初中数学复习 数形结合谈数轴

2020-04-15 00:20:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《初中数学复习 数形结合谈数轴》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学复习 数形结合谈数轴》。

数形结合谈数轴

一、阅读与思考

数学是研究数和形的学科,在数学里数和形是有密切联系的。我们常用代数的方法来处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种数与形之间的相互作用叫数形结合,是一种重要的数学思想。

运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有力工具,主要体现在以下几个方面:

1、利用数轴能形象地表示有理数;

2、利用数轴能直观地解释相反数;

3、利用数轴比较有理数的大小;

4、利用数轴解决与绝对值相关的问题。

二、知识点反馈

1、利用数轴能形象地表示有理数;

例1:已知有理数在数轴上原点的右方,有理数在原点的左方,那么()

A.

B.

C.

D.

拓广训练:

1、如图为数轴上的两点表示的有理数,在中,负数的个数有()

(“祖冲之杯”邀请赛试题)

A.1

B.2

C.3

D.43、把满足中的整数表示在数轴上,并用不等号连接。

2、利用数轴能直观地解释相反数;

例2:如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为。

拓广训练:

1、在数轴上表示数的点到原点的距离为3,则

2、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为3,那么所有满足条件的点B与原点O的距离之和等于

。(北京市“迎春杯”竞赛题)

3、利用数轴比较有理数的大小;

例3:已知且,那么有理数的大小关系是

。(用“”号连接)(北京市“迎春杯”竞赛题)

拓广训练:

1、若且,比较的大小,并用“”号连接。

例4:已知比较与4的大小

拓广训练:

1、已知,试讨论与3的大小

2、已知两数,如果比大,试判断与的大小

4、利用数轴解决与绝对值相关的问题。

例5:

有理数在数轴上的位置如图所示,式子化简结果为()

A.

B.

C.

D.

拓广训练:

1、有理数在数轴上的位置如图所示,则化简的结果为。

2、已知,在数轴上给出关于的四种情况如图所示,则成立的是。

3、已知有理数在数轴上的对应的位置如下图:则化简后的结果是()

(湖北省初中数学竞赛选拨赛试题)

A.

B.

C.

D.

三、培优训练

1、已知是有理数,且,那以的值是()

A.

B.

C.或

D.或

0

A

B

C2、(07乐山)如图,数轴上一动点向左移动2个单位长度到达点,再向右移动5个单位长度到达点.若点表示的数为1,则点表示的数为()

A.

B.

C.

D.

3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数且,那么数轴的原点应是()

A.A点

B.B点

C.C点

D.D点

4、数所对应的点A,B,C,D在数轴上的位置如图所示,那么与的大小关系是()

A.

B.

C.

D.不确定的5、不相等的有理数在数轴上对应点分别为A,B,C,若,那么点B()

A.在A、C点右边

B.在A、C点左边

C.在A、C点之间

D.以上均有可能

6、设,则下面四个结论中正确的是()(全国初中数学联赛题)

A.没有最小值

B.只一个使取最小值

C.有限个(不止一个)使取最小值

D.有无穷多个使取最小值

7、在数轴上,点A,B分别表示和,则线段AB的中点所表示的数是。

8、若,则使成立的的取值范围是。

9、是有理数,则的最小值是。

10、已知为有理数,在数轴上的位置如图所示:

且求的值。

11、(南京市中考题)(1)阅读下面材料:

点A、B在数轴上分别表示实数,A、B两点这间的距离表示为,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边;

②如图3,点A、B都在原点的左边;

③如图4,点A、B在原点的两边。

综上,数轴上A、B两点之间的距离。

(2)回答下列问题:

①数轴上表示2和5两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;

②数轴上表示和-1的两点A和B之间的距离是,如果,那么为;

③当代数式取最小值时,相应的的取值范围是;

④求的最小值。

下载初中数学复习 数形结合谈数轴word格式文档
下载初中数学复习 数形结合谈数轴.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学——数形结合思想(初二)

    数形结合思想“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的.体现在数学解题中, 包括“以数助形”和“以形助数”两个方面.“数”与“形”好比......

    高考数学专题复习:数形结合思想

    高考冲刺:数形结合 编稿:林景飞审稿:张扬责编:辛文升 热点分析 高考动向 数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半......

    高考复习数形结合思想

    数形结合 定义:数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面。 应用:大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手......

    高考数学总复习第三讲—数形结合

    大毛毛虫★倾情搜集★精品资料 高考数学总复习第三讲:数形结合 一、专题概述 ---什么是数形结合的思想 数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思......

    学习心得数形结合

    数形结合学习心得 低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的......

    初中数学数轴教案

    2.2 数轴 10数本2班教学目标: 1.使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示; 2.......

    初中数学数轴说课稿

    非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。我说课的内容是人教版九年义务教育七年级教科书代数第一册第一章第二节“数轴”的第一课时内容。一:教材分析......

    高考数学总复习第三讲:数形结合[五篇范文]

    高考数学总复习第三讲:数形结合 一、专题概述 ---什么是数形结合的思想 数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.恩格斯说:“纯数学的对象是现实......