人教版小学数学《积的变化规律》的说课稿

时间:2019-05-15 01:11:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版小学数学《积的变化规律》的说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版小学数学《积的变化规律》的说课稿》。

第一篇:人教版小学数学《积的变化规律》的说课稿

人教版小学数学《积的变化规律》的说课稿

一、说教材

1、教材简析:

“积的变化规律”编排在小学数学第七册第三单元,是本单元的重点和难点,也是本册的学习探索积的变化规律的一般方法和经验,同时有是小学阶段初步尝试用简洁的语言表达积的变化规律。

本教材的教学基础是:“积的变化规律”是乘法中研究“两数相乘,当一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几”。从复习题、例题、做一做、巩固练习等都充分体现由浅入深、由易到难、循序渐进,符合学生的认识规律。

2、教学目标:

通过本课时教学,使学生初步经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。同时尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

3、教学重、难点:

引导学生自己发现规律,概括规律,进而运用规律。

二、说教法

“教无定法,贵在得法。成功的一堂课应该以某种教法为主,诸种教法优化组合,启发式教学贯穿其中。只要符合学生认识规律,顺利达到教学目标,提高教学效率,就是好的教学方法。而本教材新旧知识联系非常密切。拟用“尝试法”为主、“讲解法”为辅的教学方法。通过学生类比训练,试一试,使知识迁移,培养学生的学习兴趣,激发学生的学习动机。教师的精讲点拨,突出重点、突破难点。

三、说学法

学生是学习的主人,培养学生表达能力,发展学生智力是素质教育的组成部分,是课堂教学不可忽视的问题,指导学生学会生存、学会学习、学会做人,发展学生个性,健全学生体魄是未来教育趋势。只有这样,学生在未来的竞争中才能立足于不败之地。更重要的是解决学生怎么学的问题,教师良好的方法指导,使学生终身受益。本教材的教学指导概括起来是:观察、思考、自学、悟理。思考包含两层意思,即回顾旧知识和思考新问题;通过思考、观察、动手、动脑多种感官并用去“试一试”从中悟出结论,这样从感性认识到理性认识过程符合本课时教材特点,学生认识规律和心理特征。

四、说教学程序

如果我们把上面所论述的说成是教学蓝图,那下面所说的教学程序是对教学蓝图提出的目标、规格、标准,进行有计划、有步骤的实施。教师不仅仅是“设计者”而且是“实施者”。如何按质、按量、按时完成教学任务,实现教学目标呢?下面我从五个方面谈第一教时的教学设想:

(一)复习旧课。

1、出示下面算式,让学生观察。(1)6×2=12

(2)20×4=80

6×20=120

10×4=40

6×200=1200

5×4=20

2、初步感知。

师:观察上面的算式,你发现了什么?

指名回答,引导学生初步发现:“两数相乘,其中一个因数变化,它们的积也随着变化”。

3、引入课题。

教师指出:“这节课我们来研究”两数相乘,其中一个因数变化,它们的积如何变化的规律“。板书课题:积的变化规律。

(二)探索规律。

1、概括规律。

(1)分层概括发现的规律。①小组讨论。

让学生针对上面提出的问题在小组内讨论。即让每一个学生先把第(1)组算式中独立发现的规律说给同伴听。

学生也许是就题说题。如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;200是2的100倍,1200也是12的100倍„„。②全班交流。

在小组交流的基础上,引导学生根据第(1)组算式中积随着因数变化的情况,将发现的上述规律用一句话概括出来:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。③讨论第(2)组。

引导学生讨论第(2)组算式中积岁因数变化的情况。与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几”。(2)整体概括规律。

提问:谁能用一句话简化发现的两条规律概括为一条呢?

引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:“两数相乘,一个因数不变,另一个因数乘或除以几,积也要乘或除以几”。

2、验证规律。

(1)先用积的变化规律填空。

15×48=720

17×12=204

15×24=()

17×24=()

15×12=()

17×36=()(2)自己举例说明积的变化规律。

每位学生各写出两组算式,一组写3个,展现积分别随着一个因数扩大、缩小的变化情况。

3、应用规律。

完成课本第58页“做一做”。

(三)、巩固应用。

指导学生完成课本第59页练习九中的第1----4题。

1、第1题:先让学生独立解决问题,再组织交流。对于本题,由于计算的数据比较简单,可以口算,所以以填空的形式出现。填第2空时,学生的解题可能有以下两种,教师应给予肯定。(1)40×4×2=320(千米);(2)160×2=320(千米)教师应引导学生对两种算法进行对比,使学生理解,第2种解法充分利用了第一个空的结果和积的变化规律,同时认识到在解决问题时应整体考虑问题中已有的多个信息,这样解题思路才会开阔。

2、第2题:学生独立完成后,教师组织学生进行全班交流。本题解法有两种,可参考如下:

(1)560÷8=70(米),70×24=1680(平方米)。(2)24÷8=3(倍),560×3=1680(平方米)。

学生独立完成后,应突出对第(2)种解题方法的探究,可列出下列算式,强化对积变化规律的灵活应用,并渗透正比例函数的思想方法。(长)×8=560

(长)×24=1680

3、第3题:先让学生独立完成,再组织学生进行交流。全班交流时,教师着重让学生说一说填写的依据。

4、第4题:交流时,可引导学生利用如下分析式进行分析,进一步渗透正比例函数的思想方法。

3千克

5元

2千克

10元 苹果:

香蕉:

6千克

?元

4千克

?元

(四)全课小结。

师:今天这节课,你有什么收获?

重点引导学生关注:

1、经过探索,你发现了一个怎样的规律?

2、我们是怎样探索出这个规律的?

3、应用了这个规律解决了哪些问题?

4、你和同学之间的合作愉快吗?

(五)布置作业。

▲ 课本第59页练习九中的第5题。

第二篇:积的变化规律说课稿

积的变化规律说课稿

积的变化规律说课稿1

尊敬的各位评委老师:

大家好!(鞠躬)我是小学数学组几号考生,今天我说课的题目是《积的变化规律》,下面开始我的说课。

依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。

说教材

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,首先我想谈一谈我对教材的理解。《三位数乘两位数》是人教版四年级上册第四单元《三位数乘两位数》中第二课的内容,学生在学习这节课之前,已经掌握了三位数乘两位数的基本运算法则,这为本节课的学习奠定了良好的认知基础,而本节课的学习也为后边进一步学习乘除法做了铺垫,所以本节课在教材中有着重要的地位和作用。

说学情

一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。

说教学目标

根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:

