7.1多元函数的概念、极限与连续性

时间:2019-05-14 15:49:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《7.1多元函数的概念、极限与连续性》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《7.1多元函数的概念、极限与连续性》。

第一篇:7.1多元函数的概念、极限与连续性

§7.1多元函数的概念、极限与连续性

一.多元函数的基本概念 1.引例

在自然科学和工程技术中常常遇到一个变量依赖于多个自变量的函数关系,比如:

例1矩形面积S与边长x,宽y有下列依从关系:

Sxy(x0,y0).

其中,长x与宽y是独立取值的两个变量.在它们变化范围内,当x,y取定值后,矩形面积S有一个确定值与之对应.

例2在第7章中我们学习了曲面的方程,例如椭圆抛物面的方程为:x2y2x2y2z22,双曲抛物面的方程为z22,这里的z坐标既跟x有关,又跟ababy有关,它是x,y的二元函数.2.多元函数的概念

定义1设D是R2的一个非空子集,映射f :DR称为定义在D上的二元函数,记为

zf(x,y)(x,y)D(或zf(P)PD)其中,点集D称为该函数的定义域,x,y称为自变量,z称为因变量.上述定义中,与自变量x、y的一对值(x,y)相对应的因变量z的值,也称为f 在点(x y)处的函数值,记作f(x,y),即zf(xy).函数f(x,y)值域:f(D){z|zf(x,y),(x,y)D}.函数的其它符号zz(x,y),zg(x,y)等.类似地可定义三元函数uf(x y z),(x y z)D以及三元以上的函数.一般地,把定义1中的平面点集D换成n维空间Rn内的点集D 映射f :DR称为定义在D上的n元函数,通常记为uf(x1,x2,...,xn),(x1,x2,...,xn)D,或简记为uf(x),x(x1,x2,...,xn)D,也可记为uf(P),P(x1,x2,...,xn)D.关于函数定义域的约定:在一般地讨论用算式表达的多元函数uf(x)时,就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域.因而,对这类函数它的定义域不再特别标出.例如:

函数zln(xy)的定义域为{(x,y)|xy>0}(无界开区域) 函数zarcsin(x2y2)的定义域为{(x,y)|x2y21}(有界闭区域)

二元函数的图形点集{(x,y,z)|zf(x,y),(x,y)D}称为二元函数zf(x,y)的图形,由第6章的学习知,二元函数的图形是一张曲面.例如zaxbyc是一张平面,而函数z=x2+y2的图形是旋转抛物面.例1求二元函数z9x2y2的定义域. 解 容易看出,当且仅当自变量x,y满足不等式

x2y29, 函数z才有定义.其几何表示是xOy平面上以原点为圆心,半径为3的圆内及圆周边界上点的全体,如图7.1.1所示.即函数z的定义域为

x2y29.

图7.1.1 图7.1.2

例2求函数zln(xy)的定义域.

解 函数的定义域为xy0,其几何图形是xOy平面上位于直线yx上方的半平面,而不包括直线的阴影部分,如图7.1.2所示.

x2y2arcsec(x2y2)的定义域. 例3求函数zarcsin2解 函数z是两个函数的和,其定义域应是这两个函数的定义域的公共部分.函数的定义域由不等式组

22xy2 22xy1构成,即1x2y22.

定义域的图形是圆环(包括边界),如图7.1.3所示.

图7.1.3 图7.1.4

例5求函数z11xy22的定义域.

解 函数的定义域为

1(x2y2)0,即x2y21.它的图形是不包括边界的单位圆,如图7.1.4所示. 二多元函数的极限

与一元函数的极限概念类似,如果在P(x,y)P0(x0,y0)的过程中,对应的函数值f(x,y)无限接近于一个确定的常数A,则称A是函数f(x,y)当(x,y)(x0,y0)时的极限

