高三数学教案:第四节函数的连续性及极限的(共五则范文)

时间:2019-05-15 01:20:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高三数学教案:第四节函数的连续性及极限的》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高三数学教案:第四节函数的连续性及极限的》。

第一篇:高三数学教案:第四节函数的连续性及极限的

第四节

函数的连续性及极限的应用

1.函数在一点连续的定义: 如果函数f(x)在点x=x0处有定义,limf(x)存在,且limf(x)=f(x0),xx0

xx0那么函数f(x)在点x=x0处连续.2..函数f(x)在点x=x0处连续必须满足下面三个条件.(1)函数f(x)在点x=x0处有定义;

(2)limf(x)存在;

xx0(3)limf(x)=f(x0),即函数f(x)在点x0处的极限值等于这一点的函数值.xx0如果上述三个条件中有一个条件不满足,就说函数f(x)在点x0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x0处连续,则f(x)±g(x),f(x)•g(x),f(x)(g(x)≠0)也在点

g(x)x0处连续。

②若u(x)都在点x0处连续,且f(u)在u0=u(x0)处连续,则复合函数f[u(x)]在点x0处连续。

4.函数f(x)在(a,b)内连续的定义:

如果函数f(x)在某一开区间(a,b)内每一点处连续,就说函数f(x)在开区间(a,b)内连续,或f(x)是开区间(a,b)内的连续函数.f(x)在开区间(a,b)内的每一点以及在a、b两点都连续,现在函数f(x)的定义域是[a,b],若在a点连续,则f(x)在a点的极限存在并且等于f(a),即在a点的左、右极限都存在,且都等于f(a),f(x)在(a,b)内的每一点处连续,在a点处右极限存在等于f(a),在b点处左极限存在等于f(b).5.函数f(x)在[a,b]上连续的定义:

如果f(x)在开区间(a,b)内连续,在左端点x=a处有

xalimf(x)=f(a),在右端点x=b处有xblimf(x)=f(b),就说函数f(x)在闭区间[a,b]上连续,或f(x)是闭区间[a,b]上的连续函数.6.最大值最小值定理

如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值 7.特别注意:函数f(x)在x=x0处连续与函数f(x)在x=x0处有极限的联系与区别。“连续必有极限,有极限未必连续。”

二、问题讨论 ●点击双基

1.f(x)在x=x0处连续是f(x)在x=x0处有定义的_________条件.A.充分不必要

B.必要不充分

C.充要

D.既不充分又不必要 解析:f(x)在x=x0处有定义不一定连续.答案:A πx的不连续点为 2.f(x)=πcosxcosA.x=0 B.x=2(k=0,±1,±2,„)2k1C.x=0和x=2kπ(k=0,±1,±2,„)

2(k=0,±1,±2,„)2k12πππ解析:由cos=0,得=kπ+(k∈Z),∴x=(kZ).2k1xx2D.x=0和x=又x=0也不是连续点,故选D 答案:D 3.下列图象表示的函数在x=x0处连续的是

yyOx0xOx0x①yy②Ox0xOx0x

A.①

B.②③

C.①④

D.③④ 答案:A

④③4.四个函数:①f(x)=

1;②g(x)=sinx;③f(x)=|x|;④f(x)=ax3+bx2+cx+d.其中在x=0x处连续的函数是____________.(把你认为正确的代号都填上)

答案:②③④

例1:讨论下列函数在给定点或区间上的连续性

1ex1(x0),点x=0;(1)f(x)1ex11(x0)x22(2)f(x)x4(x1),点x=-1。

(x1)解:(1)当x→0时,-1e1lim,lime0,因此=-1,1x0x0xex11x1x而limx0e1e11x1x=lim(1x02e11xf(x)limf(x),)=1,∵limx0x0∴f(x)在x=0处极限不存在,因此f(x)在x=0处不连续。

