第一篇:2018考研数学知识点:函数极限及连续性内容总结
为学生引路,为学员服务
2018考研数学知识点:函数极限及连续性内容总结
考研数学中的高等数学,为学生引路,为学员服务
大量的概念、性质以及无穷小量的阶的比较等等,特别是阶的比较,是常考的地方。
3.函数的连续性的定义,间断点的分类,以及连续函数的性质,特别是在闭区间上的连续函数的性质,也是常考的地方。
以上是本章的主要内容,既然是微积分学的基础啊,那么其重要性就不言而喻了,同时也每年都考。当然,由于本章的基本概念、基本理论和基本方法比较多,而这也是相关的考点。从以往的考试分析来说,得分率比较低,希望同学们一定概要重视三基的复习。通过试卷的分析,可以大致归纳一下常考的三种题型:求解极限;无穷小量的比较;间断点的分类判断。对于无穷小量的比较,实际上是求解blob.png型这一未定式的极限,而判断间断点的类型,也是求解极限。因此,这三种题型的中心就是求极限,实际上求极限是贯穿始终的。那么同学们的复习重点就在于求极限的常用方法:如倒代换,有理化,等价代换,洛必达法则,两个基本极限等等。
页 共 2 页
第二篇:函数的极限和函数的连续性(本站推荐)
第一部分高等数学
第一节函数的极限和函数的连续性
考点梳理
一、函数及其性质
1、初等函数
幂函数:yxa(aR)
指数函数yax(a1且a1)
对数函数:ylogax(a0且a1)
三角函数:sin x , cos x , tan x , cot x
反三角函数:arcsin x , arcos x , arctan x , arccot x2、性质(定义域、值域、奇偶性、单调性、周期性、有界性)
【注】奇偶性、单调性相对考察的可能性打,但一般不会单独出题,常与其他知识点结合起来考察(比如与积分、导数结合)
二、函数极限
1. 数列极限
定义(略)
收敛性质:极限的唯一性、极限的有界性、极限的保号性。
·类比数列极限,函数极限有唯一性、局部有界性、局部保号性。
单侧极限(左极限、右极限)
【注】函数极限为每年的必考内容,常见于客观题中。一般为2~3题。
2. 两个重要极限
(1)limsinx1 x0x
x类似得到:x→0时,x~ln(x+1)~arcsin x~arctan x~tan x(2)lim(1x)e x0
类似得到:lim(1)elim(1)xx1xx
1xx1 e
·此处,需提及无穷大,无穷小的概念,希望读者进行自学。
三、函数的连续性
1. 概念:函数f(x)在x0处的连续(f(x)在x0点左连续、f(x)在x0点右连续)函数f(x)在开区间(a,b)上的连续
函数f(x)在闭区间[a,b]上的连续
2. 函数的间断点分类
● 跳跃式间断点:函数f(x)在点x0的左右极限都存在但不相等。
● 函数在点x0的左右极限都存在且相等,但不等于该点的函数值(或函数值在该
点无定义)
● 振荡间断点:f(x)在点x0的左右极限至少有一个不存在。
3. 连续函数的和、积、商,初等函数的连续性
● 有限个在某点连续的函数的和是一个在该点连续的函数。
● 有限个再某点连续的函数的积是一个在该点连续的函数。
● 两个在某点连续的函数的商事一个在该点连续的函数(分母在该点不为零)● 一切基本初等函数在定义域(或定义区间)上是连续的。
4. 闭区间上的连续函数的性质
●(最大、最小定理)在闭区间上连续的函数一定有最大值和最小值。
●(有界性定理)在闭区间上连续的函数一定在该区间上有界。
●(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)·f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点。
● 介值定理:设函数f(x)在闭区间[a,b]上连续,且在这区间的端点处取不同的函
数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)
内至少有一点ξ,使得f(b)=C(a<ξ
【注】函数的连续性,一般在客观题目中出现,分值不大,一般1~2题。
典型例题分析
【例1】(2010年真题)(工程类)计算极限limxsinx x0xsinx
A.1B.-1C.0D.2sinx1这一重要极限。如此,我们不难解x0x
sinxsinx11limxsinxx00。出该极限为0.即limlimx0xsinxx011limx0xx
xcx)e6,则常数c=_________。【例2】(2010年真题)(工程类)设lim(xxc
1x1【解析】解决此类题目,我们要灵活运用lim(1)。xxe【解析】:解决此类题目,我们要深刻掌握lim
2cxxcx2cx
2ccxclim()lim(1)limexxcxxxc2c1ce2ce6。则c=-3。
1xsin,x0【例3】(2009年真题)(工程类)设f(x)若f(x)在点x=0处连续,则αx0,x0的取值范围是
A.(-∞,+ ∞)B.[0,+ ∞]C.(0,+ ∞)D.(1,+ ∞)
【解析】函数f(x)为一个分段函数,要使其在点x=0处连续,只需limxsinx010,不难x
发现x→0时,sin x 为有界的,我们只需满足limx0即可。易得,α>0。但α不能等于x0