知识与技能目标:能理解并掌握积的变化规律,并能够熟练运用规律进行简单计算。

过程与方法目标:通过观察独立思考,经历小组合作探究,归纳积变化规律的过程,提高简单计算数问题的能力。

情感态度价值观目标:在参与学习的过程中,感受数学思考过程的条理性和魅力,体验成功的喜悦,激发学习数学的兴趣。

说教学重难点

根据教学目标,我确定了本节课的重点和难点。重点为掌握乘法里积的变化规律,,而理解积的变化规律的归纳过程为本节课的难点。

说教法学法

为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。

我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。

说教学内容

为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:

(一)创设情境,导入新课

为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放向学生展示两组算式,6×2=12,6×20=120,6×200=1200;20×4=80,10×4=40,5×4=20六个式子,然后我会学生抛出问题,这两组式子都有什么样的特点,又有呢些规律呢?继而引出本节课课题--积的变化规律。(板书题目)。

多媒体课件展示两组乘法算式有关的内容,更有利于激发学生深厚的学习兴趣和求知欲望,快速的进入学习状态。

(二)自主探究,感受新知

进入正式的新课讲授环节,我会继续向学生提问,那我们回到刚才这个问题,这两组式子都有什么样的特点呢?然后安排学生进行独立思考,经过学生独立思考不难看出,这两组式子第一组式子中第一个因数不变,第二个因数不断变大,积也在不断变大,在第二组式子中一个因数不变,另一个因数不断变小,积也同样的在不断变小。

我将继续向学生提问仔细观察着两组式子,每一组式子中三个式子之间又有什么样的规律呢?接下来组织同桌两人进行交流,经过同桌交流,同学们基本可以得到第(1)组题中,第2、3题同第1题比,第二个因数分别乘了10、100,同样的第2、3题的积同第1题相比各分别乘了10倍和100倍。

第(2)组题中,第2、3题同第1题比,第一个因数分别除以了2、4,同样的第2、3题的积同第1题相比各分别除以了2倍和4倍。对学生的结论我会给与表扬和肯定。

随后我会继续引出,上边这两组例子,在我们计算乘法和除法的过程中,能给我们带来哪些启示呢,这个规律具不具有普遍性呢?组织学生进行小组讨论验证,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

经过学生小组讨论不难得出在乘法计算当中,一个因数不变,另一个因数乘以几,积也乘以几,同样的,一个因数如果除以几,0除外,那积也需要除以几,继而引出,这就是本节课所要学习的积的变化规律。

以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。

(三)巩固练习,强化知识

我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。

(四)课堂小结

我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。

(五)布置作业

针对学生的年龄特点,我会让学生在课下仔细观察自己家中有哪些利用平行四边形而创造的物品并记录下来,在下节课将一起来交流、讨论。

(六)说板书设计

一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。

以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)

积的变化规律说课稿2

教学目标:

1、探索积的变化规律,尝试用数学语言进行描述,并进行简单运用。

2、经历“积的变化规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。

3、感受探索、运用规律的乐趣。

教学过程:

一、从生活中来

1、请同学们看屏幕。一只小熊正在乘着热气球去旅行。如果气球以每秒5米的速度上升,那么小熊飞2秒有多高呢?你是怎么想的?列式4秒飞多高,为什么?列式6秒又飞多高,8秒呢,齐,你们说停它就停!准备,起飞,多少米?

2伸出你的手我们来指一指,10秒飞多高?12秒?能列个算式吗?14秒、18秒……什么感觉?越飞越高。为什么会越飞越高呢?有补充吗?当每秒上升的速度不变时,气球飞的时间越长,飞得越高。【引导学生在具体情境中感悟:速度不变时,上升的高度随着时间的变化而变化。】下面请同学们观察黑板上的三个算式,回想一下,乘法算式中,乘号前面的数叫做……乘号后面的数叫做什么,所得的结果叫做……仔细观察,因数、因数、积。谁变了,谁没变

结合这三个算式说说你的发现

积变了,有怎样的变化呢?

二、探索规律

1、发现规律。

请同学们拿出学习单一,有两组算式,大家可以选择其中一组研究,也可以两组都完成。

在研究之前请同学读一读学习建议。

我们来听听他们是怎么思考的

按什么顺序观察的第一个因数,从到()乘几,第二个因数不变。积也乘几,看来观察得越全面,得到的结论才能越完整。

这两组算式虽然内容不同,但却藏着相同的规律,大家发现了吗?那你能不能写出一组具有这样规律的算式,在学习单二上完成,汇报【引导学生从若干组不同的的算式中,自己探索积的变化与谁的变化有关、有什么关系,并把它们表示出来,从而初步感悟积的变化规律,为抽象、概括规律打好基础。】

2、表达规律。

师:刚才我们通过几组题找到了其中藏着的规律,下面你能把刚才我们发现的规律用最简洁的方式,可以借助一句话、或一组算式表达出来吗?写在学习单的空白处

汇报,强调几相同,0除外。把这条规律写在黑板上。那这条重要的规律就是积的变化规律

教师借此整理板书,得到积的变化规律。【引导学生个性化的表达,使内隐的认识外显化,并在全班交流中,逐渐完善对规律的认识,发展概括、推理能力。】

3、像刚才那样,我们用大量的不同的例子来概括这个规律的方法,叫做不完全归纳法。

4、应用规律。

1、你能根据8×50﹦400,直接写出下面各题的积

2、认识吗?小青蛙。这只小青蛙会“吃”数,并且吃进的数与嘴里的数相乘,能“吐”出来一个新数。已知:6×=222抢答:24×=?3×=?问:方块里的数不知道,怎么知道结果的呢?

三、到生活中去

回想一下,这节课我们是怎样得到积的变化规律的?从热气球开始,通过几组算式用不完全归纳法得到了积的变化规律,然后通过青蛙吐数运用了积的变化规律。那谁来说说这节课你有哪些收获呢?运用积的变化规律有什么好处?学了积的变化规律你又产生了哪些猜想?【引导学生有意识的回顾学习过程,初步获得探索规律的一般方法。】

积的变化规律说课稿3

一、说教材

1、知识的联系与地位。

《积的变化规律》是小学新编人教版四年级上册第四单元的内容。它是在学生学习了三位数乘两数计算的基础上,引导学生探究积的一些变化规律。掌握这些规律,为学生进一步加深理解乘法运算以及为以后自主探究理解小数乘、除法的计算方法奠定基础。教材中的例3,以两组乘法算式为载体,引导学生重点探究,当一个因数不变,另一个因数发生变化时,积的变化规律。教材例题设计分为三个层次:研究问题(教材以两组既有联系又有区别的乘法算式,在观察、计算、对比的基础上发现问题。)归纳规律(结合探究交流,尝试用简洁的语言总结积的变化规律。)验证规律(举例验证积的变化规律的普适性。)基于“用教材教,而不是教教材”的理念,从数学的角度出发,对教材教学内容做了灵活的改动,从而更适合本班学生的特点,更能体现因材施教。

