§1.7 复变函数的极限和连续性(最终定稿)

时间:2019-05-12 20:35:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《§1.7 复变函数的极限和连续性》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《§1.7 复变函数的极限和连续性》。

第一篇:§1.7 复变函数的极限和连续性

§1.7复变函数的极限和连续性 复变函数设E是非空点集.称映射f:E为复变函数,也可用wf(z)表示.若记zxiy,wuiv,则

wf(z)f(x,y)u(z)iv(z)u(x,y)iv(x,y).于是,复变函数wf(z)的极限、连续、一致连续等概念就是映射(u,v):E2的相应概念.有关映射的各种性质也对复变函数成立.重要注记由于xz2z2i,y,故一般将wf(z)理解为以z,为自变量的函数,即wf(z,)u(z,)iv(z,).以后将看到,这样 做会带来很多方便,并且具有“复风格”.习题1.7(P33)3,4,5.

第二篇:函数的极限和函数的连续性(本站推荐)

第一部分高等数学

第一节函数的极限和函数的连续性

考点梳理

一、函数及其性质

1、初等函数

幂函数:yxa(aR)

指数函数yax(a1且a1)

对数函数:ylogax(a0且a1)

三角函数:sin x , cos x , tan x , cot x

反三角函数:arcsin x , arcos x , arctan x , arccot x2、性质(定义域、值域、奇偶性、单调性、周期性、有界性)

【注】奇偶性、单调性相对考察的可能性打,但一般不会单独出题,常与其他知识点结合起来考察(比如与积分、导数结合)

二、函数极限

1. 数列极限

定义(略)

收敛性质:极限的唯一性、极限的有界性、极限的保号性。

·类比数列极限,函数极限有唯一性、局部有界性、局部保号性。

单侧极限(左极限、右极限)

【注】函数极限为每年的必考内容,常见于客观题中。一般为2~3题。

2. 两个重要极限

(1)limsinx1 x0x

x类似得到:x→0时,x~ln(x+1)~arcsin x~arctan x~tan x(2)lim(1x)e x0

类似得到:lim(1)elim(1)xx1xx

1xx1 e

·此处,需提及无穷大,无穷小的概念,希望读者进行自学。

三、函数的连续性

1. 概念:函数f(x)在x0处的连续(f(x)在x0点左连续、f(x)在x0点右连续)函数f(x)在开区间(a,b)上的连续

函数f(x)在闭区间[a,b]上的连续

2. 函数的间断点分类

● 跳跃式间断点:函数f(x)在点x0的左右极限都存在但不相等。

● 函数在点x0的左右极限都存在且相等,但不等于该点的函数值(或函数值在该

点无定义)

● 振荡间断点:f(x)在点x0的左右极限至少有一个不存在。

3. 连续函数的和、积、商,初等函数的连续性

● 有限个在某点连续的函数的和是一个在该点连续的函数。

● 有限个再某点连续的函数的积是一个在该点连续的函数。

● 两个在某点连续的函数的商事一个在该点连续的函数(分母在该点不为零)● 一切基本初等函数在定义域(或定义区间)上是连续的。

4. 闭区间上的连续函数的性质

●(最大、最小定理)在闭区间上连续的函数一定有最大值和最小值。

●(有界性定理)在闭区间上连续的函数一定在该区间上有界。

●(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)·f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点。

● 介值定理:设函数f(x)在闭区间[a,b]上连续,且在这区间的端点处取不同的函

数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)

内至少有一点ξ,使得f(b)=C(a<ξ

【注】函数的连续性,一般在客观题目中出现,分值不大,一般1~2题。

典型例题分析

【例1】(2010年真题)(工程类)计算极限limxsinx x0xsinx

A.1B.-1C.0D.2sinx1这一重要极限。如此,我们不难解x0x

sinxsinx11limxsinxx00。出该极限为0.即limlimx0xsinxx011limx0xx

xcx)e6,则常数c=_________。【例2】(2010年真题)(工程类)设lim(xxc

1x1【解析】解决此类题目,我们要灵活运用lim(1)。xxe【解析】:解决此类题目,我们要深刻掌握lim

2cxxcx2cx

2ccxclim()lim(1)limexxcxxxc2c1ce2ce6。则c=-3。

1xsin,x0【例3】(2009年真题)(工程类)设f(x)若f(x)在点x=0处连续,则αx0,x0的取值范围是

A.(-∞,+ ∞)B.[0,+ ∞]C.(0,+ ∞)D.(1,+ ∞)