0,否则limsinx010。x
提高训练
1、求下列函数的定义域
(1)y
(2)y1 2x2x
(3)y=lg(3x+1)
(4)y1 1x22、判断一下函数的奇偶性
axax
(1)y = tan x(2)ya(3)y 2x3、求下列函数的极限
1x34x2(1)lim(3x1)(2)lim3(3)limxsinx3x0x0xxx
sin3x15sin2x(4)lim(5)lim(6)lim(1)x0xx01cosxxx
1ex,x0
4、讨论f(x)0,x0在x=0点的连续性。
x05、证明方程x3x1至少有一个根介于1和2之间。
【答案】
1、(1)[-1,1](2)(-∞,0)∪(0,2)∪(2,+∞)(3)(-1/3,+∞)
(4)[-2,-1)∪(-1,1)∪(1,+∞)
2、(1)奇(2)非奇非偶(3)偶
3、(1)8(2)4(3)0(4)2(5)3(6)
14、连续
5、证明:记f(x)x3x1,f(1)=-3<0,f(2)=25>0。由零点存在定理知,至少存在一个零点介于1和2之间。即方程x3x1在1和2之间至少有一个根。555
第三篇:极限的四则运算函数的连续性
极限的四则运算函数的连续性
极限的四则运算,函数的连续性
二.教学重、难点: 1.函数在一点处连续
2.函数在开区间,闭区间上连续 3.连续函数的性质
(1)若与在处连续,则,()在处也连续。
(2)最大、最小值,若是[]上的连续函数,那么在上有最大值和最小值,最值可在端点处取得,也可以在内取得。
【典型例题】 [例1] 求下列极限(1)(2)(3)(4)解:(1)原式(2)原式
(3)原式
(4)原式
[例2] 求下列各数列的极限(1)(2)(3)解:(1)原式(2)原式(3)原式
[例3] 已知数列是正数构成的数列,且满足,其中是大于1的整数,是正数。
(1)求的通项公式及前项和;(2)求的值。解:
(1)由已知得
∴ 是公比为的等比数列,则
(2)① 当时,原式 ② 当时,原式 ③ 当时,原式
[例4] 判定下列函数在给定点处是否连续。(1)在处;(2),在处。解:(1),但
故函数在处不连续(2)函数在处有定义,但,即
故不存在,所以函数在点处不连续。
[例5] 已知函数,试求:(1)的定义域,并画出的图象;(2)求,;
(3)在哪些点处不连续。解:
(1)当,即时,当时,不存在 当时,当时,即或时,∴
∴ 定义域为()(),图象如图所示
(2)
∴ 不存在
(3)在及处不连续
∵ 在处无意义 时,即不存在∴ 在及处不连续
[例6] 证明方程至少有一个小于1的正根。证明:令,则在(0,1)上连续,且当时。时,∴ 在(0,1)内至少有一个,使
即:至少有一个,满足且,所以方程至少有一个小于1的正根。
[例7] 函数在区间(0,2)上是否连续?在区间[0,2]上呢? 解:(且)任取,则
∴ 在(0,2)内连续,但在处无定义 ∴ 在处不连续,从而在[0,2]上不连续
[例8] 假设,在上不连续,求的取值范围。
解:若函数,在上连续,由函数在点处连续的定义,必有,因为,所以,所以,若不连续,则且。
[例9] 设
(1)若在处的极限存在,求的值;(2)若在处连续,求的值。解:
(1),因为在处极限存在,所以,所以,即(2)因为在处连续,所以在处的极限存在,且,由(1)知,且,又,所以。
【模拟试题】 一.选择题:
1.已知,则下列结论正确的是()
A.B.不存在C.=1
D.= 2.的值为()
A.5
B.4
C.7
D.0 3.的值为()
A.1
B.0
C.D.4.的值为()
A.B.C.1
D.5.若,则的取值范围是()
A.B.C.D.6.若在上处处连续,则常数等于()
A.0
B.1
C.2
D.7.在点处连续是在点处连续的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
8.的不连续点是()
A.无不连续点
B.C.D.二.解答题: 1.求下列极限:
(1)
(2)
(3)2.为常数,1,求。
3.已知
(1)在处是否连续?说明理由;(2)讨论在和上的连续性。
【试题答案】 一.1.B
2.C
3.C D
二.1.解:(1)(2)
① 当时,∴
② 当时,∴
③ 当时,(3)2.解:∵
∴
∴,4.B
5.C
6.C
7.A
8.3.解:
(1)∵,则
∴
∵,且
∴
∵
∴ 不存在∴ 在处不连续(2)∵
∴ 在上是不连续函数 ∵
∴ 在上是连续函数。
第四篇:函数的极限及函数的连续性典型例题
函数的极限及函数的连续性典型例题
一、重点难点分析:
①
此定理非常重要,利用它证明函数是否存在极限。② 要掌握常见的几种函数式变形求极限。③ 函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。
。④ 计算函数极限的方法,若在x=x0处连续,则
⑤ 若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。
二、典型例题
例1.求下列极限
①
②
③
④
解析:①。
②。
③。
④。
例2.已知,求m,n。
解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程x2+mx+2=0的根,∴ m=3代入求得n=-1。