2、教学目标。

基于以上的认识,我从知识与能力、过程与方法、情感态度与价值观三个方面,确立以下教学目标:

(1)、知识目标:引导学生理解并掌握“两数相乘,一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几”的变化规律,并能将其规律恰当地运用到计算和解决实际问题之中。(2)、能力目标:引导学生在自主探究积的变化规律过程中,培养学生初步的概括能力、表达能力以及思维能力。

(3)、情感目标:引导学生经历积的变化规律的发现过程,感受数学学习的乐趣,增强自信心。

3、教学重难点。

为了能很好地达成教学目标,因此,本次教学的重点应是探究和掌握积的变化规律。难点应是在探究和掌握积的变化规律的同时,能体验更多的学习策略和方法,发展数学思考。关键是学生能正确运用积的变化规律解决实际问题。

[设计理念]引导学生独立思考、主动探索、合作交流,理解和掌握基本的数学知识与技能,数学思想和方法,获得基本的数学活动经验,符合数学课程标准的基本理念,也是尝试教学法倡导的。

二、说教法、学法

教法:本节课,引导学生在特定的数学情境中,用观察、计算、比较去尝试发现积的变化规律。教学中,教师的引导与学生的自主探究相结合,充分发挥学生学习的主动性。教学中主要运用了尝试教学法,练习法,探究研讨法,自学辅导法等。

学法:“教法为学法导航,学法是教法缩影”。本节课,通过运用观察、比较、尝试、发现等一系列方法,引导学生自主探究、合作交流,归纳概括出积的变化规律,在理解、掌握规律的基础上,并能正确合理地运用规律,从而获得经历知识形成过程的体验。

三、说教学流程

结合本课的特点,我设计了六环节。

1、情境设疑。

(1)、口算抢答。[设计理念]:激发学生学习兴趣,为学习新知识铺路搭桥,扫清后续学习的知识障碍。

(2)、思维设疑。根据12345679×9=111111111,你能直接写出算式12345679×27=的积吗?[设计理念]:突出新知识的生长点,激发学生的求知欲望。同时引出课题,明确本节课的教学目标。

2、自主探疑。

(1)、提出问题。仔细观察下面两组算式,说一说你发现了什么?[设计理念]:为学生尝试自主探究积的变化规律提供问题载体。

(2)、自主讨论

(一)。学生通过导学案,观察“6×2=12,6×20=120,6×200=1200”这组算式,思考这3个算式的因数和积,什么不变?什么变了?是怎样变的?然后小组讨论交流,探究出“两数相乘,一个因数不变,另一个因数乘

10、100......,积也乘

10、100......”的变化规律。再根据算式4×25=100,直接写出其他算式的得数,引导学生自主探究归纳出“两数相乘,一个因数不变,另一个因数乘几,积也乘几”这一积的变化规律。[设计理念]:学生通过观察、比较、思考、探索、交流等一系列活动,获得数学的基础知识,基本技能,基本思想,基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题、分析问题和解决问题的能力,体验知识的形成过程。

(3)、自主讨论

(二)。在探究出第一组算式积的变化规律的基础上,引导学生通过多媒体演示,观察、分析、比较算式“80×4=320,40×4=160,20×4=80”因数和积的变化情况,自主交流讨论出“两数相乘,一个因数不变,另一个因数除以几,积也除以几”这一积的变化规律。

[设计理念]:在学生熟悉学法的基础上,引导学生自主探究积的变化规律,目的是引导学生学会学习,培养学生的知识迁移能力。

3、深化练习。

(1)、做一做。根据第一小题的积,写出其余题目的得数。(2)、判一判。(对的打“√”,错的打“×”。)(3)、想一想。根据要求填空。

[设计理念]在层次分明,形式多样的练习中,通过引导学生做一做、判一判、想一想,促使学生对积的变化规律的应用中,加深学生对规律的理解和掌握。

(4)、试一试。根据12345679×9=111111111,你能直接写出下面各题的积吗?[设计理念]注重首尾相顾,前后呼应,有因有果,浑然一体,体现课堂的完整性。

4、总结延伸

(1)、总结回顾。这节课,我们学习了什么知识?你有什么收获?(2)、拓展延伸。积还有其他的变化规律吗?课后思考以下3个问题:

①两个相乘,当两个因数同时乘几,积会怎样变化?②两个相乘,当两个因数同时除以几,积又会怎样变化?③两个相乘,当一个因数乘几,另一个因数除以几,积又会怎样变化?[设计理念]在回顾中总结全课,培养学生的反思意识和能力。通过课后对3个问题的思考,拓宽学生的知识面,拓展学生思维的广度,使积的变化规律的内涵得到进一步延伸。

5、生活拾贝。[设计理念]引导学生用数学的眼睛去发现生活中的美,更要学会用数学的方法来创造生活中的美。

6、板书设计。[设计理念]力求直观,条理清晰,便于学生理解记忆本节课的知识要点。

四、全课设计思路

纵观全课,我为学生营造了宽松和谐的学习氛围,以学生活动为主体,采用“六环节”教学模式,借助尝试教学法,先练后讲,以学定教。引导学生自主探究、合作交流,通过看、想、说等活动过程,总结归纳出积的变化规律。这种教学设计,丰富了学生的经验,加深了学生的思考,激发了学生的学习兴趣,让学生真正成为了课堂教学的主人,使课堂充满生机和活力。

积的变化规律说课稿4

一教材分析

规律《积的变化规律》是人教版小学数学四年级上册第三单元的内容,教材安排了积的变化规律的例题学习,掌握这些规律,为学生进一步加深对乘法运算的理解,以及理解小数乘法的计算方法做准备。

二学情分析

本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。

三教学目标

根据对教材和学情的分析,我制定了以下三维目标:

知识目标:使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。

能力目标:培养学生初步的抽象概括能力和数学语言表达数学结论的能力。

情感目标:体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。

四教学重难点

教学重点:积随因数的变化规律。

教学难点:引导学生自己发现规律、验证规律、应用规律。

五教法

我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。

六学法

学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。

七教学具及相关资料

小黑板

八教学流程

谈话导入——猜想规律——验证规律——表述规律,小结探索方法——应用规律——拓展延伸——课堂小结。

九教学设计过程

1谈话导入

课的开始我与孩子进行谈话“学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。”

根据学生的回答,我板书三个算式及其结果:

6×2=12(元)

6×20=120(元)

6×200=1200(元)

设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。2猜想规律

(1)我提出问题:观察这三个算式,你会发现什么规律呢?

