初中数学教学中数形结合思想的应用探讨大全

时间:2019-05-15 01:46:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学教学中数形结合思想的应用探讨大全》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学教学中数形结合思想的应用探讨大全》。

第一篇:初中数学教学中数形结合思想的应用探讨大全

初中数学教学中数形结合思想的应用探讨

摘 要:本文从数形结合思想在初中数学教学中的作用入手,通过实际案例简要介绍初中数学中数形结合思想的应用措施,旨在丰富初中数学教学形式,创新数学教学方法,加强初中学生数学能力的培养,进而推动初中素质教育改革的贯彻与落实。

关键词:初中数学 数形结合 教学

初中数学新课标中明确提出,在课堂教学之中,教师需逐步渗透各项数学思想,培养学生数学思维能力,促使学生产生数学知识体系[1]。而数形结合作为数学基础思想之一,一直以来都是数学教学的重要方式,通过引入数形结合方法,有效提升学生的创新能力。

一、数形结合思想在初中数学教学中的作用

其一,数形结合促使学生未来发展。通过培养学生数形结合思想,促使学生理顺代数与几何之间的关系,使学生能够根据数学题目要求找寻解题切入点,锻炼学生的数学思维能力,对学生未来发展起到了积极作用。其二,数形结合激发学生学习兴趣。初中数学内容难度较大,其中对学生空间想象能力、逻辑能力、抽象能力等方面要求较高,而通过深入数形结合思想,降低数学学习难度,激发学生的学习兴趣与主动性,使学生主动参与到数学学习之中,有利于提高初中数学教学水平[2]。

二、初中数学教学中数形结合思想的应用措施

1.初中数学教学中数与代数方面

初中数学知识体系之中,代数是整个知识体系的基础,也是初中学生学习的难点之一,学生只有学好代数知识、掌握代数计算技能,才能应对数学其他方面的知识学习。因此,在初中数学教学之中,教师应创新代数教学方法及模式,向学生逐步渗透数形结合思想,使学生正确认识数形结合在代数学习中的重要性。尤其在函数教学之中,函数知识是数形结合最为显著的代数知识领域,在函数教学中引入数形结合思想,促使学生建立起函数数学公式与其函数图像之间的联系,从而提升学生对函数知识的掌握效果[3]。在实际教学之中,一方面,教师可将函数公式及方程转化成为图像,帮助学生直观观察函数公式及方程在数轴中的情况。另一方面,教师将函数图像转化成为方程及方程组,引导学生运用代数知识解决函数问题。上述方式是“数”与“形”的相互转换,教师应在日常教学中不断渗透这一转换思想,进而使学生具备初步的数形结合能力。

例如,?}目:求解一元二次方程mx2+nx+q=0。

对于刚刚接触一元二次方程的初中生而言,这一题目变量较多,学生难以找到解题切入点。针对这一问题,教师可采用数形结合思想进行例题讲解,引导学生将题目加以变形,引入变量y,在y=0时,该一元二次方程可写作:y=mx2+nx+q,此时,教师可要求学生画出上述一元二次方程的函数图形,该图形中方程函数抛物线与x轴两个交点即为此一元二次方程的解。通过这一方式进行教学,不仅降低了解题难度,同时帮助学生形成函数与图像之间的联系,有助于学生未来函数的学习。

2.初中数学教学中空间与图形方面

空间与图形知识属于数学几何知识体系之中,几何知识对学生空间思维能力要求较高,尤其是一些图形变化及转换知识中,学生往往无法正确理解其变化与转换的目的,从而导致学生几何学习遭遇瓶颈。鉴于此,初中数学教师可利用数形结合方法开展教学,引导学生通过代数理念,将形象化的几何题目更为具体化。在初中数学教学之中,教师需根据几何教学知识实际情况,帮助学生理顺空间与图形方面解题思路,进而培养学生的数学思维能力和抽象思维,使学生产生几何学习兴趣[4]。

例如,题目:三角形ABC三边长分别为6、8、10(如图一所示),求图中阴影部分的面积。

这一题目十分适用于数学结合思想渗透教学,教师首先引导学生认识到阴影部分面积可将图形总面积减去以AB为直径的半圆面积,而图形的总面积则需两个小半圆面积之和与三角形ABC相加获得。这一例题单纯采用数学或几何方式都无法快速求取答案,只有灵活运营数形结合的方式,找到解题切入点,才能顺利求得阴影部分面积。