2(2)∵limf(x)lim(x2)3,limf(x)lim(x4)3,f(1)3,x1x1x1x1∴limf(x)3f(1),因此函数f(x)在x=-1处连续。

x1【思维点拨】函数在某点连续当且仅当函数在该点左、右连续(闭区间的端点例外)。

例2.(优化P208例1)1(x>0)(1)讨论函数f(x)=0(x=0),在点x0处的连续性-1(x<0)x(2)讨论函数f(x)=在区间0,3上的连续性x-3剖析:(1)需判断limf(x)=limf(x)=f(0).x0x0(2)需判断f(x)在(0,3)上的连续性及在x=0处右连续,在x=3处左连续.解:(1)∵limf(x)=-1, limf(x)=1, x0x0x0f(x), limf(x)≠limx0∴limf(x)不存在.∴f(x)在x=0处不连续.x0(2)∵f(x)在x=3处无定义, ∴f(x)在x=3处不连续.∴f(x)在区间[0,3]上不连续.x24练习:讨论函数f(x)的连续性;适当定义某点的函数值,使f(x)在区间(-3,3)

x2内连续。

解:显然函数的定义域为(,2)(2,),当x2时,f(x)x2,∴f(x)在(,2)上连续,在(2,)上连续。而f(x)在x2处不连续。

x24又∵limlim(x2)4,不妨设f(2)4,x2x2x2x24(x2)此时,f(x)在区间(-3,3)内连续。于是f(x)x2(x2)4例3.(优化P208例2)ex(x0)设函数f(x)= ax(x0)

当a为何值时,函数f(x)是连续的x解:limf(x)=(a+x)=a, f(x)=e=1,而f(0)=a,故当a=1时,limlimlimx0x0x0x0x0limf(x)=f(0), 即说明函数f(x)在x=0处连续,而在x≠0时,f(x)显然连续,于是我们可判断当a=1时, f(x)在(-∞,+∞)内是连续的.评述:分段函数讨论连续性,一定要讨论在“分界点”的左、右极限,进而断定连续性.例4.如图,在大沙漠上进行勘测工作时,先选定一点作为坐标原点,然后采用如下方法:从原点出发,在x轴上向正方向前进a(a>0)个单位后,向左转900,前进ar(0

(1)若有一小分队出发后与设在原点处的大本营失去联系,且可以断定此小分队的行动与原

y定方案相同,则大本营在何处寻找小分队?(2)若其中的r 为变量,且0

备用:

Ox例题:利用连续函数的图象特征,判断方程:2x5x10是否存在实数根。

3解:设f(x)2x5x1,则f(x)在R上连续,又f(0)1,f(3)380,因此在3[-3,0]内必存在点x0使得f(x0)0,所以x0是方程2x5x10的一个实数根,因此方程2x5x10有实根。

【思维点拨】要判断方程是否有实根,即判断对应的连续函数yf(x)的图象是否与x轴有交点。

五、小结

1.函数f(x)在x=x0处连续必须具备三个条件:Ⅰ)函数f(x)在x=x0处及其附近有定义;Ⅱ)函数f(x)在x=x0处有极限;Ⅲ)函数f(x)在x=x0处的极限值等于这一点处的函数值f(x0)。2.如果函数f(x)在闭区间[a,b]上是连续函数,那么函数f(x)在闭区间[a,b]上有最大值和最小值。

六、课后作业:

第二篇:极限的四则运算函数的连续性

极限的四则运算函数的连续性

极限的四则运算,函数的连续性

二.教学重、难点: 1.函数在一点处连续

2.函数在开区间,闭区间上连续 3.连续函数的性质

(1)若与在处连续,则,()在处也连续。

(2)最大、最小值,若是[]上的连续函数,那么在上有最大值和最小值,最值可在端点处取得,也可以在内取得。

【典型例题】 [例1] 求下列极限(1)(2)(3)(4)解:(1)原式(2)原式

(3)原式

(4)原式

[例2] 求下列各数列的极限(1)(2)(3)解:(1)原式(2)原式(3)原式

[例3] 已知数列是正数构成的数列,且满足,其中是大于1的整数,是正数。

(1)求的通项公式及前项和;(2)求的值。解:

(1)由已知得

∴ 是公比为的等比数列,则

(2)① 当时,原式 ② 当时,原式 ③ 当时,原式

[例4] 判定下列函数在给定点处是否连续。(1)在处;(2),在处。解:(1),但

故函数在处不连续(2)函数在处有定义,但,即

故不存在,所以函数在点处不连续。

[例5] 已知函数,试求:(1)的定义域,并画出的图象;(2)求,;

(3)在哪些点处不连续。解:

(1)当,即时,当时,不存在 当时,当时,即或时,∴

∴ 定义域为()(),图象如图所示

(2)

∴ 不存在

(3)在及处不连续

∵ 在处无意义 时,即不存在∴ 在及处不连续

[例6] 证明方程至少有一个小于1的正根。证明:令,则在(0,1)上连续,且当时。时,∴ 在(0,1)内至少有一个,使

即:至少有一个,满足且,所以方程至少有一个小于1的正根。

[例7] 函数在区间(0,2)上是否连续?在区间[0,2]上呢? 解:(且)任取,则

∴ 在(0,2)内连续,但在处无定义 ∴ 在处不连续,从而在[0,2]上不连续

[例8] 假设,在上不连续,求的取值范围。

解:若函数,在上连续,由函数在点处连续的定义,必有,因为,所以,所以,若不连续,则且。

[例9] 设

(1)若在处的极限存在,求的值;(2)若在处连续,求的值。解:

(1),因为在处极限存在,所以,所以,即(2)因为在处连续,所以在处的极限存在,且,由(1)知,且,又,所以。

【模拟试题】 一.选择题:

1.已知,则下列结论正确的是()

A.B.不存在C.=1

D.= 2.的值为()

A.5

B.4

C.7

D.0 3.的值为()

A.1

B.0

C.D.4.的值为()

A.B.C.1

D.5.若,则的取值范围是()

A.B.C.D.6.若在上处处连续,则常数等于()

A.0

B.1

C.2

D.7.在点处连续是在点处连续的()

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件

8.的不连续点是()

A.无不连续点

B.C.D.二.解答题: 1.求下列极限:

(1)

(2)

(3)2.为常数,1,求。

3.已知

(1)在处是否连续?说明理由;(2)讨论在和上的连续性。

【试题答案】 一.1.B

2.C

3.C D

二.1.解:(1)(2)

① 当时,∴

② 当时,∴

③ 当时,(3)2.解:∵

∴,4.B

5.C

6.C

7.A

8.3.解:

(1)∵,则

∵,且

∴ 不存在∴ 在处不连续(2)∵

∴ 在上是不连续函数 ∵

∴ 在上是连续函数。

第三篇:函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题

一、重点难点分析:

此定理非常重要,利用它证明函数是否存在极限。② 要掌握常见的几种函数式变形求极限。③ 函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。

。④ 计算函数极限的方法,若在x=x0处连续,则

⑤ 若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。

二、典型例题

例1.求下列极限

解析:①。

②。

③。

④。

例2.已知,求m,n。

解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程x2+mx+2=0的根,∴ m=3代入求得n=-1。

例3.讨论函数的连续性。

解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的,又

从而f(x)在点x=-1处不连续。

∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。,∴ f(x)在x=1处连续。,例4.已知函数

试讨论a,b为何值时,f(x)在x=0处连续。,(a,b为常数)。

解析:∵

且,∴,∴ a=1, b=0。

例5.求下列函数极限

解析:①。

②。

例6.设

解析:∵

要使存在,只需,问常数k为何值时,有存在?。,∴ 2k=1,故 时,存在。

例7.求函数

在x=-1处左右极限,并说明在x=-1处是否有极限?

