黏贴部分长3cm,贴好
后的长纸条长多少厘米?
2、王师傅把两根木条钉成一根长木条,这两根木条,一根长50cm,另一根比第一根短10cm,钉成的木条重叠部分长10cm,钉成的木条全长多少厘米?
例
4、把两块一样长的木板钉在一起,成一块长木板,这块钉成的木板长14分米,中间重叠部分长2分米,这两块木板分别长多少分米?
同类练习:
1、把两条一样长的纸条粘贴成一根长16分米的纸条,中间粘贴部分长2分米,这两根纸条的长多少分米?
2、把两块木板钉成一条较长的木板,钉成的木板长8分米,中间重叠部分长1分米,已知一块长3分米,另一块长是多少分米?
例
5、有一块长5分米的木板和一块长7分米的木板钉在一起,得到一块长10分
米的木板,中间重叠部分有多长?
同类练习:
1、把两根长度分别是60cm和40cm的绳子打一个结,结成一根长90cm的绳
子,打结部分的长度是多少?
2、把3块长度都是5dm的木板钉成一块木板,每个重叠处的长度都是一样,钉成的这块木板总长度为13dm,每个重叠处长度分别是多少分米?
例
6、自习课商,做完语文作文的有35人,做完数学作业的有28人,全班总人
数是50人,每人至少完成一项作业,有多少同学两项作业都做完?
同类练习:
1、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种,三年级既带矿泉水,又带水果的小朋友有多少人?
2、在一次数学测试中,三(3)班50人中有12人两道思考题都没有做对,有32人做对第一道,有20人做对第二道,有多少人两道题都做对?
例
7、上美术课,三(6)班同学每人都带一种彩色笔,有18人带水彩笔,有37
人带油画棒,还有6人两种笔都带,三(6)班一共有多少人?
同类练习:
1、同学们去图书室借文艺书和科技书,每人都借了书,有27人借文艺书,有
32人借科技书,其中5人两类书都借了,去图书室借书一共有多少人?
2、40人参加智力比赛,答对第一题的有28人,答对第二题的有21人,两题
都答对的有15人,两题都没答对的有多少人?
2、三(5)班的同学参加跳绳和踢毽子比赛,有8人没有参加,有21人参加
踢毽子比赛,有24人参加跳绳比赛,还有6人两项都参加,三(5)班一共有多少名同学?
例
8、朝阳小学有50人参加象棋比赛和围棋比赛,参加象棋比赛的有38人,有
12人既参加象棋比赛,又参加围棋比赛,参加围棋比赛的有多少人?
同类练习:
1、50个同学报名参加文体活动,每人至少参加体育组和文娱组中的一个,其
中参加体育组的有29人,既参加体育组又参加文娱组的有8人,参加文娱组有多少人?
综合练习
1、同学们做早操,从前数小刚是第7个,从后数他是第4个,这一队一共有多
少个同学?
2、同学们排成方阵跳舞,从前数小玉是第5人,从后面数她是第4人,从左数
她是第4个,从右数她是第2个,这个方阵一共有多少人?
3、同学们排队跳舞,每行,每列人数同样多,小红的位置无论从前数、从后数、从左数还是右数都是第3个,一共有多少个同学跳舞?
4、王师傅把两根长度都是25cm的铁丝焊接在一起,焊接部分长5cm,焊接部
分长5cm,焊接好的铁丝共长多少厘米?
5、张师傅把两块一样长的木板钉成一块木板,钉好的木板长9分米,中间重叠
部分长1分米,这两块木板分别长多少分米?
6、把一块长45cm和一块长50cm的木板钉在一起,得到一块长85cm的木板,中间重叠部分是多长?
7、三(2)班同学每人至少订一份《英语学习报》或《中国少年报》,其中30
人订《英语学习报》,有21人订《中国少年报》,全班40人,有多少人两份报纸都订了?
8、三(2)班有学生46人,做对第一道思考题的有29人,两道思考题都做对的有5人,两道题都做错的有5人,做对第二道思考题的有多少人?
9、三(2)班有学生46人,做对第一道题思考题的有29人,做对第二道思考
题的有17人,两道题都做错的有5人,两道题都做对的有多少人?
10、三(5)班43人上美术课,有2人没带画笔,带油画笔的有25人,带水彩
笔的有23人,两种笔都带的有多少人?
