第一篇:“数形结合”在小学低段数学教学中的应用
《“数形结合”在小学低段数学教学中的应用》
龙南县龙翔学校
曾智勇
一、有利于把抽象的数学概念直观化,帮助学生形成概念
学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知、建构概念、解决问题,就相当于在原有的知识体系上添砖加瓦,新知识的学习就变得更简单。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果,也就是所谓深入浅出。
例如:二年级数学第一册中《乘法的引入》。
用相同的图像引导学生列出同数相加的算式,这样一方面利用数形结合思想直观、形象、生动的特点展现乘法的初始状态,懂得乘法的由来(知识的产生与发展);另一方面借助学生已有的知识经验——看图列加法算式,加深了图、式的对应思想,无形中也降低了教学难度。
我在实际课堂教学中运用PPT幻灯片技术展现一个盆子里有三个苹果,然后依次出现这样的第二个盆子,第三个盆子,一直到第五个盆子,如何来表示这个场景呢?学生自然会用同数相加的方法来表示。接着,教师一边出示课件一边提出:“如果有20个盆子,30个盆子,甚至100个盆子,你们怎么办呢?”学生一片哗然:“哦~~!算式太长了,本子都写不下呢。”这时,建立乘法概念水到渠成!数形结合使学生不仅理解了乘法的意义,而且懂得了乘法是同数相加的简便运算。
从学生的思维活动过程来看:在这个片段中,学生经历了由具体到抽象的思维过程,也就是由直观的小船,抽象成连加算式,抽象成乘法算式,经历了由一般到特殊的思维过程。
二、使计算中的算式形象化,帮助学生在理解算理
小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。” 根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。
如,在教学有余数的除法时,我就是利用7根小棒来完成的教学的。首先出示7根小棒,问能搭出几个三角形?要求学生用除法算式表示搭三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。
三、应用“数形结合”,提高学生的能力
对大脑的科研成果表明,大脑的两半球具有不同的功能,左半脑功能偏重于抽象的逻辑思维,讲究规范严谨,稳定封闭,如数的运算、代数式的运算、逻辑推理、归纳演绎等。右半脑功能则偏听偏重于形象思维,讲究直觉想象,自由发散,如猜想、假设、构思开拓、奇异创造等。左、右半脑的功能各有特征,如果互相补充就会使大脑功能更加健全和发达。“数形结合”就同时运用了左、右半脑的功能,在培养形象思维能力时,也促进了逻辑思维能力的发展。
1.“数形结合”有助于对数学知识的记忆
“记忆是智慧的仓库”。人的知识、经验的积累、技能的形成、技巧的熟练、思维能力的培养、事业的成就等都离不开良好的记忆能力。中等职业教育中的数学知识是基础性知识,需要牢固地记忆并掌握这些基础知识,在此基础上做到灵活应用,在整个教学过程中,这二者是相辅相成的。记忆正是掌握知识的基本手段,记忆的过程也就是知识积累的过程,同时有助于知识的深化,知识水平的提高更是要以记忆为前提。有的学生面对一些数学问题束手无策,找不到解题的思路与方法,这与脑子里记忆的数学知识太少有关。只有对数学的基础知识记忆牢固,才能做到温故而知新,应用时熟能生巧,才能进一步发展数学思维,提高数学能力。教学中运用形象记忆的特点,使抽象的数学尽可能地形象化,对学生输入的数学信息和映象就更加深刻,在学生的脑海中形成数学的模型,可以形象地帮助学生理解和记忆。
2.应用“数形结合”,训练学生数学直觉思维能力
在数学里,存在着大量的直觉思维。这就是人们在求解数学问题时,运用已有的知识,从整体上对数学对象及其结构迅速识别、判断,进而作出大胆的猜想,合理的假设,并作出试探性的结论。它具有顿悟、飞跃的特征。
3.应用“数形结合”,培养学生的发散思维能力
发散思维是从同一来源的材料或同一个问题,探求不同思路和方法的思维过程,其思维方向是从不同角度、不同方面看待同一个问题。在教学中常借助“一题多解”或“一题多变”的形式,突出已知与未知之间的矛盾联系,来引发学生提出新的思想、新的方法、新的问题,达到知识融会贯通,发展思维的广阔性和灵活性,激励学生的好奇心和求知欲,提高解决问题的应变能力。
四、应用“数形结合”,解决大量实际问题
运用数形结合有时能使数量之间的内在联系变得比较直观,成为解决问题的有效方法之一。在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,化难为易。
如植树问题,就是从图形中总结出解决方法。先模拟植树,得出线上植树的三种情况。
“___”代表一段路,用“ / ”代表一棵树,画“ / ”就表示种了一棵树。让学生在这段路上种上四棵树,想想、做做,你能有几种种法? 学生操作,独立完成后,在小组里交流说说你是怎么种的?