定义2设二元函数f(P)f(xy)的定义域为D,P0(x0,y0)是D的聚点.如果存

(,)DUP(,)0时,在常数A,使得对于任意给定的正数,总存在正数,当Pxy总有

|f(P)A||f(xy)A|

成立,则称常数A为函数f(x,y)当(x,y)(x0,y0)时的极限,记为

(x,y)(x0,y0)limf(x,y)A,或f(x,y)A((x,y)(x0,y0)也可简记为

PP0limf(P)A或f(P)A(PP0)上面定义的极限也称为二重极限.定义用两个正数,和相关距离对极限过程做出了精确描述,这种描述通常称为—语言,该语言可以用来验证某个常数是函数在相关过程中的极限.极限概念的推广:在定义2中将P(x,y)改为P(x1,x2,…,xn)即可得到n元函数的极限.多元函数的极限运算法则与一元函数的运算法则类似.例5 设f(x,y)(x2y2)sin证 因为

|f(x,y)0||(x2y2)sin10| |x2y2||sin1| x2y2,x2y2x2y21,求证limf(x,y)0

(x,y)(0,0)x2y2可见 >0,取,则当

0(x0)2(y0)2 即P(x,y)DU(O,)时,总有

|f(xy)0|,因此(x,y)(0,0)limf(x,y)0

sin(x2y).例6求极限limx0x2y2y0sin(x2y)sin(x2y)x2ylim22,令u=x2y,则 解 lim222x0xyx0xyxyy0y0x2ysinu1sin(x2y)12xylimx1,lim=而x22222x0u0xyu2xy2xyy0x00,sin(x2y)0.所以limx0x2y2y0例7证明limxy不存在.x0x2y2y0证取ykx(k为常数),则 limx0y0xyxkxklim,x2y2x0x2k2x21k2ykx易见,所要求的极限值随k的变化而变化,故limx3y例8证明lim6不存在.x0xy2y0xy不存在.x0x2y2y0kx3yx3kx3,其极限值随k的不同而变证取ykx,lim6limx0xy2x0x6k2x61k233y0ykx化,故极限不存在.例9证明lim(1xy)x0y01xy极限不存在.证取xn0,ynlim(1xnyn)n1xnyn1(n为自然数),则当n时,yn0,且 nlim(10)n101/n1.11,则当n时,xn0,yn0,且 取xn,ynnn1lim(1xnyn)n1xnyn1lim1nn(n1)n(n1)1, e1xy因为对于不同的子列,所求得的极限的值不同,故lim(1xy)x0y0不存在.三多元函数的连续性 1.多元函数连续性概念

定义3设二元函数f(P)f(x,y)的定义域为D(1)P0(x0,y0)为D的聚点且P0D.如果

(x,y)(x0,y0)limf(x,y)f(x0,y0),则称函数f(x,y)在点P0(x0,y0)连续.(2)设D内的每一点都是D的聚点,如果函数f(x,y)在D的每一点都连续 则称函数f(x,y)在D上连续 或称f(x,y)是D上的连续函数.二元函数的连续性概念可相应地推广到n元函数f(P)上去.一元基本初等函数可看成其中一个自变量不出现的二元函数,很容易证明,把一元基本初等函数看成二元函数时它们都是连续的.例10 设f(x,y)cosx,证明f(x y)是R2上的连续函数.证 对于任意的P0(x0,y0)R2,因为

(x,y)(x0,y0)limf(x,y)(x,y)(x0,y0)limcosxcosx0f(x0,y0)

所以,函数f(x,y)cosx在点P0(x0,y0)连续,由P0的任意性知 cosx作为x y的二元函数在R2上连续.类似的讨论可知 一元基本初等函数看成二元函数或二元以上的多元函数时,它们在各自的定义域内都是连续的.定义4设函数f(xy)的定义域为D P0(x0y0)是D的聚点.如果函数f(xy)在点P0(x0y0)不连续 则称P0(x0,y0)为函数f(xy)的间断点.注 间断点可能是孤立点也可能是曲线上的点.可以证明 多元连续函数的和、差、积仍为连续函数,连续函数的商在分母不为零处的点仍连续;多元连续函数的复合函数也是连续函数.多元初等函数 与一元初等函数类似,多元初等函数是指可用一个式子所表示的多元函数,这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.xx2y2x2y2z2例如 cos(xy+z)都是多元初等函数.e1y2一切多元初等函数在其定义区域内是连续的.所谓定义区域是指包含在定义域内的区域或闭区域.由多元连续函数的连续性 如果要求多元连续函数f(P)在点P0处的极限 而该点又在此函数的定义区域内 则

pp0limf(P)f(P0)