11、五(1)班同学排成5条队做操,每队人数一样多,小华的位置是:从前面
数第6个,从后面数第4个。这个班共有学生多少人?
12、某班有58个同学,其中35人参加数学兴趣小组,31人参加科技兴趣小组,有27人两个小组都参加,那么,有多少人两个小组都没有参加?
第四篇:奥数:和差问题教案 2
Abc暑期奥数班课程安排
第六讲 和差问题
教学目标:
1:学会运用画图线的方法表示倍关系中两个量,以更方便的找到解题的思路。2:更熟练掌握解答差倍问题的方法,理解差倍问题中各个量之间的关系。
教学重点:更加熟练的运用画图线方法,更准确分析各量之间的关系。教学难点:能够更好的理解差倍应用题中各倍数和差倍数的量的关系。教学过程:
和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
例1:
两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?
分析与解答:
我们可以这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).解法1:①第二筐重多少千克?
(150-8)÷2=71(千克)
②第一筐重多少千克?
71+8=79(千克)
或 150-71=79(千克)
解法2:①第一筐重多少千克?
(150+8)÷2=79(千克)
②第二筐重多少千克?
79-8=71(千克)
或150-79=71(千克)
答:第一筐重79千克,第二筐重71千克。
1-1学校有排球、篮球共62个,排球比篮球多12个,排球、篮球各是多少个?
1-2甲、乙两人的年龄和是35岁,甲比乙小5岁,甲、乙各多少岁?
例2:今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
分析与解答:
题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。
解:①爸爸的年龄: [58+(35-7)]÷2
Abc暑期奥数班课程安排
=[58+28]÷2
=86÷2
=43(岁)
②小强的年龄:
58-43=15(岁)
答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
2-1今年小刚和小强两人年龄和为22岁,一年前,小刚比小强大四岁,今年小刚和小强各是多少岁?
例3 : 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?
分析与解答:
解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们.可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩.解:①语文和数学成绩之和是多少分?
94×2=188(分)
②数学得多少分?
(188+8)÷ 2=196÷2=98(分)
③ 语文得多少分?
(188-8)÷2=180÷2=90(分)
或 98-8=90(分)
答:小明期末考试语文得90分,数学得98分.3-1小敏与妈妈今年的平均年龄为20岁,三年后,妈妈比小敏大28岁,今年妈妈和小敏各是多少岁?
Abc暑期奥数班课程安排
4-1:甲乙两个工程队共有236人,从甲工程队调14人到乙工程队,则两队的工人数正好相等,甲、乙工程队原有人数各是多少?
4-2甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等,甲、乙两人各有多少元钱?
例5:小丽、小马和小磊三人共有课外书55本。小丽比小马多4本,小马又比小磊多6本,三人各有多少本?
5-1三块布共长220米,第二块布长是第一块的3倍,第三块布长是第二块布长的2倍,三块布各长多少米?
5-2甲、乙、丙三名工人一共生产零件420个,甲比乙多生产10个,乙比丙少生产17个,甲、乙、丙三人各生产零件多少个?
例6:
在每两个数字之间填上适当的加或减符号使算式成立。2 3 4 5 6 7 8 9=5
分析与解答:
这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字相加再减去一部分字后差是5,也就是说1到9的和是45,而两部分的差是5,先要求出这两部分数字利用和差问题的方法便可以求出。
(45-5)÷ 2=20,20+5=25
可求出其中几个数的和是25,而另外几个数的和是20.在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。
例如:5+6+9=20可得到。
1+2+3+4-5-6+7+8-9=5
Abc暑期奥数班课程安排
又如:5+7+8=20可得到。
1+2+3+4-5+6-7-8+9=5 又如:3+4+6+7=20可得到。
1+2-3-4+5-6-7+8+9=5
同学们,这道题你还有其他解法吗?试试看!
练习:
1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?
4.某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?
第五篇:小学三年级奥数下册鸡兔同笼问题教案 2
小学三年级奥数下册鸡兔同笼问题教案
鸡兔同笼问题
例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?
分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和 42人。
分析2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3
=147÷3
=49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
想一想:根据解法
1、解法2的思路,还可以怎样假设?怎样求解?
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
分析 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条)
10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
分析 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.