师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板:
① _________两端都种
② ____________ 或 ____________ 一端栽种
③ _______________两端都不种
师生共同小结得出: 两端都种:棵数=段数+1; 一端栽种:棵数=段数;两端都不种 :棵数=段数—1。本学期遇到了的几个题型,如锯木头、路边植树、上楼梯等问题,通过“形”的教学收到了明显的效果。许多孩子不会列算式,但是,会先画图,利用图形再列算式,像这些题目都是利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。实践证明,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化。
因此教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透数形结合思想的教学,使学生逐步形成数形结合思想,并使之成为学习数学、解决数学问题的工具,这是我们数学教学着力追求的目标。
第二篇:《浅谈“数形结合”在小学低段数学教学中的应用》王敏
《浅谈“数形结合”在小学低段数学教学中的应用》王敏
摘要:
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
关键词:
数形结合 低段数学 低年级学生
一、有利于把抽象的数学概念直观化,帮助学生形成概念
建构主义认为学生学习活动的本质是:学习并非对于教师所授予的知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构过程。学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知、建构概念、解决问题,就相当于在原有的知识体系上添砖加瓦,新知识的学习就变得更简单。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果,也就是所谓深入浅出。
例如:在一年级上册中,学生刚学习数学知识时,教材首先就是通过数与物(形)的对应关系,初步建立起数的基本概念,认识数,学习数的加减法;通过具体的物(形)帮助学生建立起初步的比较长短、多少、高矮等较为抽象的数学概念;通过图形的认识与组拼,在培养学生初步的空间观念的同时,也初步培养学生的数形结合的思想,帮助学生把数与形联系起来,数形有机结合。在以后年级的学习中,随着学生年龄的增长,思维能力的不断提高,数与形的结合就更加广泛与深入。
再如:二年级数学第一册中《乘法的引入》。
用相同的图像引导学生列出同数相加的算式,这样一方面利用数形结合思想直观、形象、生动的特点展现乘法的初始状态,懂得乘法的由来(知识的产生与发展);另一方面借助学生已有的知识经验——看图列加法算式,加深了图、式的对应思想,无形中也降低了教学难度。
我在实际课堂教学中运用PPT幻灯片技术展现一个盆子里有三个苹果,然后依次出现这样的第二个盆子,第三个盆子,一直到第五个盆子,如何来表示这个场景呢?学生自然会用同数相加的方法来表示。接着,教师一边出示课件一边提出:“如果有20个盆子,30个盆子,甚至100个盆子,你们怎么办呢?”学生一片哗然:“哦~~!算式太长了,本子都写不下呢。”这时,建立乘法概念水到渠成!数形结合使学生不仅理解了乘法的意义,而且懂得了乘法是同数相加的简便运算。
从学生的思维活动过程来看:在这个片段中,学生经历了由具体到抽象的思维过程,也就是由直观的小船,抽象成连加算式,抽象成乘法算式,经历了由一般到特殊的思维过程。
在三年级上册分数的初步认识中,通过具体的形的操作与实践,让学生充分理解“平均分”,几分之一,几分之几等数学概念,掌握运用分数大小的比较,分数的意义,分数的加减等,使数形紧密地结合在一起,把抽象的数学概念直观地呈现在学生面前,帮助学生理解掌握分数的知识。