例11讨论二元函数

x3y3,(x,y)(0,0)f(x,y)x2y2

0,(x,y)(0,0)在(0,0)处的连续性.解由f(x,y)表达式的特征,利用极坐标变换:令

xcos,ysin,则

(x,y)(0,0)limf(x,y)lim(sin3cos3)0f(0,0),0所以函数在(0,0)点处连续.y例12求极限limln(yx).x021xy1y1解 limln(yx)ln(10)1.x021x10y1exy.例13求limx0xyy1exye01exy2.解 因初等函数f(x,y)在(0,1)处连续,故 limx0xy01xyy12.多元连续函数的性质

性质1(有界性与最大值最小值定理)在有界闭区域D上的多元连续函数,必定在D上有界且在D上取得它的最大值和最小值.性质1表明:若f(P)在有界闭区域D上连续,则必存在常数M0,使得对一切PD,有|f(P)|M,且存在P1、P2D,使得

f(P1)max{f(P)|PD},f(P2)min{f(P)|PD}

性质2(介值定理)在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的任何值.问题讨论:

1.若点(x,y)沿着无数多条平面曲线趋向于点(x0,y0)时,函数f(x,y)都趋向于A,能否断定2.讨论函数

xy2,x2y2024f(x,y)xy

20,xy20(x,y)(x0,y0)limf(x,y)A? 的连续性.3.你能否用—语言证明

sin(x2y)lim220.x0xyy0

本节引入了多元函数概念,给出了多元函数极限的定义和计算方法,通过例题介绍了根据定义证明极限存在(即-语言)和不存在(沿不同方向或取不同子列得不同值)的方法,最后讨论了多元连续函数,给出了定义和它的基本性质.习题7.1 y1.设fxy,x2y2,求f(x,y).xx22已知函数f(x,y)xyxycot2,试求f(tx,ty).y3求下列各函数的定义域(1)zln(y25xy1)(2)z11 22xyxyxy(3)z(4)uR2x2y2z21(Rr0)

2222xyzr(5)uarcsinzxy22

4 求下列各极限

1x2y(1)lim(x,y)(0,3)x3y3(2)limln(yex)xy22(x,y)(1,1)(3)2xy4 xy(x,y)(0,0)limlimxy

xy11(4)(5)(x,y)(0,0)sin(xy)

(x,y)(0,2)xlim1cos(x2y2)(6)lim22(x,y)(0,0)(x2y2)exy5证明下列极限不存在(1)xy

(x,y)(0,0)xylim(2)xy

(x,y)(0,0)xyxylimeyax6函数z(a为常数)在何处间断?

y2x7用 - 语言证明

(x,y)(0,0)limxy0 22xy

第二篇:第十三章多元函数的极限和连续性

《数学分析(1,2,3)》教案

第十三章 多元函数的极限和连续性

§

1、平面点集

一 邻域、点列的极限

定义1 在平面上固定一点M0x0,y0,凡是与M0的距离小于的那些点M组成的平面点集,叫做M0的邻域,记为OM0,。

定义2 设Mnxn,yn,M0x0,y0。如果对M0的任何一个邻域OM0,,总存在正整数N,当nN时,有MnOM0,。就称点列Mn收敛,并且收敛于

M0,记为limMnnM0或xn,ynx0,y0n。

性质:(1)xn,ynx0,y0xnx0,yny0。(2)若Mn收敛,则它只有一个极限,即极限是唯一的。二 开集、闭集、区域

设E是一个平面点集。

1. 内点:设M0E,如果存在M0的一个邻域OM0,,使得OM0,E,就称M0是E的内点。2. 外点:设M1E,如果存在M1的一个邻域OM1,,使得OM1,E,就称M1是E的外点。

3. 边界点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,其中既有E的点,又有非E中的点,就称M*是E的边界点。E的边界点全体叫做E的边界。4. 开集:如果E的点都是E的内点,就称E是开集。

5. 聚点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,至少含有E中一个(不等于M*的)点,就称M*是E的聚点。性质:设M0是E的聚点,则在E中存在一个点列Mn以M0为极限。6. 闭集:设E的所有聚点都在E内,就称E是闭集。

7. 区域:设E是一个开集,并且E中任何两点M1和M2之间都可以用有限条直线段所组成的折线连接起来,而这条折线全部含在E中,就称E是区域。一个区域加上它的边界就是一个闭区域。三平面点集的几个基本定理