解析:由∵,∴ f(x)在x=-1处极限不存在。,三、训练题:

1.已知,则

2.的值是_______。

3.已知,则=______。

4.已知

5.已知,2a+b=0,求a与b的值。,求a的值。

参考答案:1.3

2.3.4.a=2, b=-45.a=0

第四篇:函数的极限和函数的连续性(本站推荐)

第一部分高等数学

第一节函数的极限和函数的连续性

考点梳理

一、函数及其性质

1、初等函数

幂函数:yxa(aR)

指数函数yax(a1且a1)

对数函数:ylogax(a0且a1)

三角函数:sin x , cos x , tan x , cot x

反三角函数:arcsin x , arcos x , arctan x , arccot x2、性质(定义域、值域、奇偶性、单调性、周期性、有界性)

【注】奇偶性、单调性相对考察的可能性打,但一般不会单独出题,常与其他知识点结合起来考察(比如与积分、导数结合)

二、函数极限

1. 数列极限

定义(略)

收敛性质:极限的唯一性、极限的有界性、极限的保号性。

·类比数列极限,函数极限有唯一性、局部有界性、局部保号性。

单侧极限(左极限、右极限)

【注】函数极限为每年的必考内容,常见于客观题中。一般为2~3题。

2. 两个重要极限

(1)limsinx1 x0x

x类似得到:x→0时,x~ln(x+1)~arcsin x~arctan x~tan x(2)lim(1x)e x0

类似得到:lim(1)elim(1)xx1xx

1xx1 e

·此处,需提及无穷大,无穷小的概念,希望读者进行自学。

三、函数的连续性

1. 概念:函数f(x)在x0处的连续(f(x)在x0点左连续、f(x)在x0点右连续)函数f(x)在开区间(a,b)上的连续

函数f(x)在闭区间[a,b]上的连续

2. 函数的间断点分类

● 跳跃式间断点:函数f(x)在点x0的左右极限都存在但不相等。

● 函数在点x0的左右极限都存在且相等,但不等于该点的函数值(或函数值在该

点无定义)

● 振荡间断点:f(x)在点x0的左右极限至少有一个不存在。

3. 连续函数的和、积、商,初等函数的连续性

● 有限个在某点连续的函数的和是一个在该点连续的函数。

● 有限个再某点连续的函数的积是一个在该点连续的函数。

● 两个在某点连续的函数的商事一个在该点连续的函数(分母在该点不为零)● 一切基本初等函数在定义域(或定义区间)上是连续的。

4. 闭区间上的连续函数的性质

●(最大、最小定理)在闭区间上连续的函数一定有最大值和最小值。

●(有界性定理)在闭区间上连续的函数一定在该区间上有界。

●(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)·f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点。

● 介值定理:设函数f(x)在闭区间[a,b]上连续,且在这区间的端点处取不同的函

数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)

内至少有一点ξ,使得f(b)=C(a<ξ

【注】函数的连续性,一般在客观题目中出现,分值不大,一般1~2题。

典型例题分析

【例1】(2010年真题)(工程类)计算极限limxsinx x0xsinx

A.1B.-1C.0D.2sinx1这一重要极限。如此,我们不难解x0x

sinxsinx11limxsinxx00。出该极限为0.即limlimx0xsinxx011limx0xx

xcx)e6,则常数c=_________。【例2】(2010年真题)(工程类)设lim(xxc

1x1【解析】解决此类题目,我们要灵活运用lim(1)。xxe【解析】:解决此类题目,我们要深刻掌握lim

2cxxcx2cx

2ccxclim()lim(1)limexxcxxxc2c1ce2ce6。则c=-3。

1xsin,x0【例3】(2009年真题)(工程类)设f(x)若f(x)在点x=0处连续,则αx0,x0的取值范围是

A.(-∞,+ ∞)B.[0,+ ∞]C.(0,+ ∞)D.(1,+ ∞)

【解析】函数f(x)为一个分段函数,要使其在点x=0处连续,只需limxsinx010,不难x

发现x→0时,sin x 为有界的,我们只需满足limx0即可。易得,α>0。但α不能等于x0

0,否则limsinx010。x

提高训练

1、求下列函数的定义域

(1)y

(2)y1 2x2x

(3)y=lg(3x+1)