二、使计算中的算式形象化,帮助学生在理解算理
小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。” 根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。
如,在教学“分数加分数”时,课始创设情境:小明过生日,他吃了这个蛋糕的1/8,妈妈吃了这个蛋糕的2/8,他们两人一共吃了这个蛋糕的几分之几?、糕字在引出算式1/8+1/8后,我采用三步走的策略:第一,学生独立思考后用图来表示出1/8+1/8这个算式。第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领学困生。学困生受到启发后修改自己的图形,更好地理解1/8+1/8这个算式所表示的意义。第三,全班点评,展示、交流。
再如,在教学有余数的除法时,我就是利用7根小棒来完成的教学的。首先出示7根小棒,问能搭出几个三角形?要求学生用除法算式表示搭三角形的过程。
像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。
三、应用“数形结合”,提高学生的能力
对大脑的科研成果表明,大脑的两半球具有不同的功能,左半脑功能偏重于抽象的逻辑思维,讲究规范严谨,稳定封闭,如数的运算、代数式的运算、逻辑推理、归纳演绎等。右半脑功能则偏听偏重于形象思维,讲究直觉想象,自由发散,如猜想、假设、构思开拓、奇异创造等。左、右半脑的功能各有特征,如果互相补充就会使大脑功能更加健全和发达。“数形结合”就同时运用了左、右半脑的功能,在培养形象思维能力时,也促进了逻辑思维能力的发展。
1.“数形结合”有助于对数学知识的记忆
“记忆是智慧的仓库”。人的知识、经验的积累、技能的形成、技巧的熟练、思维能力的培养、事业的成就等都离不开良好的记忆能力。中等职业教育中的数学知识是基础性知识,需要牢固地记忆并掌握这些基础知识,在此基础上做到灵活应用,在整个教学过程中,这二者是相辅相成的。记忆正是掌握知识的基本手段,记忆的过程也就是知识积累的过程,同时有助于知识的深化,知识水平的提高更是要以记忆为前提。有的学生面对一些数学问题束手无策,找不到解题的思路与方法,这与脑子里记忆的数学知识太少有关。只有对数学的基础知识记忆牢固,才能做到温故而知新,应用时熟能生巧,才能进一步发展数学思维,提高数学能力。教学中运用形象记忆的特点,使抽象的数学尽可能地形象化,对学生输入的数学信息和映象就更加深刻,在学生的脑海中形成数学的模型,可以形象地帮助学生理解和记忆。
2.应用“数形结合”,训练学生数学直觉思维能力
在数学里,存在着大量的直觉思维。这就是人们在求解数学问题时,运用已有的知识,从整体上对数学对象及其结构迅速识别、判断,进而作出大胆的猜想,合理的假设,并作出试探性的结论。它具有顿悟、飞跃的特征。
3.应用“数形结合”,培养学生的发散思维能力
发散思维是从同一来源的材料或同一个问题,探求不同思路和方法的思维过程,其思维方向是从不同角度、不同方面看待同一个问题。在教学中常借助“一题多解”或“一题多变”的形式,突出已知与未知之间的矛盾联系,来引发学生提出新的思想、新的方法、新的问题,达到知识融会贯通,发展思维的广阔性和灵活性,激励学生的好奇心和求知欲,提高解决问题的应变能力。
4. 应用“数形结合”,培养学生的创造性思维能力
目前,推行素质教育已成为教育发展的主流。对学生进行综合素质和能力的培养,是建立新世纪创造性人才队伍的需要。,是思维的最高境界。只有具有创造性思维能力的人,才能在各自的领域中有所创造发明,才能推动科学技术、人类社会的向前发展。在数学教学中,教师可通过编选一些探索性的题目,让学生去研究,去探讨,去发现。让他们不是从头脑中已有的思维形式和思维方法中去找答案,而是从问题的本身进行具体的分析,进行一系列探索性思维活动,将已有的思维方式大跨度地迁移,从可供选择的途径中筛选出解决问题的方法。