3.初中数学教学中概率与统计方面

初中数学涉及简单的统计及概率学知识,这部分知识对于逻辑思维能力尚处于发育之中的初中生而言难度偏大,导致部分学生在统计及概率相关课程学习中思想压力较大,严重打击了学生的数学学习自信。针对上述现象,笔者就当前初中所涉及的统计与概率相关知识进行研究,发现其中大部分知识均可通过数形结合方式加以引导,极大降低了统计及概率知识学习难度,促使学生勤于学习、乐于学习,进一步了解统计及概率学知识、掌握统计及概率相关技能[5]。在实际教学之中,教师应根据学生数学基础情况,结合学生的兴趣特点,采用具有针对性的教学模式,在统计及概率教学中逐步渗透数形结合思想,从而培养学生良好的数学思维习惯,使学生能够在解题中融会贯通的应用各种数学知识与方法,帮助学生树立数学学习自信心。

例如,在统计教学之中,其中涉及多项统计相关概念,包括平均数、加权平均数、极差、方差等等。在以往传统教学之中,教师一般根据教材为学生举例说明上述统计概念,但这种方式过于笼统,学生难以真切了解到统计学概念的实际含义。鉴于此,教师可采用数形结合的方式,利用统计学科图形结合的天然特点,通过图形为学生阐述统计相关概念与公式,从而促使学生直观认识统计学相关知识的内涵,对学生未来统计相关学习具有重要意义。

结语

综上所述,数形结合是数学学科众多思想之一,也是数学学习中最为重要的思想,通过数形结合方法开展初中数学教学,能够培养学生数形结合能力,激发学生的学习乐趣。因此,初中数学教师应加强对数形结合思想的理解和学习,从而深入浅出的开展数学教学活动,提升学生的数学素养。

参考文献

[1]朱家宏.初中数学教学中数形结合思想的应用[J].科技视界,2015(9):175,206.[2]林春安.初中数学数形结合思想教学研究与案例分析[J].读写算(教研版),2015(4):304-304,306.[3]周红英.初中数学数形结合思想教学研究[J].中国校外教育(上旬刊),2015(4):71-71.[4]李国和.浅谈数形结合方法在初中数学教学中的应用[J].中国校外教育(中旬刊),2015(3):101-101.[5]姜风华.浅谈初中数学数形结合教学模式的应用策略[J].中国校外教育(上旬刊),2015(11):109.

第二篇:初中数学——数形结合思想(初二)

数形结合思想

“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的.体现在数学解题中,包括“以数助形”和“以形助数”两个方面.“数”与“形”好比数学的“左右腿”.全面理解数与形的关系,就要从“以数助形”和“以形助数”这两个方面来体会.此外还应该注意体会“数”与“形”各自的优势与局限性,相互补充.“数缺形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事非.”华罗庚的这四句诗很好地总结了“数形结合、优势互补”的精要,“数形结合”是一种非常重要的数学方法,也是一种重要的数学思想,在以后的数学学习中有重要的地位.

一、以数助形

要在解题中有效地实现“数形结合”,最好能够明确“数”与“形”常见的结合点,从“以数助形”角度来看,主要有以下两个结合点:(1)利用数轴、坐标系把几何问题代数化(在高中我们还将学到用“向量”把几何问题代数化);(2)利用面积、距离、角度等几何量来解决几何问题,例如:利用勾股定理证明直角、利用三角函数研究角的大小、利用线段比例证明相似等. 例

1、如图,在正△ABC的三边AB、BC、CA上分别有点D、E、F.若DE⊥BC,EF⊥AC,FD⊥AB同时成立,求点D在AB上的位置.例

2、如图,△ABC三边的长分别是BC=17,CA=18,AB=19.过△ABC内的点P向△ABC 的三边分别作垂线PD、PE、PF(D、E、F为垂足).若

BDCEAF27.求:BDBF的长.例

3、已知ABC的三边长分别为mn、2mn及mn(m、n为正2222整数,且 mn)。求ABC的面积(用含m、n的代数式表示)。

【海伦公式:如果一个三角形的三边长分别是a,b,c,设pabc

2,则S】 p(pa)(pb)(pc)。

4、将如图的五个边长为1的正方形组成的十字形剪拼成一个正方形.

