第一篇:函数的极限及函数的连续性典型例题
函数的极限及函数的连续性典型例题
一、重点难点分析:
①
此定理非常重要,利用它证明函数是否存在极限。② 要掌握常见的几种函数式变形求极限。③ 函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。
。④ 计算函数极限的方法,若在x=x0处连续,则
⑤ 若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。
二、典型例题
例1.求下列极限
①
②
③
④
解析:①。
②。
③。
④。
例2.已知,求m,n。
解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程x2+mx+2=0的根,∴ m=3代入求得n=-1。
例3.讨论函数的连续性。
解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的,又
∴
由
从而f(x)在点x=-1处不连续。
∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。,∴ f(x)在x=1处连续。,例4.已知函数
试讨论a,b为何值时,f(x)在x=0处连续。,(a,b为常数)。
解析:∵
且,∴,∴ a=1, b=0。
例5.求下列函数极限
①
②
解析:①。
②。
例6.设
解析:∵
要使存在,只需,问常数k为何值时,有存在?。,∴ 2k=1,故 时,存在。
例7.求函数
在x=-1处左右极限,并说明在x=-1处是否有极限?
解析:由∵,∴ f(x)在x=-1处极限不存在。,三、训练题:
1.已知,则
2.的值是_______。
3.已知,则=______。
4.已知
5.已知,2a+b=0,求a与b的值。,求a的值。
参考答案:1.3
2.3.4.a=2, b=-45.a=0
第二篇:函数的极限和函数的连续性(本站推荐)
第一部分高等数学
第一节函数的极限和函数的连续性
考点梳理
一、函数及其性质
1、初等函数
幂函数:yxa(aR)
指数函数yax(a1且a1)
对数函数:ylogax(a0且a1)
三角函数:sin x , cos x , tan x , cot x
反三角函数:arcsin x , arcos x , arctan x , arccot x2、性质(定义域、值域、奇偶性、单调性、周期性、有界性)
【注】奇偶性、单调性相对考察的可能性打,但一般不会单独出题,常与其他知识点结合起来考察(比如与积分、导数结合)
二、函数极限
1. 数列极限
定义(略)
收敛性质:极限的唯一性、极限的有界性、极限的保号性。
·类比数列极限,函数极限有唯一性、局部有界性、局部保号性。
单侧极限(左极限、右极限)
【注】函数极限为每年的必考内容,常见于客观题中。一般为2~3题。
2. 两个重要极限
(1)limsinx1 x0x
x类似得到:x→0时,x~ln(x+1)~arcsin x~arctan x~tan x(2)lim(1x)e x0
类似得到:lim(1)elim(1)xx1xx
1xx1 e
·此处,需提及无穷大,无穷小的概念,希望读者进行自学。
三、函数的连续性
1. 概念:函数f(x)在x0处的连续(f(x)在x0点左连续、f(x)在x0点右连续)函数f(x)在开区间(a,b)上的连续
函数f(x)在闭区间[a,b]上的连续
2. 函数的间断点分类
● 跳跃式间断点:函数f(x)在点x0的左右极限都存在但不相等。
● 函数在点x0的左右极限都存在且相等,但不等于该点的函数值(或函数值在该
点无定义)
● 振荡间断点:f(x)在点x0的左右极限至少有一个不存在。
3. 连续函数的和、积、商,初等函数的连续性
● 有限个在某点连续的函数的和是一个在该点连续的函数。
● 有限个再某点连续的函数的积是一个在该点连续的函数。
● 两个在某点连续的函数的商事一个在该点连续的函数(分母在该点不为零)● 一切基本初等函数在定义域(或定义区间)上是连续的。
4. 闭区间上的连续函数的性质
●(最大、最小定理)在闭区间上连续的函数一定有最大值和最小值。
●(有界性定理)在闭区间上连续的函数一定在该区间上有界。
●(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)·f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点。
● 介值定理:设函数f(x)在闭区间[a,b]上连续,且在这区间的端点处取不同的函
数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)
内至少有一点ξ,使得f(b)=C(a<ξ
【注】函数的连续性,一般在客观题目中出现,分值不大,一般1~2题。
典型例题分析
【例1】(2010年真题)(工程类)计算极限limxsinx x0xsinx
A.1B.-1C.0D.2sinx1这一重要极限。如此,我们不难解x0x
sinxsinx11limxsinxx00。出该极限为0.即limlimx0xsinxx011limx0xx
xcx)e6,则常数c=_________。【例2】(2010年真题)(工程类)设lim(xxc
1x1【解析】解决此类题目,我们要灵活运用lim(1)。xxe【解析】:解决此类题目,我们要深刻掌握lim