四、应用“数形结合”,培养学生的良好情操
1. 树立现代思维意识
在数学教育中,通过数与形的有机结合,把形象思维与抽象思维有机地结合起来,尽可能地先形象后抽象,不但能促进这两种思维能力同步发展,还为学生初步形成辩证思维能力创造了条件。
在数学教学活动中,通过数与形的结合,能够有的放矢地帮助学生多角度、多层次地思考问题,可以养成多向性思维的好习惯。
在数学教学活动中,教师引导学生变静态思维方式为动态思维方式,也就是以运动、变化、联系的观点考虑问题,把数与形分别视为运动事物在某一瞬间的取值或某一瞬间的相对位置。运用动态思维方式处理教材、研究问题,能揭示前后知识的联系与变化,培养学生的辩证思维能力,更好地把握事物的本质。
2.树立辩证唯物主义世界观
客观世界是一个普遍联系的整体,每一事物都不是孤立的存在,它和其他事物以各种方式相互依赖着,相互制约着,相互作用着。我们从数学的发展即可揭示出:事物无不处于普遍联系之中。例如,解析几何是由代数和几何,数和形两方面的联系、变化、发展而来的。代数和几何,数和形是对立的,但又是相互联系的,可以互相转化的。当引入坐标后,它们就统一于解析几何中。这样,数学教师就能用鲜活的事例,引导学生用普遍联系的观点、物质统一性的观点、对立统一的观点来全面的认识客观事物的运动、变化、规律,从而对人生观、世界观正处于定型期的中职学生以良好的促进作用,帮助他们初步形成辩证唯物主义世界观。
五、数量之间的关系,解决大量实际问题
运用数形结合有时能使数量之间的内在联系变得比较直观,成为解决问题的有效方法之一。在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,化难为易。
在一年级下册刚接触比多比少应用题教学时,通过数与物(形)的对应关系,帮助学习建立起同样多、多的部分、少的部分、大的数、小的数等较抽象的数学概念,从而理解掌握比多比少用大的数减去小的数,求大的数用小的数加上多的部分(或少的部分),求小的数用大的数减去少的部分(或多的部分)。有的学生在刚学习比多比少应用题时,未能很好的建立起数与形的有机结合,未充分理解掌握比多比少的基本数量关系,而是机械地记忆“多”字用加法,“少”字用减法。这样的学生我们在教学中发现的还不在少数。
在二年级上册进行倍数应用题的学习时,教材首先是通过数与物(形)的结合,帮助学习初步建立起倍数的意义,即求一个数的几倍,就是求几个这样的数是多少。在学生初步建立起倍数的概念(意义)的基础上,逐步过渡到数与形结合,即画线段图,帮助学习理解掌握倍数的意义。在这里,教材从最初的最直观的数物(形)结合,逐步过渡到由图形代替物体——数形结合,初步建立起数学语言——数与形,使学生逐步从最直接的感知发展到较为抽象的数学知识,初步建立起今后数学学习的基本途径与方法,及数学思想——数形结合。不仅现在,在学生将来的数学学习中,随着知识难度的增大,用画线段图的方法来解答应用题,也是学生学习中方便操作且行之有效的方法。
比如鸡兔同笼问题,也是从图形中总结出解决方法。如:鸡和兔一共有8只,腿有22条。求鸡和兔各有多少只?
用算术方法解决鸡兔同笼问题,有的学生不能完全理解,而借助画图,一步一步总结方法和规律,帮助学生理解。先画8个圆,表示8只动物,假设全是鸡,给每个圆画2条腿。共画了16条腿。还有22-16=8(条)没有画上,再把剩下的腿添上,每个圆还可以添2条,8条腿可以添8÷2=4(只)。从画好的图中可以看出,这4只动物有4条腿,是兔。只有2条腿的有4只,是鸡。
再如植树问题,也是从图形中总结出解决方法。先模拟植树,得出线上植树的三种情况。
“___”代表一段路,用“ / ”代表一棵树,画“ / ”就表示种了一棵树。让学生在这段路上种上四棵树,想想、做做,你能有几种种法?
学生操作,独立完成后,在小组里交流说说你是怎么种的?