5、如图,ABC是一块锐角三角形余料,边AD80毫米,BC120毫 米,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个定点分

别在AB,AC上,设该矩形的长QMy毫米,宽MNx毫米.当x与y

分别取什么值时,矩形PQMN的面积最大?最大面积是多少?

6、如图,点P是矩形ABCD内一点,PA3,PB=4,PC=5,求PD的长.

二、以形助数

几何图形在数学中所具有的最大的优势就是直观易懂,所以在谈到“数形结合”思想时,就更偏好于“以形助数”的方法,利用几何图形解决相关不易求解的代数问题。几何图形直观的运用于代数中主要体现在几个方面:

(1)利用相关的几何图形帮助记忆代数公式,例如:完全平方公式与平方差公式;

(2)利用数轴及平面直角坐标系将一些代数表达式赋予几何意义,通过构造几何图形,进而帮

助求解相关的代数问题,或者简化相关的代数运算。

1、在等腰ABC中,ABAC5,BC6,P是底边上任一点,求P到两腰的距离的和. 例

2、已知a、b均为正数,且ab2。求a24b21的最小值。

3、若将数轴折叠,使得A点与-2表示的点重合,若数轴上M、N两点之间的距离为2012(M在N的左侧),且M、N两点经过折叠后互相重合,则M、N两点表示的数分别是:M:N:

4、数轴上标出若干个点,每相邻两点相距一个单位,点A,B,C,D分别表示整数a,b,c,d,且d-2a=10,则原点在()的位置

A.点AB.点BC.点CD.点D

x-a>0例

5、已知关于x的不等式组的整数解共有2个,则a的取值范围是___________. 2-x>0

6、如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.

(1)若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为20;

若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5(单位:cm),由此可得到木棒长为.

(2)由题(1)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:

一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?

1例

7、如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的正2

三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一

1块被剪掉正三角形纸板边长的)后,得图③,④,„,记第n(n≥3)块纸板的周长为Pn,则Pn2

-Pn-1

①②③④

第三篇:初中数学教学中如何渗透数形结合的思想

数学源于生活,又高于生活,要想把数学学好,就需要把它回归到生活中去,这样才能让学生对它产生兴趣,提高学习的效率。学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。“数缺形,少直观;形缺数,难入微”,数形结合的思想,就是研究数学的一种重要的思想方法,它是指把代数的精确刻划与几何的形象直观相统一,将抽象思维与形象直观相结合的一种思想方法。

1、渗透数形结合的思想,养成用数形结合分析问题的意识

每个学生在日常生活中都具有一定的图形知识,如刻度尺与它上面的刻度,温度计与其上面的温度,教室里每个学生的坐位,行政地图等等,我们利用学生的这一认识基础,把生活中的形与数相结合迁移到数学教学中来,在教学中进行数形结合思想的渗透。如数与数轴,一对有序实数与平面直角坐标系,一元一次不等式的解集与一次函数的图象,二元一次方程组的解与一次函数图象之间的关系等,都是渗透数形结合思想的很好机会。让学生理解数形结合思想在解决问题中的应用。为下面进一步学习数形结合思想奠定基础。

2、学习数形结合思想,增强解决问题的灵活性,提高分析问题、解决问题的能力在教学中渗透数形结合思想时,应让学生了解,所谓数形结合就是找准数与形的契合点,根据对象的属性,将数与形巧妙地结合起来,有效地相互转化,就成为解决问题的关键所在。数形结合的结合思想主要体现在以下几种:(1)用方程、不等式或函数解决有关几何量的问题;(2)用几何图形或函数图象解决有关方程或函数的问题;(3)解决一些与函数有关的代数、几何综合性问题;(4)以图象形式呈现信息的应用性问题。

第四篇:在数学教学中如何渗透数形结合思想

在数学教学中渗透数形结合思想

在数学教学中,教师如果能灵活地借助数形结合思想,会将数学问题化难为易,帮助学生理解数学问题。那么,如何在初中数学教学中挖掘数形结合思想并适时地加以应用呢?下面笔者根据日常的教学实践谈谈自己的见解。