【解析】函数f(x)为一个分段函数,要使其在点x=0处连续,只需limxsinx010,不难x

发现x→0时,sin x 为有界的,我们只需满足limx0即可。易得,α>0。但α不能等于x0

0,否则limsinx010。x

提高训练

1、求下列函数的定义域

(1)y

(2)y1 2x2x

(3)y=lg(3x+1)

(4)y1 1x22、判断一下函数的奇偶性

axax

(1)y = tan x(2)ya(3)y 2x3、求下列函数的极限

1x34x2(1)lim(3x1)(2)lim3(3)limxsinx3x0x0xxx

sin3x15sin2x(4)lim(5)lim(6)lim(1)x0xx01cosxxx

1ex,x0

4、讨论f(x)0,x0在x=0点的连续性。

x05、证明方程x3x1至少有一个根介于1和2之间。

【答案】

1、(1)[-1,1](2)(-∞,0)∪(0,2)∪(2,+∞)(3)(-1/3,+∞)

(4)[-2,-1)∪(-1,1)∪(1,+∞)

2、(1)奇(2)非奇非偶(3)偶

3、(1)8(2)4(3)0(4)2(5)3(6)

14、连续

5、证明:记f(x)x3x1,f(1)=-3<0,f(2)=25>0。由零点存在定理知,至少存在一个零点介于1和2之间。即方程x3x1在1和2之间至少有一个根。555

第三篇:极限的四则运算函数的连续性

极限的四则运算函数的连续性

极限的四则运算,函数的连续性

二.教学重、难点: 1.函数在一点处连续

2.函数在开区间,闭区间上连续 3.连续函数的性质

(1)若与在处连续,则,()在处也连续。

(2)最大、最小值,若是[]上的连续函数,那么在上有最大值和最小值,最值可在端点处取得,也可以在内取得。

【典型例题】 [例1] 求下列极限(1)(2)(3)(4)解:(1)原式(2)原式

(3)原式

(4)原式

[例2] 求下列各数列的极限(1)(2)(3)解:(1)原式(2)原式(3)原式

[例3] 已知数列是正数构成的数列,且满足,其中是大于1的整数,是正数。

(1)求的通项公式及前项和;(2)求的值。解:

(1)由已知得

∴ 是公比为的等比数列,则

(2)① 当时,原式 ② 当时,原式 ③ 当时,原式

[例4] 判定下列函数在给定点处是否连续。(1)在处;(2),在处。解:(1),但

故函数在处不连续(2)函数在处有定义,但,即

故不存在,所以函数在点处不连续。

[例5] 已知函数,试求:(1)的定义域,并画出的图象;(2)求,;

(3)在哪些点处不连续。解:

(1)当,即时,当时,不存在 当时,当时,即或时,∴

∴ 定义域为()(),图象如图所示

(2)

∴ 不存在

(3)在及处不连续

∵ 在处无意义 时,即不存在∴ 在及处不连续

[例6] 证明方程至少有一个小于1的正根。证明:令,则在(0,1)上连续,且当时。时,∴ 在(0,1)内至少有一个,使

即:至少有一个,满足且,所以方程至少有一个小于1的正根。

[例7] 函数在区间(0,2)上是否连续?在区间[0,2]上呢? 解:(且)任取,则

∴ 在(0,2)内连续,但在处无定义 ∴ 在处不连续,从而在[0,2]上不连续

[例8] 假设,在上不连续,求的取值范围。

解:若函数,在上连续,由函数在点处连续的定义,必有,因为,所以,所以,若不连续,则且。

[例9] 设

(1)若在处的极限存在,求的值;(2)若在处连续,求的值。解:

(1),因为在处极限存在,所以,所以,即(2)因为在处连续,所以在处的极限存在,且,由(1)知,且,又,所以。

【模拟试题】 一.选择题:

1.已知,则下列结论正确的是()

A.B.不存在C.=1

D.= 2.的值为()

A.5

B.4

C.7

D.0 3.的值为()

A.1

B.0

C.D.4.的值为()

A.B.C.1

D.5.若,则的取值范围是()

A.B.C.D.6.若在上处处连续,则常数等于()

A.0

B.1

C.2

D.7.在点处连续是在点处连续的()

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件

8.的不连续点是()

A.无不连续点

B.C.D.二.解答题: 1.求下列极限:

(1)

(2)

(3)2.为常数,1,求。

3.已知

(1)在处是否连续?说明理由;(2)讨论在和上的连续性。

【试题答案】 一.1.B

2.C

3.C D

二.1.解:(1)(2)

① 当时,∴

② 当时,∴

③ 当时,(3)2.解:∵

∴,4.B

5.C

6.C

7.A

8.3.解:

(1)∵,则

∵,且

∴ 不存在∴ 在处不连续(2)∵

∴ 在上是不连续函数 ∵

∴ 在上是连续函数。

第四篇:函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题

一、重点难点分析:

此定理非常重要,利用它证明函数是否存在极限。② 要掌握常见的几种函数式变形求极限。③ 函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。

。④ 计算函数极限的方法,若在x=x0处连续,则

⑤ 若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。

二、典型例题

例1.求下列极限

解析:①。

②。

③。

④。

例2.已知,求m,n。

解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程x2+mx+2=0的根,∴ m=3代入求得n=-1。

例3.讨论函数的连续性。

解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的,又

从而f(x)在点x=-1处不连续。

∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。,∴ f(x)在x=1处连续。,例4.已知函数

试讨论a,b为何值时,f(x)在x=0处连续。,(a,b为常数)。

解析:∵

且,∴,∴ a=1, b=0。

例5.求下列函数极限

解析:①。

②。

例6.设

解析:∵

要使存在,只需,问常数k为何值时,有存在?。,∴ 2k=1,故 时,存在。

例7.求函数

在x=-1处左右极限,并说明在x=-1处是否有极限?

解析:由∵,∴ f(x)在x=-1处极限不存在。,三、训练题:

1.已知,则

2.的值是_______。

3.已知,则=______。

4.已知

5.已知,2a+b=0,求a与b的值。,求a的值。

参考答案:1.3

2.3.4.a=2, b=-45.a=0

第五篇:复变函数总结

第一章

复数

=-1

欧拉公式

z=x+iy

实部Re

z

虚部

Im

z

2运算

共轭复数

共轭技巧

运算律

P1页

3代数,几何表示

z与平面点一一对应,与向量一一对应

辐角

当z≠0时,向量z和x轴正向之间的夹角θ,记作θ=Arg

z=

k=±1±2±3…

把位于-π<≤π的叫做Arg

z辐角主值

记作=

4如何寻找arg

z

例:z=1-i

z=i

z=1+i

z=-1

π

极坐标:,利用欧拉公式

可得到

高次幂及n次方

凡是满足方程的ω值称为z的n次方根,记作

第二章解析函数

1极限

2函数极限

复变函数

对于任一都有

与其对应

注:与实际情况相比,定义域,值域变化

称当时以A为极限

当时,连续

例1

证明在每一点都连续

证:

所以在每一点都连续

3导数

例2

时有

证:对有

所以

例3证明不可导

解:令

当时,不存在,所以不可导。

定理:在处可导u,v在处可微,且满足C-R条件

例4证明不可导

解:

其中

u,v

关于x,y可微

不满足C-R条件

所以在每一点都不可导

例5

解:

不满足C-R条件

所以在每一点都不可导

例6:

解:

其中

根据C-R条件可得

所以该函数在处可导

4解析

若在的一个邻域内都可导,此时称在处解析。

用C-R条件必须明确u,v

四则运算

例:证明

解:

任一点处满足C-R条件

所以处处解析

练习:求下列函数的导数

解:

所以

根据C-R方程可得

所以当时存在导数且导数为0,其它点不存在导数。

初等函数

Ⅰ常数

Ⅱ指数函数

定义域

Ⅲ对数函数

称满足的叫做的对数函数,记作

分类:类比的求法(经验)

目标:寻找

幅角主值

可用:

过程:

所以

例:求的值

Ⅳ幂函数

对于任意复数,当时

例1:求的值

解:

例2:求

Ⅴ三角函数

定义:对于任意复数,由关系式可得的余弦函数和正弦函数

例:求

解:

第三章复变函数的积分

1复积分

定理3.1

设C是复平面上的逐段光滑曲线在C上连续,则在C上可积,且有

注:①C是线

②方式跟一元一样

方法一:思路:复数→实化

把函数与微分相乘,可得

方法二:参数方程法

☆核心:把C参数

C:

例:

①C:0→的直线段②;

解:①C:

结果不一样

2柯西积分定理

例:

C:以a为圆心,ρ为半径的圆,方向:逆时针

解:C:

积分与路径无关:①单联通

②处处解析

例:求,其中C是连接O到点的摆线:

解:已知,直线段L与C构成一条闭曲线。因在全平面上解析,则

把函数沿曲线C的积分化为沿着直线段L上的积分。由于

★关键:①恰当参数

②合适准确带入z

3不定积分

定义3.2

设函数在区域D内连续,若D内的一个函数满足条件

定理3.7

若可用上式,则

例:

计算

解:

练习:计算

解:

4柯西积分公式

定理

处处解析在简单闭曲线C所围成的区域内则

例1:

解:

例2:

解:

例3:

解:

注:①C:

一次分式

③找到

在D内处处解析

例4:

解:5

解析函数的高阶导数

公式:

n=1,2……

应用要点:①

③精准分离

例:

调和函数

若满足则称叫做D内的调和函数

若在D内解析

所以

把称为共轭调和函数

第四章

级数理论

1复数到

距离

谈极限

对若有使得

此时

为的极限点

记作

推广:对一个度量空间都可谈极限

极限的性质

级数问题

部分和数列

则收敛,反之则发散。

性质:1若

都收敛,则收敛

2若一个收敛,一个发散,可推出发散

绝对收敛

但收敛,为条件收敛

等比级数

时收敛,其他发散

幂级数

求收敛域

例:求的收敛半径及收敛圆

解:因为

所以级数的收敛半径为R=1,收敛圆为

泰勒级数

泰勒定理:设函数在圆K:内解析,则在K内可以展成幂级数

其中,(n=0,1,2……),且展式还是唯一的。

1:求在处的泰勒展式

:在全平面上解析,所以在处的泰勒展式为

例2:

将函数展成的幂级数

解:

罗朗级数

罗朗定理

若函数在圆环D:内解析,则当时,有

其中

例:将函数在圆环(1)

(2)

内展成罗朗级数。

解:(1)在内,由于,所以

(2)在内,由于,所以

孤立奇点

定义:若函数在的去心邻域内解析,在点不解析,则称为的孤立奇点。

为可去奇点

为一级极点

为本性奇点

第5章

留数理论(残数)

定义:

设函数以有限项点为孤立奇点,即在的去心邻域内解析,则称积分的值为函数在点处的留数

记作:

其中,C的方向是逆时针。

例1:求函数在处的留数。

解:因为以为一级零点,而,因此以为一级极点。

例2:求函数在处的留数

解:是的本性奇点,因为

所以

可得

第7章

傅里叶变换

通过一种途径使复杂问题简单化,以便于研究。

定义:对满足某些条件的函数

在上有定义,则称

为傅里叶变换。

同时

为傅里叶逆变换

注:①傅里叶变换是把函数变为函数

②傅里叶逆变换是把函数变为函数

③求傅里叶变换或傅里叶逆变换,关键是计算积分

④两种常见的积分方法:凑微分、分部积分

复习积分:①

注:

例1:求的解:

例2:求的解:

-函数

定义:如果对于任意一个在区间上连续的函数,恒有,则称为-函数。

例1:求-函数的解:

例2:求正弦函数的傅氏变换

解:

第8章

拉普拉斯变换

设在时有定义

下载§1.7 复变函数的极限和连续性(最终定稿)word格式文档
下载§1.7 复变函数的极限和连续性(最终定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    复变函数小结

    复变函数小结 第一章 复变函数 1)掌握复数的定义(引入),知道复数的几何意义(即复数可看成复数平面的一个点也可以表示为复数平面上的向量) 2) 掌握 复数的直角坐标表示与三......

    第十三章多元函数的极限和连续性

    《数学分析(1,2,3)》教案 第十三章 多元函数的极限和连续性 §1、平面点集 一 邻域、点列的极限 定义1 在平面上固定一点M0x0,y0,凡是与M0的距离小于的那些点M组成的平面点集,叫......

    大学复变函数课件-复变函数

    第二章复变函数第一节解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设是在区域内确定的单值函数,并且。如果极限存在,为复数,则称在处可导或可微,极限称为在处的导数,记作,......

    复变函数教案1.1

    第一章 复数与复变函数 教学课题:第一节 复数 教学目的:1、复习、了解中学所学复数的知识; 2、理解所补充的新理论; 3、熟练掌握复数的运算并能灵活运用。 教学重点:复数的辐角......

    7.1多元函数的概念、极限与连续性

    §7.1多元函数的概念、极限与连续性 一.多元函数的基本概念 1.引例 在自然科学和工程技术中常常遇到一个变量依赖于多个自变量的函数关系,比如: 例1矩形面积S与边长x,宽y有下列......

    2018考研数学知识点:函数极限及连续性内容总结

    为学生引路,为学员服务 2018考研数学知识点:函数极限及连续性内容总结 考研数学中的高等数学,第一章内容便是函数的极限和连续性,这是高等数学的基础,同时也是考试的热点。首先......

    函数极限

    习题 1.按定义证明下列极限: limx6x5=6 ; lim(x2-6x+10)=2; x2x x251 ; lim lim2xx1x2 limcos x = cos x0 xx04x2=0; 2.根据定义2叙述limf (x) ≠ A. xx0......

    函数极限

    《数学分析》教案第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些......