我引导孩子从上向下观察:因数到因数,积到积有什么规律。

(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。

(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。

设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。

3验证规律

孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。

我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。

设计理念:通过学生分组协作,体验验证数学规律的过程。

4表述规律,小结探索方法。

我首先让学生说规律,趁势解释说明“乘以几=扩大几倍,除以几=缩小几倍”,学生在以往的基础之上,很容易接受这点。然后引导学生如何把两条规律归纳成一条,得出积的变化规律:两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。我板书规律,揭示本课主题。最后我让孩子们说说这规律是如何得来的?

设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。

5应用规律

孩子自己完成教材1-4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。

6拓展延伸。

(1)一个数乘以18积是270,如果这个数乘以54,积是。

(2)36×10=360

(36÷2)×(36×2)=

(36×3)×(36÷3)=

设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。

7课堂总结,内化规律。

这节课你学到了什么?学的高兴吗?

设计理念:培养学生自我总结、自我反思的学习能力。

十教学效果分析

本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察——独立思考——小组交流——提出猜想——验证规律——运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。

积的变化规律说课稿5

一、说教材

1.教学内容:

这节课内容是人教版四年级上册第三单元的例题、想想、做做第14题。

2.教材分析:

本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

教材首先出示26 =12、206=120、2006=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再列举一些例子,用计算器计算来验证猜想。引导学生观察,学生比较容易发现规律,提出猜想,用计算器进行验证。由于研究的是关于运算的规律,势必涉及较大数的计算,为了将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程,所以用计算器作为探索规律的工具。

3.说教学目标

基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:

(1)借助计算器的计算,使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

4.教学重点:使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

5.课前准备:课件、学生每人计算器一个、学生每人一张空白表格。

二、说教法和学法

(1)教法:让学生在具体的情境中用观察、验证来探索积的'变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。

(2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索数学规律的经验。

三、说教学过程

结合本课特点,我设计了以下五个教学环节:

1、情境引入,猜想规律

(1)课件出示我校为福利院捐款献爱心的照片,创设我校师生为福利院捐款买物品的情境,已知每千克橙子6元,买2千克多少元?买20千克?买200千克呢?不仅使学生感知捐款的意义,还为学生学习新知创设熟悉的情景。

(2)引导学生列出第一个问题的算式,计算出结果。并使学生清楚地知道算式中的三个数分别叫做一个因数、另一个因数和积。

(1)62= 12

(2)620=120

(3)6200=1200

(3)引导学生观察、比较,思考积会怎样变化。提出猜想:一个因数不变,另一个因数乘几,积也随着乘几。

『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学猜想的意识和能力。

2、动手操作,验证规律

(1)首先让学生独立用计算器计算出每题的结果并将得到的积与原来的积进行比较,然后组织学生相互交流,初步验证猜想,老师进行小结:经过实际计算,发现这里每一题的计算结果都符合先前的猜想 。并进一步提出:这个猜想是不是适合所有的乘法算式?

(1) 62 = 12

(2) 620 = 120

(3) 6200 = 1200

(2)引导学生举例,进一步验证猜想。同桌相互合作,写出任意一组算式:一个因数不变,另一个因数乘一个数。用计算器或者笔算算出结果,进行比较。 全班交流,通过交流进一步确认猜想成立。

(3)语言表述规律,小结探索方法。首先让学生说规律,然后讲出探索的方法:如用计算器计算,提出猜想、验证猜想、不完全归纳等。

『设计理念』新课标当中指出:把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的探索性的数学活动中来。因此这一环节我让学生充分利用计算器,运用不完全归纳法,通过具体丰富的实例验证猜想,让学生用数学语言准确地描述自己发现的规律。引导学生掌握数学规律与知识的获得方法,充分发挥学生学习的主动性,培养学生的合作交流的能力,帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,使学生终生受益。

3.实践运用,巩固规律

(1)课本P83想想做做第1题。采用题组的形式让学生应用规律直接写出乘法算式的积。完成后再让学生说说是怎样想的,使学生进一步熟悉积的变化规律。

(2)用规律解释口算、笔算、和简算。

口算:165= 16500= 16 5000=

竖式计算:175 1750 17500

简便计算:12548=12586

让学生口头回答,体会积的变化规律的应用,进一步明确乘数末尾有0的乘法的口算、笔算方法,以及积的变化规律在乘法计算中的巧妙应用。

(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。

如果坐汽车,每小时行使60千米,4小时可以多少千米?

如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?

这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。

『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。

4.拓展练习,升华规律

365400= 1824 =

36540 = 180240 =

3654 = 18002400 =

『设计理念』这一环节是通过两组题目的计算,让学生用本节课的研究问题的方法继续探索积的变化规律,使得积的变化规律的内涵得到延伸,让学生对这一规律有进一步的理解。

5.总结全课,内化规律

通过今天这节课的学习,你有了什么收获?还有哪些疑问?

『设计理念』在回忆中总结全课,培养学生的反思意识与能力。

四、说板书设计。(见课件)

综观全课,我给学生营造了宽松的学习氛围,让学生在主动观察、讨论交流、猜想验证等数学活动中,通过看、想、说的过程,逐步探索出一个因数不变,另一个因数乘几,积也随着乘几的变化规律。这样的探索过程丰富了学生学习的体验,加深了学生的思考,突破了学生思维和经验的障碍,而且为学生创造了猜测与验证、辨析与交流的空间,激发了他们的学习兴趣,让学生真正成为了学习的主人,使课堂充满生命的活力。

一、说教材

积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。

我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是他们的抽象思维还很弱,在理解积的变化规律的探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并且拟定了以下三维目标:

1、能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。

2、经历积的变化规律的探究过程,学会观察、猜想、验证、概括的方法,感受变与不变的思想,发展学生的合情推理能力。

3、体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。

二、说教学设想

为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:

1、注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,从而理解积的变化规律,积累数学活动经验。

2、注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的变化规律,发展学生的合情推理能力。

三、说教学流程

(一)创设情境,引入新课

同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)

(二)自主探索,理解规律

第一层次:感知规律。观察这组算式,你发现了什么?什么变了,什么没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你又发现了什么?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,从而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。

第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。

第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,从而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。

第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的,例如7×(12+1)≠(84+1)。

第六层次:解释应用。我会出示一个神奇缺八数。

12345679×9=111111111

12345679×18=222222222

12345679×27=()

12345679×36=()

12345679×45=()

12345679×()=()

通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。

有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,从而丰富了学生的体会,加深学生对积的变化规律的理解,从而突出重点,突破难点。

(三)学以致用,分层练习

我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。

我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。

24×75=180036×104=3744

(24○6)×(75×6)=1800(36×4)×(104○4)=3744

(24○3)×(75○□)=1800(36○□)×(104○□)=3744

我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,从而进行拓展,发展学生的抽象思维。

(四)课堂回眸,内化提升

第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了什么,你有什么需要提醒其他同学注意的吗?从而结束本节课的课题。