1.矩形套定理:设anxbn,cnydn是矩形序列,其中每一个矩形都含在前一个矩形中,并且

13-1

《数学分析(1,2,3)》教案

bnan0,dncn0,那么存在唯一的点属于所有的矩形。

2.致密性定理:如果序列Mnxn,yn有界,那么从其中必能选取收敛的子列。

3.有限覆盖定理:若一开矩形集合x,y覆盖一有界闭区域。那么从里,必可选出有限个开矩形,他们也能覆盖这个区域。

N4.收敛原理:平面点列Mn有极限的充分必要条件是:对任何给定的0,总存在正整数N,当n,m时,有rMn,Mm。

§2 多元函数的极限和连续

一 多元函数的概念

不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vrh。这些都是多元函数的例子。

2一般地,有下面定义:

定义1 设E是R的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。

有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xR22x2y2就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式xyR222222的x,y全体,即D{(x,y)|xyR}。又如,Zxy是马鞍面。二 多元函数的极限

2定义2

设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMA或fMAMM0。

MM02定义的等价叙述1 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0yy0时,有f(x,y)A,就称A是13-2

《数学分析(1,2,3)》教案

二元函数在M0点的极限。记为limfMA或fMAMM0。

MM02定义的等价叙述2 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有

f0f(x,y)A,就称A是二元函数在M0点的极限。记为limMMMA或fMAMM0 。注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋于M0时,f(M)MM0的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。例:设二元函数f(x,y)xyx2y22,讨论在点(0,0)的的二重极限。

例:设二元函数f(x,y)2xyx2y或2,讨论在点(0,0)的二重极限是否存在。

0,例:f(x,y)1,xy其它y0,讨论该函数的二重极限是否存在。

二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。例:limxyxyx2xyysinxyx2。

例:① limx0y0② lim(xy)ln(xy)③ lim(xy)ex0y0xy2222222(xy)

例:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0coscos32sin23sin0?(注意:cos3sin在374时为0,此时无界)。

xyx22例:(极坐标法再举例):设二元函数f(x,y)y2,讨论在点(0,0)的二重极限.

证明二元极限不存在的方法.

基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关. 例:f(x,y)xyx2y2在(0,0)的二重极限不存在.

13-3

《数学分析(1,2,3)》教案

二元函数的连续性

定义3

设fM在M0点有定义,如果limf(M)f(M0),则称fM在M0点连续.

MM0“语言”描述:0,0,当0

四 有界闭区域上连续函数的性质

有界性定理

若fx,y再有界闭区域D上连续,则它在D上有界。一致连续性定理

若fx,y再有界闭区域D上连续,则它在D上一致连续。

最大值最小值定理

若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。

nP0和P1是D内任意两点,f是D内的连续函数,零点存在定理

设D是R中的一个区域,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。

二重极限和二次极限

在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重极限(二重极限).此xx0yy0外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下:

若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)在yy0时的xx0极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再对y的二次极限,记为yy0limlimf(x,y)A.

yy0xx0同样可定义先y后x的二次极限:limlimf(x,y).

xx0yy0上述两类极限统称为累次极限。

注意:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。例:(二重极限存在,但两个二次极限不存在).设

11xsinysinyxf(x,y)0x0,y0x0ory0

由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y0y01y不存在知f(x,y)的累次极限不存在。

例:(两个二次极限存在且相等,但二重极限不存在)。设

13-4

《数学分析(1,2,3)》教案

f(x,y)xyx2y2,(x,y)(0,0)

由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知limf(x,y)不存在。

x0y0y0x0x0y0例:(两个二次极限存在,但不相等)。设

f(x,y)xx22yy22,(x,y)(0,0)

则 limlimf(x,y)1,limlimf(x,y)1;limlimf(x,y)limlimf(x,y)(不可交换)

x0y0y0x0x0y0y0x0上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。

定理1 设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y)。则

xx0yy0xx0yy0lim(y)limlimf(x,y)A。

yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。推论1

设(1)limf(x,y)A;(2)y,yy0,limf(x,y)存在;(3)x,xx0,limf(x,y)xx0yy0xx0yy0存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限limf(x,y)。

yy0xx0xx0yy0xx0yy0推论2 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限limf(x,y)必不存在(可xx0yy0yy0xx0xx0yy0用于否定重极限的存在性)。例:求函数fx,yxy22222xyxy在0,0的二次极限和二重极限。