(4)y1 1x22、判断一下函数的奇偶性

axax

(1)y = tan x(2)ya(3)y 2x3、求下列函数的极限

1x34x2(1)lim(3x1)(2)lim3(3)limxsinx3x0x0xxx

sin3x15sin2x(4)lim(5)lim(6)lim(1)x0xx01cosxxx

1ex,x0

4、讨论f(x)0,x0在x=0点的连续性。

x05、证明方程x3x1至少有一个根介于1和2之间。

【答案】

1、(1)[-1,1](2)(-∞,0)∪(0,2)∪(2,+∞)(3)(-1/3,+∞)

(4)[-2,-1)∪(-1,1)∪(1,+∞)

2、(1)奇(2)非奇非偶(3)偶

3、(1)8(2)4(3)0(4)2(5)3(6)

14、连续

5、证明:记f(x)x3x1,f(1)=-3<0,f(2)=25>0。由零点存在定理知,至少存在一个零点介于1和2之间。即方程x3x1在1和2之间至少有一个根。555

第五篇:2018考研数学知识点:函数极限及连续性内容总结

为学生引路,为学员服务

2018考研数学知识点:函数极限及连续性内容总结

考研数学中的高等数学,为学生引路,为学员服务

大量的概念、性质以及无穷小量的阶的比较等等,特别是阶的比较,是常考的地方。

3.函数的连续性的定义,间断点的分类,以及连续函数的性质,特别是在闭区间上的连续函数的性质,也是常考的地方。

以上是本章的主要内容,既然是微积分学的基础啊,那么其重要性就不言而喻了,同时也每年都考。当然,由于本章的基本概念、基本理论和基本方法比较多,而这也是相关的考点。从以往的考试分析来说,得分率比较低,希望同学们一定概要重视三基的复习。通过试卷的分析,可以大致归纳一下常考的三种题型:求解极限;无穷小量的比较;间断点的分类判断。对于无穷小量的比较,实际上是求解blob.png型这一未定式的极限,而判断间断点的类型,也是求解极限。因此,这三种题型的中心就是求极限,实际上求极限是贯穿始终的。那么同学们的复习重点就在于求极限的常用方法:如倒代换,有理化,等价代换,洛必达法则,两个基本极限等等。

页 共 2 页

下载高三数学教案:第四节函数的连续性及极限的(共五则范文)word格式文档
下载高三数学教案:第四节函数的连续性及极限的(共五则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    7.1多元函数的概念、极限与连续性

    §7.1多元函数的概念、极限与连续性 一.多元函数的基本概念 1.引例 在自然科学和工程技术中常常遇到一个变量依赖于多个自变量的函数关系,比如: 例1矩形面积S与边长x,宽y有下列......

    第十三章多元函数的极限和连续性

    《数学分析(1,2,3)》教案 第十三章 多元函数的极限和连续性 §1、平面点集 一 邻域、点列的极限 定义1 在平面上固定一点M0x0,y0,凡是与M0的距离小于的那些点M组成的平面点集,叫......

    函数极限

    《数学分析》教案第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些......

    函数极限

    习题 1.按定义证明下列极限: limx6x5=6 ; lim(x2-6x+10)=2; x2x x251 ; lim lim2xx1x2 limcos x = cos x0 xx04x2=0; 2.根据定义2叙述limf (x) ≠ A. xx0......

    函数极限

    数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际......

    §1.7 复变函数的极限和连续性(最终定稿)

    §1.7复变函数的极限和连续性 复变函数设E是非空点集.称映射f:E为复变函数,也可用wf(z)表示.若记zxiy,wuiv,则 wf(z)f(x,y)u(z)iv(z)u(x,y)iv(x,y). 于是,复变函数wf(z)的极......

    1-2函数极限

    高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限......

    函数极限概念

    一. 函数极限的概念 1.x趋于时函数的极限 设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当......