第三篇:积的变化规律

《积的变化规律》教学设计

教学内容:人教版数学第七册58页例四。

教学目标:

1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

3.初步获得探索规律的一般方法和经验,发展学生的推理能力。

教、学具准备:多媒体课件

教学过程:

一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律”。

1.研究问题。

(1)两数相乘,其中一个因数扩大若干倍时,积怎么变化。

请学生完成下列两组计算,想一想发现了什么,并把发现写出来。

6×2=()8×125=()

6×20=()24×125=()

6×200=()72×125=()

(2)两数相乘,其中一个因数缩小若干倍时,积又怎么变化。

请学生完成下列两组计算,想一想又发现了什么?把发现也写出来。

80×4=()25×160=()

40×4=()25×40=()

20×4=()25×10=()

2.概括规律

(1)分层概括发现的规律。

①组织小组交流,让每一个学生先把在第⑴组算式中独立发现的规律说给自己的同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。

②组织全班交流。在小组交流基础上,引导学生根据第(1)组算式中积随因数变化的情况,将发现的上述规律用一句话概括出来:“两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。”

③再引导学生讨论第(2)组算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。”

(2)整体概括规律。

问:“谁能用一句话将发现的两条规律概括为一条?”

引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

3.验证规律。

(1)先用积的变化规律填空,再用笔算或计算器验算。

26×48=1248 17×12=204

26×24=()17×24=()

26×12=()17×36=()

(2)自己举例说明积的变化规律。每位学生各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。

4.应用规律。

完成例4下面的“做一做”和练习九第1~4题。

二、研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)

(1)独立思考,发现规律。

①请学生完成下列计算,并在组内述说自己发现的规律。

18×24= 105×45=

(18÷2)×(24×2)=(105×3)×(45÷3)=

(18×2)×(24÷2)=(105÷5)×(45×5)=

②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,它们的乘积不变。

(2)应用规律解决问题。

①在○中填上运算符号,在□中填上数。

24×75=1800 36×104=3744

(24○6)×(75×6)=1800(36×4)×(104○4)=3744

(24○3)×(75○□)=1800(36○□)×(104○□)=3744

②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?

第四篇:积的变化规律规律

一教材分析

规律《积的变化规律》是人教版小学数学四年级上册第三单元的内容,教材安排了积的变化规律的例题学习,掌握这些规律,为学生进一步加深对乘法运算的理解,以及理解小数乘法的计算方法做准备。二学情分析

本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。三教学目标

根据对教材和学情的分析,我制定了以下三维目标:

知识目标:使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。

能力目标:培养学生初步的抽象概括能力和数学语言表达数学结论的能力。情感目标:体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。四教学重难点

教学重点:积随因数的变化规律。

教学难点:引导学生自己发现规律、验证规律、应用规律。五教法

我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。六学法

学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。七教学具及相关资料 小黑板 八教学流程

谈话导入——猜想规律——验证规律——表述规律,小结探索方法——应用规律——拓展延伸——课堂小结。九教学设计过程 1谈话导入

课的开始我与孩子进行谈话“学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。” 根据学生的回答,我板书三个算式及其结果: 6×2=12(元)6×20=120(元)6×200=1200(元)

设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。

2猜想规律

(1)我提出问题:观察这三个算式,你会发现什么规律呢? 我引导孩子从上向下观察:因数到因数,积到积有什么规律。

(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。

(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。3验证规律

孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。

我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。

设计理念:通过学生分组协作,体验验证数学规律的过程。4表述规律,小结探索方法。

我首先让学生说规律,趁势解释说明“乘以几=扩大几倍,除以几=缩小几倍”,学生在以往的基础之上,很容易接受这点。然后引导学生如何把两条规律归纳成一条,得出积的变化规律:两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。我板书规律,揭示本课主题。最后我让孩子们说说这规律是如何得来的? 设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。5应用规律

孩子自己完成教材1-4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。6拓展延伸。

(1)一个数乘以18积是270,如果这个数乘以54,积是()。(2)36×10=360(36÷2)×(36×2)=(36×3)×(36÷3)= 设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。7课堂总结,内化规律。

这节课你学到了什么?学的高兴吗?

设计理念:培养学生自我总结、自我反思的学习能力。十教学效果分析

本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察——独立思考——小组交流——提出猜想——验证规律——运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。

人教版小学四年级《积的变化规律》教学设计

教学目标:

1、通过观察、讨论等数学活动,经历探索、归纳凑千数、积变化规律的过程。

2、知道扩大几倍、缩小几倍的意义。理解积变化的规律,会运用积变化的规律进行简便计算。

3、在探索,归纳和变化规律的过程中,感受数学思考过程的条理性。教学重点:

1、探索、归纳凑千数的特征,并熟练进行口算练习。

2、掌握在乘法里一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数的变化规律。教学难点:

1、归纳、总结凑千数的特征。

2、理解在乘法里一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数的变化规律。教学过程:

一、凑千数的规律

1、口答:(出示幻灯片2)

(采用推火车的形式及时鼓励同学,)师谈话:同学们的表现真不错,现在老师再给大家出一组更有难度的口算题,大家有没有信心完成呀!迅速完成答题卡中的口算题)做完的同学就将你的小手举好。

2、学习凑千数。(出示幻灯片3)(汇报交流,指同学回答)

师提问:观察这组口算题,发现它有什么特点? 生:得数都是1000,师谈话:像这样相加和是1000的两个数它有什么特征呢?仔细观察这组算式。生:(学生反应不到位是,继续进行引导)

师谈话:像这样相加和是1000的两个数它的个位上的两个数字相加有什么样的特征呢?十位上的两个数字相加有什么特征?百位上的两个数字相加又有什么特征?看看哪位同学最聪明,最先发现其中的奥秘?

生:个位上的两个数字相加得10,十位上的两个数字相加得9,百位上的两个数字相加得9 师:像这样相加和是1000的两个数,我们把它叫做凑千数。那么凑千数的特征我们再精炼一下应该总结为:

总结:末位两个数字相加得10,其余各位上的数字相加凑9

拓展:利用这个规律能再举几个例子吗?(迅速在答题卡上完成并汇报)师生互动:现在老师说一个数同学们说出它的凑千数:346 864

指同学说数字,其它同学说出它的凑千数。

师:现在老师就来考考大家:(出示幻灯片4,迅速完成答题卡上的练习)拓展延伸:

37+()=100

3428+()=10000 师:通过刚才的测试,大家对凑千数都有了很好的认识,老师相信只要你掌握了凑千数的规律,那么凑百数、凑万数的这一类题就能轻松拿下?希望大家把它牢牢地记到心里。

师:今天我们从口算中探索了数学中有趣的规律,有这样一组口算我们大家再来看一看。

二、积的变化规律。

1、扩大:(出示口算题):6 × 2= 12 ①× 20 = 120 ② 6 × 200 = 1200 ③(教师边说边将算式的结果补充完整)(出示学习要求:独立学习与合作学习)师:看看它有什么学习要求?(出示幻灯片5)

1、独立观察后思考:观察这组算式中的第一个因数你发现了什么?第2个因数你又发现了什么?积呢?