13-5

第三篇:函数的极限和函数的连续性(本站推荐)

第一部分高等数学

第一节函数的极限和函数的连续性

考点梳理

一、函数及其性质

1、初等函数

幂函数:yxa(aR)

指数函数yax(a1且a1)

对数函数:ylogax(a0且a1)

三角函数:sin x , cos x , tan x , cot x

反三角函数:arcsin x , arcos x , arctan x , arccot x2、性质(定义域、值域、奇偶性、单调性、周期性、有界性)

【注】奇偶性、单调性相对考察的可能性打,但一般不会单独出题,常与其他知识点结合起来考察(比如与积分、导数结合)

二、函数极限

1. 数列极限

定义(略)

收敛性质:极限的唯一性、极限的有界性、极限的保号性。

·类比数列极限,函数极限有唯一性、局部有界性、局部保号性。

单侧极限(左极限、右极限)

【注】函数极限为每年的必考内容,常见于客观题中。一般为2~3题。

2. 两个重要极限

(1)limsinx1 x0x

x类似得到:x→0时,x~ln(x+1)~arcsin x~arctan x~tan x(2)lim(1x)e x0

类似得到:lim(1)elim(1)xx1xx

1xx1 e

·此处,需提及无穷大,无穷小的概念,希望读者进行自学。

三、函数的连续性

1. 概念:函数f(x)在x0处的连续(f(x)在x0点左连续、f(x)在x0点右连续)函数f(x)在开区间(a,b)上的连续

函数f(x)在闭区间[a,b]上的连续

2. 函数的间断点分类

● 跳跃式间断点:函数f(x)在点x0的左右极限都存在但不相等。

● 函数在点x0的左右极限都存在且相等,但不等于该点的函数值(或函数值在该

点无定义)

● 振荡间断点:f(x)在点x0的左右极限至少有一个不存在。

3. 连续函数的和、积、商,初等函数的连续性

● 有限个在某点连续的函数的和是一个在该点连续的函数。

● 有限个再某点连续的函数的积是一个在该点连续的函数。

● 两个在某点连续的函数的商事一个在该点连续的函数(分母在该点不为零)● 一切基本初等函数在定义域(或定义区间)上是连续的。

4. 闭区间上的连续函数的性质

●(最大、最小定理)在闭区间上连续的函数一定有最大值和最小值。

●(有界性定理)在闭区间上连续的函数一定在该区间上有界。

●(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)·f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点。

● 介值定理:设函数f(x)在闭区间[a,b]上连续,且在这区间的端点处取不同的函

数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)

内至少有一点ξ,使得f(b)=C(a<ξ

【注】函数的连续性,一般在客观题目中出现,分值不大,一般1~2题。

典型例题分析

【例1】(2010年真题)(工程类)计算极限limxsinx x0xsinx

A.1B.-1C.0D.2sinx1这一重要极限。如此,我们不难解x0x

sinxsinx11limxsinxx00。出该极限为0.即limlimx0xsinxx011limx0xx

xcx)e6,则常数c=_________。【例2】(2010年真题)(工程类)设lim(xxc

1x1【解析】解决此类题目,我们要灵活运用lim(1)。xxe【解析】:解决此类题目,我们要深刻掌握lim

2cxxcx2cx

2ccxclim()lim(1)limexxcxxxc2c1ce2ce6。则c=-3。

1xsin,x0【例3】(2009年真题)(工程类)设f(x)若f(x)在点x=0处连续,则αx0,x0的取值范围是

A.(-∞,+ ∞)B.[0,+ ∞]C.(0,+ ∞)D.(1,+ ∞)

【解析】函数f(x)为一个分段函数,要使其在点x=0处连续,只需limxsinx010,不难x

发现x→0时,sin x 为有界的,我们只需满足limx0即可。易得,α>0。但α不能等于x0

0,否则limsinx010。x

提高训练

1、求下列函数的定义域

(1)y

(2)y1 2x2x

(3)y=lg(3x+1)