2cxxcx2cx
2ccxclim()lim(1)limexxcxxxc2c1ce2ce6。则c=-3。
1xsin,x0【例3】(2009年真题)(工程类)设f(x)若f(x)在点x=0处连续,则αx0,x0的取值范围是
A.(-∞,+ ∞)B.[0,+ ∞]C.(0,+ ∞)D.(1,+ ∞)
【解析】函数f(x)为一个分段函数,要使其在点x=0处连续,只需limxsinx010,不难x
发现x→0时,sin x 为有界的,我们只需满足limx0即可。易得,α>0。但α不能等于x0
0,否则limsinx010。x
提高训练
1、求下列函数的定义域
(1)y
(2)y1 2x2x
(3)y=lg(3x+1)
(4)y1 1x22、判断一下函数的奇偶性
axax
(1)y = tan x(2)ya(3)y 2x3、求下列函数的极限
1x34x2(1)lim(3x1)(2)lim3(3)limxsinx3x0x0xxx
sin3x15sin2x(4)lim(5)lim(6)lim(1)x0xx01cosxxx
1ex,x0
4、讨论f(x)0,x0在x=0点的连续性。
x05、证明方程x3x1至少有一个根介于1和2之间。
【答案】
1、(1)[-1,1](2)(-∞,0)∪(0,2)∪(2,+∞)(3)(-1/3,+∞)
(4)[-2,-1)∪(-1,1)∪(1,+∞)
2、(1)奇(2)非奇非偶(3)偶
3、(1)8(2)4(3)0(4)2(5)3(6)
14、连续
5、证明:记f(x)x3x1,f(1)=-3<0,f(2)=25>0。由零点存在定理知,至少存在一个零点介于1和2之间。即方程x3x1在1和2之间至少有一个根。555
第三篇:极限的四则运算函数的连续性
极限的四则运算函数的连续性
极限的四则运算,函数的连续性
二.教学重、难点: 1.函数在一点处连续
2.函数在开区间,闭区间上连续 3.连续函数的性质
(1)若与在处连续,则,()在处也连续。
(2)最大、最小值,若是[]上的连续函数,那么在上有最大值和最小值,最值可在端点处取得,也可以在内取得。
【典型例题】 [例1] 求下列极限(1)(2)(3)(4)解:(1)原式(2)原式
(3)原式
(4)原式
[例2] 求下列各数列的极限(1)(2)(3)解:(1)原式(2)原式(3)原式
[例3] 已知数列是正数构成的数列,且满足,其中是大于1的整数,是正数。
(1)求的通项公式及前项和;(2)求的值。解:
(1)由已知得
∴ 是公比为的等比数列,则
(2)① 当时,原式 ② 当时,原式 ③ 当时,原式
[例4] 判定下列函数在给定点处是否连续。(1)在处;(2),在处。解:(1),但
故函数在处不连续(2)函数在处有定义,但,即
故不存在,所以函数在点处不连续。
[例5] 已知函数,试求:(1)的定义域,并画出的图象;(2)求,;
(3)在哪些点处不连续。解:
(1)当,即时,当时,不存在 当时,当时,即或时,∴
∴ 定义域为()(),图象如图所示
(2)
∴ 不存在
(3)在及处不连续
∵ 在处无意义 时,即不存在∴ 在及处不连续
[例6] 证明方程至少有一个小于1的正根。证明:令,则在(0,1)上连续,且当时。时,∴ 在(0,1)内至少有一个,使
即:至少有一个,满足且,所以方程至少有一个小于1的正根。
[例7] 函数在区间(0,2)上是否连续?在区间[0,2]上呢? 解:(且)任取,则
∴ 在(0,2)内连续,但在处无定义 ∴ 在处不连续,从而在[0,2]上不连续
[例8] 假设,在上不连续,求的取值范围。
解:若函数,在上连续,由函数在点处连续的定义,必有,因为,所以,所以,若不连续,则且。
[例9] 设
(1)若在处的极限存在,求的值;(2)若在处连续,求的值。解:
(1),因为在处极限存在,所以,所以,即(2)因为在处连续,所以在处的极限存在,且,由(1)知,且,又,所以。
【模拟试题】 一.选择题:
1.已知,则下列结论正确的是()
A.B.不存在C.=1
D.= 2.的值为()
A.5
B.4
C.7
D.0 3.的值为()
A.1
B.0
C.D.4.的值为()
A.B.C.1
D.5.若,则的取值范围是()
A.B.C.D.6.若在上处处连续,则常数等于()
A.0
B.1
C.2
D.7.在点处连续是在点处连续的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
8.的不连续点是()
A.无不连续点
B.C.D.二.解答题: 1.求下列极限:
(1)
(2)
(3)2.为常数,1,求。
3.已知
(1)在处是否连续?说明理由;(2)讨论在和上的连续性。
【试题答案】 一.1.B
2.C
3.C D
二.1.解:(1)(2)
① 当时,∴
② 当时,∴
③ 当时,(3)2.解:∵
∴
∴,4.B
5.C
6.C
7.A
8.3.解:
(1)∵,则
∴
∵,且
∴
∵
∴ 不存在∴ 在处不连续(2)∵
∴ 在上是不连续函数 ∵
∴ 在上是连续函数。
第四篇:第二讲 函数的极限典型例题
第二讲
函数的极限
一
内容提要
1.函数在一点处的定义
xx0limf(x)A0,0,使得x:0xx0,有f(x)A.右极限
xx0limf(x)A0,0,使得x:0xx0,有f(x)A.左极限
xx0limf(x)A0,0,使得x:0x0x,有f(x)A.注1 同数列极限一样,函数极限中的同样具有双重性.