师反馈,实物投影学生摆的情况。师根据学生的反馈相应地把三种情况都贴于黑板:
① _________两端都种
② ____________ 或 ____________
一端栽种
③
_______________两端都不种
师生共同小结得出: 两端都种:棵数=段数+1;
一端栽种:棵数=段数; 两端都不种 :棵数=段数—1。本学期遇到了的几个题型,如锯木头、路边植树、上楼梯等问题,通过“形”的教学收到了明显的效果。许多孩子不会列算式,但是,会先画图,利用图形再列算式,像这些题目都是利用线段图帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。实践证明,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化。
因此教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透数形结合思想的教学,使学生逐步形成数形结合思想,并使之成为学习数学、解决数学问题的工具,这是我们数学教学着力追求的目标。
参考文献:
1.《数学思想方法与小学数学教学》 夏俊生主编
河海大学出版社 1998年12月
2.《数学课程标准》(实验稿)北京师范大学出版社
2001年7月
3.《教学论》
田慧生 李如密著
河北教育出版社
1999年1月 暨阳街道大侣小学
葛琼钗
(责编 王文亮)
第三篇:“数形结合”在小学数学教学中的应用
“数形结合”在小学数学教学中的应用
数学课程标准提出了“通过数学学习,掌握数学的基础知识、基本技能和思想方法。”其实在上海二期课改时关于数学基础知识的内容的界定上,也指出数学基础知识不仅指有关的数学概念、性质、公式等,还包括其中隐含的数学思想方法,以及学习数学和运用数学知识解决问题等。所以在教材编写上注重把数学思想方法贯穿在知识领域中,使每部分的数学知识不再孤立、零碎,组成一个有机的整体。
数学思想方法有许多,我们小学一般用到的如符号化、化归、数形结合、极限、模型、推理、几何变化、方程和函数、分类讨论、统计概率等思想。在小学数学教学过程中,有意识地对学生进行数学思想方法的渗透,可以让学生不再感觉数学是一门枯燥的学科,而初步了解数学的价值,从而感受数学思考的条理性、数学结论的明确性以及数学的美。下面就“数形结合”思想在小学数学教学中的应用谈些粗浅的想法。
一、数形结合思想的概念
数与形是数学中的两个最古老,也是最基本的研究对象,我们中小学数学研究的对象就分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:
1、借助于数的精确性来阐明形的某些属性,即“以数解形”;
2、借助形的几何直观性来阐明数之间某种关系,即“以形助数”。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想。数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法,具体地说就是将抽象的数学语言与直观图形对应起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。
二、数形结合的三种应用方式
一般来说,数形结合的应用方式主要有三种类型:以数化形、以形变数和数形结合。
(1)以数化形
由于“数”和“形”是一种对应的关系,“数”比较抽象,而“形”具有形象,直观的优点,能表达较多具体的思维。在低年级教学中,我们常常会把数的认识与计算通过形(学具)的演示,让学生初步建立起数的概念,认识数、学习数的加减乘除法;而高年级有些数量也较复杂,我们难以把握,于是就可以把“数”的对应——“形”找出来,利用图形来解决问题。画线段图的方法是每一个数学老师都把它当作学生学习数学的一项基本技能加以训练的,大家都知道,在教学应用题时,常可以借助形象的画线段图的方法,将问题迎刃而解。特别是行程问题的应用题,老师们总是不忘借助线段图进行讲解;还如我们在教五年级“时间的计算”这一课,虽然很多同学通过计算就能解决问题,但知其然还要知其所然,我们就可以把时间点、时间段通过线段图来表示,学生就更容易理解,这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。
(2)以形变数
虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算,最典型的就是二年级教材中的“点图与数”,那正方形点图所表示的就是每行与每列的圆点个数都相同,写成算式是两个相同的因数,于是它们的乘积就是平方数;由此在高年级拓展三角形数时有这么个小故事:古希腊毕达哥拉斯学派认为“万物皆数”,他们常把数描绘成沙滩上的点子或小石子,根据点子或小石子排列的形状把整数进行分类,如:1、3、6、10、„„这些数叫做三角形数(如下图)。