一、从有理数开始就让中学生及早体会数形结合思想

在七年级开始,数轴的引入就大大丰富了有理数的内容,对学生认识有理数、相反数、绝对值以及有理数的运算都有很大的帮助,由于对每一个有理数,数轴上都有唯一确定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的。相反数、绝对值概念则是通过相应的数轴上的点与原点的位置关系来刻划的。尽管我们学习的是有理数,但我们要求学生时刻牢记它的形:数轴上的点。通过渗透数形结合的思想方法,帮助学生正确理解有理数的性质及其运算法则。

例如:

1、比较两个数的大小方法:数轴上两个点表示的数,右边的数总比左边的大,正数大于零,负数小于0,正数大于负数;

2、比2℃低5℃的温度是_______;

3、若|a|=2,则a=______;

4、七年级《数学》(上)的习题,一辆货车从超市出发,向东走了3千米到达小彬家,继续走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市。在习题中也常出现这类题目。

这些内容如果适当应用数形结合的思想就很容易理解掌握了。

二、不等式(组)内容蕴藏着数形结合思想

在进行 “一元一次不等式和一元一次不等式组”,教学时,为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无限多个解。这里蕴藏着数形结合的重要思想方法,在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步。确定一元一次不等式组的解集时,利用数轴更为有效,如:在分析不等式组的解集情况时,如果老师利用数轴把数转化为“形”从而找出两个不等式的公共解,教学效果会事倍功半。如果老师能结合数轴,画图表示各个不等式的解集,就很容易写出不等式组几种类型的解集。

三、应用题的内容也隐含丰富的数形结合思想。

用示意图分析数学问题,就是运用数形结合思想的充分体现。小学教师在帮助学生分析解应用题,尤其有关行程问题、工程问题等方面的内容时,都不忘用示意图。而到了中学,学生的理解分析能力都有了很大的提高,应用题的内容更为丰富了,复杂了、难度更大了,并且其难点是如何根据题意寻找等量关系布列方程,要突破这一难点,老师在教学中必须充分运用数形结合思想,根据题意画出相应的示意图,才能帮助学生迅速找出等量关系列出方程,从而突破难点。数形结合的思想,是最基本的数学思想之一,应用范围较为广泛,因此我们数学老师在教学中要注重数形结合思想方法的渗透、概括和总结,要重视数学思想方法在解题中的应用,数与形是数学中相互依赖的两个方面,在教学中要挖掘数与形的联系,从而加深对所学知识的理解和掌握。

第五篇:“数形结合”在小学数学教学中的应用

“数形结合”在小学数学教学中的应用

数学课程标准提出了“通过数学学习,掌握数学的基础知识、基本技能和思想方法。”其实在上海二期课改时关于数学基础知识的内容的界定上,也指出数学基础知识不仅指有关的数学概念、性质、公式等,还包括其中隐含的数学思想方法,以及学习数学和运用数学知识解决问题等。所以在教材编写上注重把数学思想方法贯穿在知识领域中,使每部分的数学知识不再孤立、零碎,组成一个有机的整体。

数学思想方法有许多,我们小学一般用到的如符号化、化归、数形结合、极限、模型、推理、几何变化、方程和函数、分类讨论、统计概率等思想。在小学数学教学过程中,有意识地对学生进行数学思想方法的渗透,可以让学生不再感觉数学是一门枯燥的学科,而初步了解数学的价值,从而感受数学思考的条理性、数学结论的明确性以及数学的美。下面就“数形结合”思想在小学数学教学中的应用谈些粗浅的想法。

一、数形结合思想的概念

数与形是数学中的两个最古老,也是最基本的研究对象,我们中小学数学研究的对象就分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:

1、借助于数的精确性来阐明形的某些属性,即“以数解形”;

2、借助形的几何直观性来阐明数之间某种关系,即“以形助数”。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想。数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法,具体地说就是将抽象的数学语言与直观图形对应起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。