(4)y1 1x22、判断一下函数的奇偶性

axax

(1)y = tan x(2)ya(3)y 2x3、求下列函数的极限

1x34x2(1)lim(3x1)(2)lim3(3)limxsinx3x0x0xxx

sin3x15sin2x(4)lim(5)lim(6)lim(1)x0xx01cosxxx

1ex,x0

4、讨论f(x)0,x0在x=0点的连续性。

x05、证明方程x3x1至少有一个根介于1和2之间。

【答案】

1、(1)[-1,1](2)(-∞,0)∪(0,2)∪(2,+∞)(3)(-1/3,+∞)

(4)[-2,-1)∪(-1,1)∪(1,+∞)

2、(1)奇(2)非奇非偶(3)偶

3、(1)8(2)4(3)0(4)2(5)3(6)

14、连续

5、证明:记f(x)x3x1,f(1)=-3<0,f(2)=25>0。由零点存在定理知,至少存在一个零点介于1和2之间。即方程x3x1在1和2之间至少有一个根。555

第四篇:函数极限概念

一. 函数极限的概念

1.x趋于时函数的极限

设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当无x限增大时,函数值无限地接近于x1

0;而对于函数gx=arctanx则当x趋于+时,函数值无限地接近于.2我们称这两个函数当x趋于+时有极限.一般地,当x趋于+时函数极限的精准定义如下:

定义1 设f为定义在,上的函数,A为定数。若对任给的0,存在正数M,使得当xM时有fxA,则称函数f当x趋于+时以A为极限,记作lim

fxA或f xAx.x

在定义1中正数M的作用与数列极限定义中的N相类似,表明x充分大的程度;但这里所考虑的是比M大的所有实数x,而不仅仅是正整数n。因此,当x时函数f以A为极限意味着:A的任意小邻域内必含有f在+的某邻域内的全部函数值.

第五篇:第十五章多元函数的极限与连续性§1平面点集(精选)

第十五章多元函数的极限与连续性

§1平面点集

limPnP0的充1.设Pnxn,yn是平面点列,P0x0,y0是平面上的点.证明n

要条件是limxnx0,且limyny0.nn

2. 设平面点列Pn收敛,证明Pn有界.3. 判别下列平面点集哪些是开集、闭集、有界集和区域,并分别指出它们的聚点:

(1)E

(2)E

(3)E

(4)E

(5)Ex,y|yx; 2x,y|x2y21; x,y|xy0; x,y|xy0; x,y|0y2,2yx2y2;

1,x0; x(6)Ex,y|ysin

(7)E

(8)Ex,y|x2y21或y0,0x1; x,y|x,y均为整数.4.设F是闭集,G是开集,证明FG是闭集,GF是开集.5.证明开集的余集是闭集.E的聚点的充要条件是E中存在点列P6.设E是平面点集.证明P0是n,满足

P,2,且limPnP0.nP0n1n

7.用平面上的有限覆盖定理证明致密性定理.8.用致密性定理证明柯西收敛原理.9.设E是平面点集,如果集合E的任一覆盖都有有限子覆盖,则称E是紧集.证明紧集是有界闭集.10.设E是平面上的有界闭集,dE是E的直径,即

dEsuprP',P''.P',P''E

求证:存在 P1,P2E,使得rP1,P2dE.11.仿照平面点集,叙述n维欧氏空间中点集的有关概念(如邻域、极限、开集、聚点、闭集、区域、有界以及一些基本定理等).12.叙述并证明三维空间的波尔察诺-魏尔斯特拉斯致密性定理.§2多元函数的极限与连续性

1.叙述下列定义:

(1)limfx,y; xx0yy0

(2)limfx,yA; xy

xay(3)limfx,yA;

(4)limfx,y.xay

2.求下列极限(包括非正常极限):

x2y2

(1)lim; x0xyy0

(2)limx0y0sinx3y3xy22;

(3)

limx0y022;

(4)limxysinx0y01; 22xy

2(5)limxylnxyx0y0222;

exey

(6)lim; x0cosxsinyy0

(7)limx0y0xy; x4y2232

sinxy(8)lim; x0xy2

(9)

x1y0lnxey

(10)lim1; x12xyy2

(11)limxy1; x0x4y4

y0

1x2y2

(12)lim; 22x0xyy0

(13)limxyxy22e

x2xy;