·
· · ·
· · · · · ·
· · · · · · · · · · 那么,判断一下45、456、1830、5050这四个数中,哪一个不是三角形数。中高年级学生通过观察,可以利用等差数列求和的方法可以找出这个数;也可以发现如果把一个三角形数去乘2,就可以写成两个相邻自然数的积,那么高年级的同学就可以利用分解素因数的方法来判断一个数是否是三角形数了。如此以形变数,提高了学生的思维能力。
(3)形数互变
形数互变是指在有些数学问题中不仅仅是简单的以数变形或以形变数,而是需要形数互相变换,不但要想到由“形”的直观变为“数”的严密,还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的形数互变。一般方法是看形思数、见数想形。实质就是以数化形、以形变数的结合。例如,“近似数”一课中,让学生掌握用“四舍五入法”求一个数的近似数是本节课的教学重点。通常我们会直接告诉学生“四舍五入法”这一概念,然后通过大量的练习强化求近似数的方法。那么我们不妨反思:学生做对了是否表明学生已经很好地理解了“四舍五入法”的含义呢?是否有部分学生的解题活动完全建立在对概念的机械模仿上呢?事实上,这种机械模仿的情况是客观存在的。如何帮助学生从本质上理解“四要舍、五要入”的意义呢?我们可以想到把直观的数轴引进这节课,在数轴上找最近的路,把四舍五入放到数轴上展开学习,利用数形结合帮助学生建立一个形象的数学模型,从而加深了学生对“四舍五入法”的理解。
又如在解决问题过程中,经常要用到“数”与“形”互译的数形结合思想,即把问题中的数量关系转译成图形,把抽象的数量关系形象化,再根据对图形的观察、分析、联想,逐步译成算式,以达到问题的解决。最常用的如“鸡兔同笼”一课:鸡兔同笼,有10个头、28条腿,鸡、兔各几只?本课的解决问题教学策略书上采用列表尝试法。如果采用数形互译的画图法解,二年级的学生都能解答,并且可以从画图法引出数量关系,列式解答。有几个头就画几个圆(表示动物的头),然后每个头下加两条腿(表示鸡有两条腿),剩余几条腿就再添在小动物身上,每个添2条(原来的鸡就变成了兔)。这样从图上可知兔有4只,鸡有6只。引导学生理解数量关系:首先假设10只全是鸡,每只鸡身上长2条腿,共10×2=20(条)腿,还剩余28-20=8(条)腿,鸡身上再长2条腿变成兔子,直到8条腿长完为止。这样就得到兔子有8÷(4-2)=4(只),鸡有10-4=6(只)。而对高年级学生借助于画示意图来分析数量之间的关系,是我们经常使用的办法。由此不难看出:“数”“形”互译的过程,既是问题解决的过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要且巧妙。
所以,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效的学好数学知识,更有利于学生学习兴趣的培养、数学思维的发展、知识应用能力的增强,使教学收到事半功倍之效。
三、发挥数形结合思想方法对知识获得的引领作用
1、要善于挖掘教材中含有数形结合思想的内容
教师在教学中要有渗透数形结合思想的意识,引导学生主动有效地利用课本中的图形,从图中读懂重要信息并整理信息,提出问题、分析问题、解决问题,即让学生通过“形”找出“数”。在小学“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”这四个学习领域中,都能应用数形结合思想进行教学,我们通过对教材的分析,初步整理了小学数形结合思想方法在各教学领域的渗透点:(1)“数与代数”:数的认识及计算,都能借助小棒图、计数图来理解算理、法则和方法;(2)“空间与图形”:可以借助数的知识及数量关系进行各平面图形的周长和面积的计算;(3)“实践与综合应用”:从所给问题的情境中辨认出数与形的一种特定关系或结构,运用画线段图、画分析图、画示意图等方法分析理解;(4)“统计与概率”:通过图形演示移多补少来理解平均数的含义。
2、教学时让学生在探索中感受数形结合思想
布鲁纳指出:“掌握基本的数学思想方法,能使数学更易于理解和记忆,领会基本的数学思想和方法是通向迁移大道的‘光明之路’。”在教学中,要让学生自主探索,感受数形结合思想,增强对数形结合思维模式的认知,体会图形对数学知识形成的意义。如果教师在教学中教师充分利用学生形象思维的特点,大量地用“形”解释、演现,经常引导学生将数与形结合起来,借助形象的图形理解算理,提炼算法,就能降低学习难度,有效地改善突破教学难点的方法,提高课堂教学效率。
3、课后延伸时让学生在解决问题中体验数形结合思想