生:第一个因数都是6,第二个因数依次扩大10、100倍,积也扩大10、100倍。

2、合作学习:将①、②、③进行对比,观察因数和积分别有什么样的变化规律,小组内互相讨论。

师:为 了方便研究我们将算式从上往下以此命名命名为:1、2、3。分析时就以2式子与1式对比,引导学生观察第与第相比,你发现了什么?

总结:一个因数不变,另一个因数扩大到原来的的10倍,积也扩大到原来的10倍,并板书向下的箭头。学生边汇报教师边板书。引导学生再进行3与2式对比谁来说一说;引导学生再进行3与1式对比谁来说一说?;)师:能不能将刚才大家发现的规律用一句话总结出来呢?

教师总结:一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。(出示幻灯片6,学生齐读)

接下来,我们在观察一下这一组算式,刚才我们从上往下发现了一些规律,现在我们就从下往上观察,看看它有什么规律

3、缩小(出示幻灯片7)(同桌合作讨论,学习;出示讨论问题:

1、仔细观察算式,2式与3式相比,1式与2式1式与3式相比,因数和积有什么变化?

2、总结你发现的规律 学生汇报:

(教师强调:我们先从第一个因数入手观察,第二个因数有什么变化?积?来分析)教师边说边补充板书。)

师:这两个规律相似吗?谁能用一句话把刚才我们发现的两个规律概括成一句话呢?(出示幻灯片8)

师:你能再举例说明一下积的变化规律吗?

同学们你们的表现真棒!通过一组口算我们发现了因数、积有什么的变化规律,这就是今天我们学习的内容:积的变化规律(板书课题)那么通过我们的观察,提问:引起积变化的前提是:必须是一个因数不变,另一个因数扩大或缩小若干倍,它的积也扩大或缩小相应的倍数。(课件出示,学生齐读)下面我们就完成几道练习: 练习:

1、完成数学书P58页做一做(重点讲解第1、3小题)

2、完成数学书P59页第3题。(学生讲解,及时鼓励)

3、(课件出示数学书P59页第1题。(学生独立完成,及时鼓励出示幻灯片9)

4、(课件出示数学书P59页第2题。(重点讲解第二种利用积的变化规律讲解,重点讲解:增加到和增加了的区别,及时鼓励。出示幻灯片10、11)

增加到:包括原来的宽在内,它现在的宽总共是24米。应用积的变化规律也可 以解这道题:前提是长方形的长不变,宽由原来的的8米,增加到24米,也就是扩大了3倍,则面积也应扩大到原来的3倍。

增加了:不包括原来的宽在内,增加的宽度就为24米,则现在的长方形的宽应为24+8=32米。应用积的变化规律也可以解这道题:前提是长方形的长不变,宽由原来的的8米,增加到现在的32米,也就是扩大了4倍,则面积也应扩大到原来的4倍。

课堂小结:今天这节课你有什么收获?谁来说一说?你觉得本节课谁表现得最好?(表现好的向他挥挥手)

课堂作业:P63页第10题和P59页第4题。(出示幻灯片12)板书设计:(1)(2)(3)教学过程 教学环节

教师活动

预设学生行为

学校开表彰会,需要一些文具盒作奖品,如果每个文具盒6元,买2个需要6×2=12(元)6×20=120(元)多少元钱?买20个,200个呢? 6×200=1200(元)根据学生回答,板书三个算式及结 果。

仔细观察、比较这组算式,你能发现

1、有一个因数都是6。什么?

2、一个因数相同,另一个因数积的变化有没有规律呢?是什么规不同,积也不同。

律呢?这节课我们来研究这个问题。

3、另一个因数变了,积也变了。板书课题:积的变化规律。

4、我看到一个因数不变,另一个因数越变越大,积也越变越大。

一、创设情

1、我引导孩子从上向下观察:因数小组交流,集体汇报。经过小组景,提出问到因数,积到积有什么规律。内交流,学生提出猜想:一个因题。我引导孩子再次从下向上观察。数不变,另一个因数乘以几,积二.自主探

2、大家都看出规律来了,那么这些就乘以几。

究,发现规规律是不是适合所有的算式呢?下孩子很快提出新的规律:一个因律。面请孩子自己来验证一下。数不变,另一个因数除以几,积

三、解决问出示:8×50=400 就除以几。

题,拓展延

16×50= 全班学生分为两组,一组应用规伸。

32×50= 律直接写出结果,另一组用笔算

四、总结课

8×25=

或计算器验证,结果相同。堂,内化规

3、首先让学生说规律,趁势解释说两组交换角色再次验证,结果依律。明“乘以几=扩大几倍,除以几=缩小几倍”,然后引导学生如何把两条规然相同。

律归纳成一条,得出积的变化规律。两个因数相乘,一个因数不变,1、学生自己完成教材练习九1-4题。另一个因数扩大(或缩小)几倍,指明孩子自己说说如何得出结果的。积就扩大(或缩小)几倍。

2、相机引导进入拓展环节。有的学生可能会觉得用计算的方(1)一个数乘以18积是270,如果这个法解决这些问题也挺简单的。数乘以54,积是()。(810)

(2)36×10=360 积先随第一个因数扩大2倍,再随(36×2)×(10÷2)= 第二个因数缩小2倍,还是360。(36÷2)×(10×5)= 积先随第一个因数缩小2倍变为说说你是怎么想到结果的。180,再随第二个因数扩大5倍,这节课你学到了什么? 最终结果为900。

学的高兴吗?

板书设计(需要一直留在黑板上主板书)

积的变化规律

6×2=12(元)

36×10=360

6×20=120(元)

(36×2)×(10÷2)=360

6×200=1200(元)

(36÷2)×(10×5)=900

设计意图

给算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。

孩子通过独立观察,小组交流,真

正体验自主探索和发现数学规律的过程。

通过学生分组协作,体验验证数学规律的过程。孩子通过对探索过程的反思,逐步形成自己的思维策略。

通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学

生的思维空间,使不同的学生得到不同的发展。培养学生自我总结、自我反思的学习能力。

两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。

教学过程:

一、创设情境,提出问题

太平三小的师生响应党的号召:“一方有难,八方支援”党的号召,向北川灾区学校献出爱心捐款,灾区学校的学生准备用得到的捐款购买图书。如果每本图书用5元,他们买2本图书要用多少元?买4本呢?买8本呢?买16本呢?