二、数形结合的三种应用方式

一般来说,数形结合的应用方式主要有三种类型:以数化形、以形变数和数形结合。

(1)以数化形

由于“数”和“形”是一种对应的关系,“数”比较抽象,而“形”具有形象,直观的优点,能表达较多具体的思维。在低年级教学中,我们常常会把数的认识与计算通过形(学具)的演示,让学生初步建立起数的概念,认识数、学习数的加减乘除法;而高年级有些数量也较复杂,我们难以把握,于是就可以把“数”的对应——“形”找出来,利用图形来解决问题。画线段图的方法是每一个数学老师都把它当作学生学习数学的一项基本技能加以训练的,大家都知道,在教学应用题时,常可以借助形象的画线段图的方法,将问题迎刃而解。特别是行程问题的应用题,老师们总是不忘借助线段图进行讲解;还如我们在教五年级“时间的计算”这一课,虽然很多同学通过计算就能解决问题,但知其然还要知其所然,我们就可以把时间点、时间段通过线段图来表示,学生就更容易理解,这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。

(2)以形变数

虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算,最典型的就是二年级教材中的“点图与数”,那正方形点图所表示的就是每行与每列的圆点个数都相同,写成算式是两个相同的因数,于是它们的乘积就是平方数;由此在高年级拓展三角形数时有这么个小故事:古希腊毕达哥拉斯学派认为“万物皆数”,他们常把数描绘成沙滩上的点子或小石子,根据点子或小石子排列的形状把整数进行分类,如:1、3、6、10、„„这些数叫做三角形数(如下图)。

·

· · ·

· · · · · ·

· · · · · · · · · · 那么,判断一下45、456、1830、5050这四个数中,哪一个不是三角形数。中高年级学生通过观察,可以利用等差数列求和的方法可以找出这个数;也可以发现如果把一个三角形数去乘2,就可以写成两个相邻自然数的积,那么高年级的同学就可以利用分解素因数的方法来判断一个数是否是三角形数了。如此以形变数,提高了学生的思维能力。

(3)形数互变

形数互变是指在有些数学问题中不仅仅是简单的以数变形或以形变数,而是需要形数互相变换,不但要想到由“形”的直观变为“数”的严密,还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的形数互变。一般方法是看形思数、见数想形。实质就是以数化形、以形变数的结合。例如,“近似数”一课中,让学生掌握用“四舍五入法”求一个数的近似数是本节课的教学重点。通常我们会直接告诉学生“四舍五入法”这一概念,然后通过大量的练习强化求近似数的方法。那么我们不妨反思:学生做对了是否表明学生已经很好地理解了“四舍五入法”的含义呢?是否有部分学生的解题活动完全建立在对概念的机械模仿上呢?事实上,这种机械模仿的情况是客观存在的。如何帮助学生从本质上理解“四要舍、五要入”的意义呢?我们可以想到把直观的数轴引进这节课,在数轴上找最近的路,把四舍五入放到数轴上展开学习,利用数形结合帮助学生建立一个形象的数学模型,从而加深了学生对“四舍五入法”的理解。

又如在解决问题过程中,经常要用到“数”与“形”互译的数形结合思想,即把问题中的数量关系转译成图形,把抽象的数量关系形象化,再根据对图形的观察、分析、联想,逐步译成算式,以达到问题的解决。最常用的如“鸡兔同笼”一课:鸡兔同笼,有10个头、28条腿,鸡、兔各几只?本课的解决问题教学策略书上采用列表尝试法。如果采用数形互译的画图法解,二年级的学生都能解答,并且可以从画图法引出数量关系,列式解答。有几个头就画几个圆(表示动物的头),然后每个头下加两条腿(表示鸡有两条腿),剩余几条腿就再添在小动物身上,每个添2条(原来的鸡就变成了兔)。这样从图上可知兔有4只,鸡有6只。引导学生理解数量关系:首先假设10只全是鸡,每只鸡身上长2条腿,共10×2=20(条)腿,还剩余28-20=8(条)腿,鸡身上再长2条腿变成兔子,直到8条腿长完为止。这样就得到兔子有8÷(4-2)=4(只),鸡有10-4=6(只)。而对高年级学生借助于画示意图来分析数量之间的关系,是我们经常使用的办法。由此不难看出:“数”“形”互译的过程,既是问题解决的过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要且巧妙。

所以,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效的学好数学知识,更有利于学生学习兴趣的培养、数学思维的发展、知识应用能力的增强,使教学收到事半功倍之效。