数学是研究现实世界的空间形式和数量关系的科学,而数形结合思想贯穿于整个数学领域,我们可以将复杂的数量关系和抽象的数学概念通过图形、图像变得形象、直观。同样,复杂的几何形体可以用数量关系、公式、法则等手段,转化为简单的数量关系。在课后的知识延伸中,经常引导学生通过数形结合来解决生活中的实际问题,从而体验数形结合的好处。
数形结合是小学阶段的一个重要手段,而这一手段对学生们今后在初、高中的学习构建空间思维起着关键作用。今天我所讲的只是一些初步的、浅显的认识,思维作为一个认知过程,总是与个体的动机、兴趣情感等密切联系并受其制约的,相信只要不断激发学生的兴趣,启迪学生的动机,就能够有效地增强学生的逻辑思维能力和空间想象能力。巧妙地渗透、应用数形结合思想,既能为小学数学教学开辟一片广阔的天地,又能为学生的终身学习和可持续发展奠定扎实的基础。
第四篇:在数学教学中如何渗透数形结合思想
在数学教学中渗透数形结合思想
在数学教学中,教师如果能灵活地借助数形结合思想,会将数学问题化难为易,帮助学生理解数学问题。那么,如何在初中数学教学中挖掘数形结合思想并适时地加以应用呢?下面笔者根据日常的教学实践谈谈自己的见解。
一、从有理数开始就让中学生及早体会数形结合思想
在七年级开始,数轴的引入就大大丰富了有理数的内容,对学生认识有理数、相反数、绝对值以及有理数的运算都有很大的帮助,由于对每一个有理数,数轴上都有唯一确定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的。相反数、绝对值概念则是通过相应的数轴上的点与原点的位置关系来刻划的。尽管我们学习的是有理数,但我们要求学生时刻牢记它的形:数轴上的点。通过渗透数形结合的思想方法,帮助学生正确理解有理数的性质及其运算法则。
例如:
1、比较两个数的大小方法:数轴上两个点表示的数,右边的数总比左边的大,正数大于零,负数小于0,正数大于负数;
2、比2℃低5℃的温度是_______;
3、若|a|=2,则a=______;
4、七年级《数学》(上)的习题,一辆货车从超市出发,向东走了3千米到达小彬家,继续走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市。在习题中也常出现这类题目。
这些内容如果适当应用数形结合的思想就很容易理解掌握了。
二、不等式(组)内容蕴藏着数形结合思想
在进行 “一元一次不等式和一元一次不等式组”,教学时,为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无限多个解。这里蕴藏着数形结合的重要思想方法,在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步。确定一元一次不等式组的解集时,利用数轴更为有效,如:在分析不等式组的解集情况时,如果老师利用数轴把数转化为“形”从而找出两个不等式的公共解,教学效果会事倍功半。如果老师能结合数轴,画图表示各个不等式的解集,就很容易写出不等式组几种类型的解集。
三、应用题的内容也隐含丰富的数形结合思想。
用示意图分析数学问题,就是运用数形结合思想的充分体现。小学教师在帮助学生分析解应用题,尤其有关行程问题、工程问题等方面的内容时,都不忘用示意图。而到了中学,学生的理解分析能力都有了很大的提高,应用题的内容更为丰富了,复杂了、难度更大了,并且其难点是如何根据题意寻找等量关系布列方程,要突破这一难点,老师在教学中必须充分运用数形结合思想,根据题意画出相应的示意图,才能帮助学生迅速找出等量关系列出方程,从而突破难点。数形结合的思想,是最基本的数学思想之一,应用范围较为广泛,因此我们数学老师在教学中要注重数形结合思想方法的渗透、概括和总结,要重视数学思想方法在解题中的应用,数与形是数学中相互依赖的两个方面,在教学中要挖掘数与形的联系,从而加深对所学知识的理解和掌握。
第五篇:浅谈数形结合在数学教学中的运用
龙源期刊网 http://.cn
浅谈数形结合在数学教学中的运用
作者:朱军
来源:《中国科教创新导刊》2013年第04期
摘 要:数学是研究客观世界的空间形式和数量关系的科学,数与形是数学的两种表达形式,数是形的抽象概括,形又是数的直观表现。数形结合是把抽象的数学语言同直观的图形结合起来,通过“以形助数、以数解形”,使抽象思维和形象思维相结合,数形结合的过程也就是数学语言不断内化、不断形成、不断运用的过程。特别是运用到函数解题中,就能够使复杂的问题简单化,抽象的问题具体化,进而简化解题过程,从而达到事半功倍的效果。关键词:数形结合 抽象思维 函数 运用
中图分类号:G424 文献标识码:A 文章编号:1673-9795(2013)02(a)-0103-02