学生独立列出算式,汇报,师依次板书:

5×2=10(元)————(1)

5×4=20(元)————(2)

5×8=40(元)————(3)

5×16=80(元)————(4)

师问:学们观察这四个算式,发现了什么?

生1:本图书的价钱没变;

生2:买的本数在变化;

生3:每本图书的价钱虽然没变,但是买图书的本数变化了,买图书共用的钱也变化了。

二、自主探究、发现规律

1、引导学生观察比较、感知规律

(1)师引导:以第一个算式作为基础,另外三个算式与第一个算式有什么不同?

生:其中一个因数“5”没变,另一个因数“2”依次乘“2”、“4“、“8”,积也依次乘“2”、“4“、“8”

小组讨论探究、交流:谁能用一句话来表述你们的发现?

师引导组织语言归纳表述:两个因数相乘,其中一个因数不变,另一个因数乘以几,积也跟着乘以几。(课件出示)

(2)师:以第四个算式作为基础,观察比较另外三个算式与第四个算式有什么不同?

生深化探究、合作交流。

指派小组代表汇报。

师生共同小结(师再次引导学生组织语言表述):两个因数相乘,其中一个因数不变,另一个因数除以几,积也跟着除以几。(师特别强调:这里的几能不能是“0”)(课件出示)

2、抽象概括、总结规律

我们能不能把上面探索到的两个规律合二为一呢?

(1)、分小组讨论交流

(2)、指名代表汇报,师板书:两个因数相乘,其中一个因数不变,另一个因数乘以(或者除以)几,积也跟着乘以(或者除以)几。(“0”除外)

3、学生分组验证规律,师到各组巡视,汇报验证结果

4、全班齐读这一规律

三、运用规律、解决问题(3个不同层次的练习):课件出示

四、全课总结、拓展延伸

1、这节课你有什么收获?教师板书课题)

2、教材及练习册练习、反馈

3、拓展选做(1个)

第五篇:《积的变化规律》

《积的变化规律》

教学内容:积的变化规律

学情与教材分析:

积的变化规律是人教版四年级上册第三单元的内容。它是学生在掌握乘法运算的基本技能的基础上进行教学的。在乘法运算中探索积的变化规律是整数四则运算中的一个重要方面,它将为学生今后学习小数乘法奠定基础,教材中以两组乘法算式为载体,引导学生探究一个因数不变,另一个因数和积的变化情况,从中归纳出积的变化规律。通过这个探究过程,让学生体会到两数相乘时积会随着其中一个(或两个)因数的变化而变化,同时受到辩证唯物主义观点的启蒙教育。

设计理念:

新课程标准提出:要让学生“经历、体验、探索”。作为一名数学教师,我想不仅要传授给学生数学知识,更重要的是要传授给学生数学思想、方法、技能和意识,因此在本节课的设计上我力图从学生已有生活经验出发,赋予学生尽可能多的思考、交流和发现的机会,给学生广阔的参与空间。为了提高课堂教学的有效性,在教学积的变化规律这节课中,我采用了先学后导的教学方式,让学生在自学提纲的引导下,自主进行探索规律,然后小组交流,最后全班总结完善规律。通过这样的学习,每位学生都参与其中,真正做到了面向全体学生。学生通过观察、探索、交流、总结等方式,经历积的变化规律的探索过程,初步获得探索规律的一般方法和经验,体验发现规律是一件很愉快的事情,在这样的学习过程中学生的能力提高了,思维活跃了,自信心增强了。

教学目标:

1、在教师适当的引导下,让学生亲身经历探索一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几的变化规律,并能准确地运用于实际计算和解决简单的实际问题。

2、通过探究积的变化规律的活动,使学生获得探究规律的基本方法,培养学生的自学能力,推理能力、合作交流能力和概括总结能力。

3、让学生亲身经历探究过程,体验成功的快乐,增强学习的兴趣和自信心,并受到辩证唯物主义观点的教育。

教学重点:

掌握并运用积的变化规律。

教学难点:

初步掌握探究规律的一般方法。

教学准备:多媒体课件

教学过程:

一、游戏导入,提出问题

师:青蛙是庄稼的好朋友,你能把青蛙的外貌给大家描述一下吗?

生:青蛙有一张大大的嘴巴,两只鼓鼓的眼睛。

生:青蛙有一个雪白的肚皮,还有四条腿。

师:今天我们就以青蛙为题作一个游戏-------“对对子”。老师说前半句(一只青蛙一张嘴),大家说后半句(两只眼睛,四条腿)。比比谁对的又对又快。

(师生对对子)

师:谁来介绍一下,你为什么对的这么快?其实在刚才的游戏中就有数学问题,你发现了吗?

生:一只青蛙有两只眼睛四条腿,所以青蛙眼睛的只数是青蛙只数的2倍,腿的条数是青蛙只数的4倍。

师:5只青蛙有几条腿,你是怎么想的?

生:(1)4×5=20

师:10只青蛙呢?20只呢?

生:(2)4×10=40

(3)4×20=80

师:看来我们只要善于动脑就能解决很多问题。请同学们仔细观察这三个算式其中还藏着许多秘密呢!请大家借助教师提供的自学提纲,比一比,看谁能发现其中的奥秘!

学情预设:学生在对对子时,有一部分学生已经找到青蛙的眼睛和腿与青蛙只数的关系,所以他们对起来又对又快,但也有个别同学可能没有发现这个关系或发现这个关系但反应不是很敏捷,所以他们在对对子时要么出错,要么比别人回答总要慢一些,正因为如此,更能激发学生学习的热情。

(设计意图:用学生喜欢的游戏导入,让学生感受到数学是有趣的,在玩的过程中感受到学习数学的重要性,并从游戏中提出问题,激发学生的探究欲望。)

二、自学感悟,探究规律

1、自主探索,小组合作交流

课件出示自学提纲

①(2)式和(1)式比,每个因数和积各是怎样变化的?(3)式和(1)式比呢?

②(1)式和(3)式比,每个因数和积又各是怎样变化的?(2)式和(3)式比呢?

③能用算式证明你的发现吗?

④请把你的发现和同组同学交流一下。

温馨提示:如果你觉得自己研究有困难,可以和同桌同学一起研究。

学生自己独立观察与思考,根据自学提纲一步一步完成对积的变化规律的探索。

学情预设:学生在自主探索规律时可能出现的情况有:

第一个因数不变,第二个因数变大(或变小),积也变大(或变小)。

第一个因数不变,第二个因数乘2(或除以2),积也乘2(或除以2)。

第一个因数不变,第二个因数扩大2倍(或缩小2倍),积也扩大2倍(或缩小2倍)。

……

如果学生的发现不够全面或难以表达自己的观点时,教师引导学生在相互交流中补充和完善,鼓励学生大胆发表自己的想法。教师也可适时参与到小组活动中,了解学生学习情况,引导学生在认真倾听他人想法的基础上,修正自己的发现,学会有条理地表达自己的想法。

(设计意图:学生根据教师提供的自学提纲探究积的变化规律,教师真正把学生当成学习的主人。通过在教师引导下的自学,每一位学生都亲自去经历探究规律的方法,从而培养学生的自学能力,概括总结能力,提高课堂教学的有效性。教师适时地安排组内交流,让学生人人有机会表达自己的想法,同时也可以培养学生认真倾听他人发言的良好学习品质和自我修正的好习惯。)

2、全班汇报交流,形成共识

师:通过刚才的自学,你能把你的发现和大家分享一下吗?