(14)limxxy.22xyy

3.讨论下列函数在0,0点的全面极限和两个累次极限:

x2

(1)fx,y2; xy2

(2)fx,yxysin11sin; xy

exey

(3)fx,y; sinxy(4)fx,yx2y2

xyxy222;

x3y3

(5)fx,y2; xy

x2y2

(6)fx,y3; 3xy

(7)fx,yx43x2y22xy3

x

x22y4322;(8)fx,yx4y4

y.4.叙述并证明二元函数极限的局部有界性定理和局部保号性定理.5.叙述并证明limfx,y存在的柯西收敛准则.xx0yy0

6.试作出函数fx,y,使当x,yx0,y0时,(1)全面极限和两个累次极限都不存在;

(2)全面极限不存在,两个累次极限存在但不相等;

(3)全面极限和两个累次极限都存在.7.讨论下列函数的连续范围:

(1)f

x,y

(2)fx,y1; sinxsiny

(3)fx,yxy;

(4)fx,yxy; x3y3

sinxy,y0,(5)fx,y y0,y0;

sinxyx2y20,(6)fx,y

220,xy0;

(7)fx,y0,x为无理数;

y,x为有理数

22222ylnxy,xy0,(8)fx,y 220,xy0;

x22,xy0,22p(9)fx,yxy(p0).220,xy0,8.若fx,y在某区域G内对变量x连续,对变量y满足利普希茨条件,即对任意 x,y'G和x,y''G,有 fx,y'fx,y''Ly'y'',其中L为常数,求证fx,y在G内连续.9.证明有界闭集上二元连续函数的最值定理和一致连续性定理.10.设二元函数fx,y在全平面上连续,2lim2

(1)fx,y在全平面有界;

(2)fx,y在全平面一致连续.11.证明:若fx,y分别对每一变量x和y是连续的,并且对其中的一个是单调的,则fx,y是二元连续函数.12.证明:若E是有界闭域,fx,y是E上的连续函数,则fE是闭区间.xyfx,yA,求证:

下载7.1多元函数的概念、极限与连续性word格式文档
下载7.1多元函数的概念、极限与连续性.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    多元函数的极限

    三. 多元函数的极限 回忆一元函数极限的定义: limf(x)A设是定义域Df的聚点。 xx0x00对0,总0,xU(x0,)Df时,都有f(x)A成立。 定义1 设二元函数f(P)f(x,y)的定义域为Df,P(x0,y0)是......

    极限的四则运算函数的连续性

    极限的四则运算函数的连续性 极限的四则运算,函数的连续性二. 教学重、难点: 1. 函数在一点处连续 2. 函数在开区间,闭区间上连续 3. 连续函数的性质 (1)若与在处连续,则,,()在处也连......

    多元函数的极限与连续

    数学分析 第16章多元函数的极限与连续计划课时: 1 0 时 第16章多元函数的极限与连续 ( 1 0 时 )§ 1平面点集与多元函数一.平面点集:平面点集的表示: E{(x,y)|(x,y)满......

    多元函数的极限与连续

    多元函数的极限 1. 求下列极限: x2y111)lim(4x3y); 2)lim(xy)sinsin;3)lim2. 2x0x2x0xyxyy0y1y022. 证明:若f(x,y) xy,(xy0),求 limlimf(x,y)与limlimf(x,y). x0y0y0x0xyx4y43. 设函数......

    函数的极限及函数的连续性典型例题

    函数的极限及函数的连续性典型例题一、重点难点分析:①此定理非常重要,利用它证明函数是否存在极限。② 要掌握常见的几种函数式变形求极限。③ 函数f(x)在x=x0处连续的充要条......

    一、多元函数、极限与连续解读

    一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量 按照 一定法则总有确定的值与它对应,则称 是变量 x 、y 的二......

    多元函数的极限与连续习题

    多元函数的极限与连续习题 1. 用极限定义证明:lim(3x2y)14。 x2y1 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)f(x,y)xy; xy f(x,y)(xy)s......

    §1.7 复变函数的极限和连续性(最终定稿)

    §1.7复变函数的极限和连续性 复变函数设E是非空点集.称映射f:E为复变函数,也可用wf(z)表示.若记zxiy,wuiv,则 wf(z)f(x,y)u(z)iv(z)u(x,y)iv(x,y). 于是,复变函数wf(z)的极......