例3.讨论函数的连续性。
解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的,又
∴
由
从而f(x)在点x=-1处不连续。
∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。,∴ f(x)在x=1处连续。,例4.已知函数
试讨论a,b为何值时,f(x)在x=0处连续。,(a,b为常数)。
解析:∵
且,∴,∴ a=1, b=0。
例5.求下列函数极限
①
②
解析:①。
②。
例6.设
解析:∵
要使存在,只需,问常数k为何值时,有存在?。,∴ 2k=1,故 时,存在。
例7.求函数
在x=-1处左右极限,并说明在x=-1处是否有极限?
解析:由∵,∴ f(x)在x=-1处极限不存在。,三、训练题:
1.已知,则
2.的值是_______。
3.已知,则=______。
4.已知
5.已知,2a+b=0,求a与b的值。,求a的值。
参考答案:1.3
2.3.4.a=2, b=-45.a=0
第五篇:第十三章多元函数的极限和连续性
《数学分析(1,2,3)》教案
第十三章 多元函数的极限和连续性
§
1、平面点集
一 邻域、点列的极限
定义1 在平面上固定一点M0x0,y0,凡是与M0的距离小于的那些点M组成的平面点集,叫做M0的邻域,记为OM0,。
定义2 设Mnxn,yn,M0x0,y0。如果对M0的任何一个邻域OM0,,总存在正整数N,当nN时,有MnOM0,。就称点列Mn收敛,并且收敛于
M0,记为limMnnM0或xn,ynx0,y0n。
性质:(1)xn,ynx0,y0xnx0,yny0。(2)若Mn收敛,则它只有一个极限,即极限是唯一的。二 开集、闭集、区域
设E是一个平面点集。
1. 内点:设M0E,如果存在M0的一个邻域OM0,,使得OM0,E,就称M0是E的内点。2. 外点:设M1E,如果存在M1的一个邻域OM1,,使得OM1,E,就称M1是E的外点。
3. 边界点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,其中既有E的点,又有非E中的点,就称M*是E的边界点。E的边界点全体叫做E的边界。4. 开集:如果E的点都是E的内点,就称E是开集。
5. 聚点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,至少含有E中一个(不等于M*的)点,就称M*是E的聚点。性质:设M0是E的聚点,则在E中存在一个点列Mn以M0为极限。6. 闭集:设E的所有聚点都在E内,就称E是闭集。
7. 区域:设E是一个开集,并且E中任何两点M1和M2之间都可以用有限条直线段所组成的折线连接起来,而这条折线全部含在E中,就称E是区域。一个区域加上它的边界就是一个闭区域。三平面点集的几个基本定理
1.矩形套定理:设anxbn,cnydn是矩形序列,其中每一个矩形都含在前一个矩形中,并且
13-1
《数学分析(1,2,3)》教案
bnan0,dncn0,那么存在唯一的点属于所有的矩形。
2.致密性定理:如果序列Mnxn,yn有界,那么从其中必能选取收敛的子列。
3.有限覆盖定理:若一开矩形集合x,y覆盖一有界闭区域。那么从里,必可选出有限个开矩形,他们也能覆盖这个区域。
N4.收敛原理:平面点列Mn有极限的充分必要条件是:对任何给定的0,总存在正整数N,当n,m时,有rMn,Mm。
§2 多元函数的极限和连续
一 多元函数的概念
不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vrh。这些都是多元函数的例子。
2一般地,有下面定义:
定义1 设E是R的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。
有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xR22x2y2就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式xyR222222的x,y全体,即D{(x,y)|xyR}。又如,Zxy是马鞍面。二 多元函数的极限
2定义2
设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMA或fMAMM0。
MM02定义的等价叙述1 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0yy0时,有f(x,y)A,就称A是13-2
《数学分析(1,2,3)》教案
二元函数在M0点的极限。记为limfMA或fMAMM0。
MM02定义的等价叙述2 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有