三、发挥数形结合思想方法对知识获得的引领作用

1、要善于挖掘教材中含有数形结合思想的内容

教师在教学中要有渗透数形结合思想的意识,引导学生主动有效地利用课本中的图形,从图中读懂重要信息并整理信息,提出问题、分析问题、解决问题,即让学生通过“形”找出“数”。在小学“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”这四个学习领域中,都能应用数形结合思想进行教学,我们通过对教材的分析,初步整理了小学数形结合思想方法在各教学领域的渗透点:(1)“数与代数”:数的认识及计算,都能借助小棒图、计数图来理解算理、法则和方法;(2)“空间与图形”:可以借助数的知识及数量关系进行各平面图形的周长和面积的计算;(3)“实践与综合应用”:从所给问题的情境中辨认出数与形的一种特定关系或结构,运用画线段图、画分析图、画示意图等方法分析理解;(4)“统计与概率”:通过图形演示移多补少来理解平均数的含义。

2、教学时让学生在探索中感受数形结合思想

布鲁纳指出:“掌握基本的数学思想方法,能使数学更易于理解和记忆,领会基本的数学思想和方法是通向迁移大道的‘光明之路’。”在教学中,要让学生自主探索,感受数形结合思想,增强对数形结合思维模式的认知,体会图形对数学知识形成的意义。如果教师在教学中教师充分利用学生形象思维的特点,大量地用“形”解释、演现,经常引导学生将数与形结合起来,借助形象的图形理解算理,提炼算法,就能降低学习难度,有效地改善突破教学难点的方法,提高课堂教学效率。

3、课后延伸时让学生在解决问题中体验数形结合思想

数学是研究现实世界的空间形式和数量关系的科学,而数形结合思想贯穿于整个数学领域,我们可以将复杂的数量关系和抽象的数学概念通过图形、图像变得形象、直观。同样,复杂的几何形体可以用数量关系、公式、法则等手段,转化为简单的数量关系。在课后的知识延伸中,经常引导学生通过数形结合来解决生活中的实际问题,从而体验数形结合的好处。

数形结合是小学阶段的一个重要手段,而这一手段对学生们今后在初、高中的学习构建空间思维起着关键作用。今天我所讲的只是一些初步的、浅显的认识,思维作为一个认知过程,总是与个体的动机、兴趣情感等密切联系并受其制约的,相信只要不断激发学生的兴趣,启迪学生的动机,就能够有效地增强学生的逻辑思维能力和空间想象能力。巧妙地渗透、应用数形结合思想,既能为小学数学教学开辟一片广阔的天地,又能为学生的终身学习和可持续发展奠定扎实的基础。

下载初中数学教学中数形结合思想的应用探讨大全word格式文档
下载初中数学教学中数形结合思想的应用探讨大全.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数形结合思想论文

    三新二移之基不可失 摘要:数学是一门应用性非常广泛的学科,伟大的数学家华罗庚曾经说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生活之谜、日月之繁,无处不用数......

    小学数学数形结合教学思想(精选五篇)

    小学数学数形结合教学思想 一、数形结合教学思想在小学数学教学中的运用 数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数......

    小学数学数形结合教学思想探析论文

    摘要:小学是我国教育系统的重要组成部分,同时也是我国教育系统的基础,小学教育的质量将会影响到学生学习能力的培养,进而影响到学生以后的学习。数学是一门比较重要的学科。在小......

    小学数学课堂应用数形结合思想的教学方式探析

    小学数学课堂应用数形结合思想的教学方式探析数学作为促进科学技术发展的重要工具,有着极强的抽象性与逻辑性。小学阶段作为教育发展中的重要阶段,在教育中就要从培养学生形象......

    高考数学专题复习:数形结合思想

    高考冲刺:数形结合 编稿:林景飞审稿:张扬责编:辛文升 热点分析 高考动向 数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半......

    初一数学教学中的数形结合_4

    初一数学教学中的数形结合 丰城市淘沙初级中学 李小凯 数形结合是数学学科学习中一种极为重要的思想方法。我国著名数学家华罗庚先生指出:“数缺形时少直观,形缺数时难入微。......

    浅谈小学数形结合思想

    浅谈小学数形结合思想方法 摘要:数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,本文介绍相关概念并结合人教版小学数学教材,初步......

    高考复习数形结合思想

    数形结合 定义:数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面。 应用:大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手......