生1:一个因数不变,另一个因数扩大几倍,积也扩大几倍。

生2:一个因数不变,另一个因数乘几,积也乘几。

师:一个数扩大几倍也就是这个数乘几(一个数缩小几倍也就是这个数除以几)。反过来观察这组算式,你们还发现了什么?

生:一个因数不变,另一个因数除以几,积也除以几。

师:谁能把这两句话合并成一句呢?

生:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

师:同学们真了不起,用自己智慧的大脑发现了这么重要的规律,老师为你们而感到骄傲,这个重要的规律就是——积的变化规律。(板书课题)

让我们用自信的语气把刚才的重大发现齐读一遍。

(师生齐读积的变化规律)

师:刚才通过观察研究我们得出了积的变化规律,积的变化规律有什么用处呢?

生:利用积的变化规律,可以快速口算。

生:利用积的变化规律,可以解决一些生活中的实际问题。

师:确实是这样,下面我们就运用积的变化规律来进行口算比赛。比比谁算得又对又快。

(设计意图:教师在学生自学的基础上,进行全班的汇报交流,一来让每一位学生都亲身经历了探究规律的过程。二来让学生对本课的知识形成明确的认识,从而激发学生运用所发现知识解决实际问题的强烈欲望。)

三、运用规律,解决问题

1、自学检测

根据8×50=400写出下面各题的积:

16×50=

32×50=

8×25=

学生独立完成后同组互相说一说,你是怎样算的?

(学情预设:个别学生在计算时可能没有运用积的变化规律,教师引导学生同组互相说一说你是怎么算的?让学生真正把积的变化规律用于实际口算中,感受到学习数学是有用的。)

2、解决问题我能行

8米

560平方米

下面这块长方形地的宽要增加到24米,长不变,扩大后的面积是多少?

学生自己独立完成后,全班交流。

师:谁来说说你是怎么算的?

生:560÷8

=70(米)

求出长方形的长

70×24=1680(平方米)就求出了扩大后长方形的面积。

生:因为长方形的长不变,宽由8米增加到24米,扩大了24÷8=3

倍。所以面积也要扩大3倍,也就是560×3=1680(平方米)

师:看来学习了积的变化规律可以使我们的解题策略多样化。

3、找出规律再填空

15×24=360

5×24=

15×48=

30×24=

15×12=

15×(24÷a)=

学生先独立完成后小组汇报交流。

师:谁来说一说最后一题你是怎样想的?

生:如果a是2,那么15×(24÷2)=180

生:如果a是3,那么15×(24÷3)=120

……

师:那么a可以是哪些数呢?

生:a可以是任何数。

生:a不可以是0,因为0不能做除数

生:a不等于0时,15×(24÷a)=360÷a

师:看来在积的变化规律中乘或除以的这个数不能为0,谁能把积的变化规律准确地读一遍?

生:在乘法里,一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。

刚才我们发现在积的变化规律中总有一个因数是不变的,大家想想,如果两个因数都变,积又怎么变化呢?

出示练习

算一算

想一想,你能发现什么规律?

18×24=432

(18÷2)×(24×2)=

(18×2)×(24÷2)=

学生独立完成后回答。

生:在乘法中,一个因数乘2,另一个因数除以2,积不变。

生:比如说15×30=450

(15×3)×(30÷3)=450所以我认为在乘法中,一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,积不变。

生:我觉得乘或除以的这个数不能为0。

师:同学们的发现太伟大了!能用今天学到的方法来验证你的发现。只要大家勤于观察、善于思考,你一定还会发现积的其它变化规律。

(设计意图:不同层次练习的设计,让学生真正把学到的知识应用于解决实际问题中,并激发学生进一步探究的热情,把学习引向课外。)

四、课堂总结,拓展延伸

师:这节课你有什么收获?

生:我知道了在乘法中,一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。

生:在乘法中,如果一个因数乘(或除以)几(0除外),另一个因数除以(或乘)相同的数,积不变。

生:这节课我学会了用举例的方法来验证自己的发现是不是正确。

……

学情预设:学生在谈收获时可能只从知识点上总结,教师要适时引导学生,学习不仅仅要注重结果,更应该重视获取知识的过程,让学生从各个方面总结课堂上的收获。

(设计意图:这一环节的设计,让学生不仅仅再次明确了本课知识点,更加明确了积的变化规律的探究策略,这样教师就真正做到了授之以“渔”。)

下载人教版小学数学《积的变化规律》的说课稿word格式文档
下载人教版小学数学《积的变化规律》的说课稿.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    积的变化规律

    《积的变化规律》教学反思 牙舟小学陆海鸥 《积的变化规律》是小学数学四年级第三单元的内容,我在上课前进行了认真备课,并向其他教师虚心请教,精心编写了教案,较好地完成本节课......

    积的变化规律

    积的变化规律教学目标:1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。3.初步......

    积的变化规律

    1教学目标 评论 . (1)通过经历积的变化规律的发现过程,体会两个变量的相互关系,初步渗透函数思想。 (2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和......

    《积的变化规律》

    《积的变化规律》学习目标:1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力......

    四年级上册数学积的变化规律

    新人教版小学四年级上册数学《积的变化规律》教学设计教案 第5课时:积的变化规律 教学目标 知识与技能: 1、学生通过观察,能够发现并总结积的变化规律。 2、初步获得探索规律的......

    积的变化规律教案

    积的变化规律教学设计 教学目标: 1、理解和掌握积的变化规律,能根据积的变化规律进行简便运算; 2、经历积的变化规律的探究过程,学会比较概括的思想方法; 3、感受数学的逻辑美,培......

    积的变化规律教案

    《三位数乘两位数:积的变化规律》教案 塔耳小学陈大刚 教学目标 1、知识与技能:让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律。 2、过程与方法......

    小学三年级数学因数和积的变化规律教案

    教学目标 1.知道扩大、缩小的含义. 2.理解乘法里一个因数不变,另一个因数扩大(或缩小)若干倍积也扩大(或缩小)相同倍数的规律. 3.能运用积的变化规律进行简便计算. 教学重点 理解......