f0f(x,y)A,就称A是二元函数在M0点的极限。记为limMMMA或fMAMM0 。注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋于M0时,f(M)MM0的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。例:设二元函数f(x,y)xyx2y22,讨论在点(0,0)的的二重极限。
例:设二元函数f(x,y)2xyx2y或2,讨论在点(0,0)的二重极限是否存在。
0,例:f(x,y)1,xy其它y0,讨论该函数的二重极限是否存在。
二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。例:limxyxyx2xyysinxyx2。
例:① limx0y0② lim(xy)ln(xy)③ lim(xy)ex0y0xy2222222(xy)
例:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0coscos32sin23sin0?(注意:cos3sin在374时为0,此时无界)。
xyx22例:(极坐标法再举例):设二元函数f(x,y)y2,讨论在点(0,0)的二重极限.
证明二元极限不存在的方法.
基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关. 例:f(x,y)xyx2y2在(0,0)的二重极限不存在.
13-3
《数学分析(1,2,3)》教案
三
二元函数的连续性
定义3
设fM在M0点有定义,如果limf(M)f(M0),则称fM在M0点连续.
MM0“语言”描述:0,0,当0 四 有界闭区域上连续函数的性质 有界性定理 若fx,y再有界闭区域D上连续,则它在D上有界。一致连续性定理 若fx,y再有界闭区域D上连续,则它在D上一致连续。 最大值最小值定理 若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。 nP0和P1是D内任意两点,f是D内的连续函数,零点存在定理 设D是R中的一个区域,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。 五 二重极限和二次极限 在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重极限(二重极限).此xx0yy0外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下: 若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)在yy0时的xx0极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再对y的二次极限,记为yy0limlimf(x,y)A. yy0xx0同样可定义先y后x的二次极限:limlimf(x,y). xx0yy0上述两类极限统称为累次极限。 注意:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。例:(二重极限存在,但两个二次极限不存在).设 11xsinysinyxf(x,y)0x0,y0x0ory0 由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y0y01y不存在知f(x,y)的累次极限不存在。 例:(两个二次极限存在且相等,但二重极限不存在)。设 13-4 《数学分析(1,2,3)》教案 f(x,y)xyx2y2,(x,y)(0,0) 由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知limf(x,y)不存在。 x0y0y0x0x0y0例:(两个二次极限存在,但不相等)。设 f(x,y)xx22yy22,(x,y)(0,0) 则 limlimf(x,y)1,limlimf(x,y)1;limlimf(x,y)limlimf(x,y)(不可交换) x0y0y0x0x0y0y0x0上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。 定理1 设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y)。则 xx0yy0xx0yy0lim(y)limlimf(x,y)A。 yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。推论1 设(1)limf(x,y)A;(2)y,yy0,limf(x,y)存在;(3)x,xx0,limf(x,y)xx0yy0xx0yy0存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限limf(x,y)。 yy0xx0xx0yy0xx0yy0推论2 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限limf(x,y)必不存在(可xx0yy0yy0xx0xx0yy0用于否定重极限的存在性)。例:求函数fx,yxy22222xyxy在0,0的二次极限和二重极限。 13-5