注2 的存在性(以xx0为例):在数列的“N”定义中,我们曾经提到过,N的存在性重在“存在”,而对于如何去找以及是否能找到最小的N无关紧要;对也是如此,只要对给定的0,能找到某一个,能使0xx0时,有f(x)A即可.
注3 讨论函数在某点的极限,重在局部,即在此点的某个空心邻域内研究f(x)是否无限趋近于A.
注4 limf(x)Alimf(x)limf(x)A.
xx0xx0xx0n注5 limf(x)A{xn}{xn}|xnx0,且xnx0,有limf(xn)A,称为
nxx0归结原则――海涅(Heine)定理.它是沟通数列极限与函数极限之间的桥梁.说明在一定条件下函数极限与数列极限可以相互转化.因此,利用定理必要性的逆否命题,可以方便地验证某些函数极限不存在;而利用定理的充分性,又可以借用数列极限的现成结果来论证函数极限问题.(会叙述,证明,特别充分性的证明.)注6 limf(x)A00,xx00,x:0xx0,有f(x)A0. 函数在无穷处的极限 设f(x)在[a,)上有定义,则
limf(x)A0,xXa,Xa,Xa,使得x:xX,有f(x)A. 使得x:xX,有f(x)A. 使得x:xX,有f(x)A. xlimf(x)A0,limf(x)A0,x注1 limf(x)Alimf(x)limf(x)A.
xxx 1
n注2 limf(x)A{xn}{xn}|xn,有limf(xn)A.
nx3 函数的有界
设f(x)在[a,)上有定义,若存在一常数M0,使得x[a,),有f(x)M,则称f(x)在[a,)上有界. 4 无穷大量
xx0limf(x)G0,0,X0,使得x:0xx0,有f(x)G. 使得x:xX,有f(x)G. limf(x)G0,x类似地,可定义limf(x),limf(x),limf(x),limf(x)等.
xx0xx0xx0xx0注 若limf(x),且0和C0,使得x:0xx0,有f(x)C0,xx0则limf(x)g(x).
xx0
特别的,若limf(x),limg(x)A0,则limf(x)g(x).
xx0xx0xx05 无穷小量
若limf(x)0,则称f(x)当xx0时为无穷量.
xx0注1 可将xx0改为其它逼近过程.
注2 limf(x)Af(x)A(x),其中lim(x)0.由于有这种可以互逆的表xx0xx0达关系,所以极限方法与无穷小分析方法在许多场合中可以相互取代. 注3 limf(x)0,g(x)在x0的某空心邻域内有界,则limf(x)g(x)0.
xx0xx0注4 limf(x)0,且当x足够大时,g(x)有界,则limf(x)g(x)0.
xxx0注5 在某一极限过程中,无穷大量的倒数是无穷小量,非零的无穷小量的倒数是无穷大量. 6 函数极限的性质
以下以xx0为例,其他极限过程类似.(1)limf(x)A,则极限A唯一.
xx0(2)limf(x)A,则,M0,使得x:0xx0,有f(x)M.
xx0(3)limf(x)A,limg(x)B,且AB,则0,使得x:0xx0,xx0xx0有
f(x)g(x)注
这条性质称为函数的“局部保号性”.在理论分析论证及判定函数的性态中应用极普遍.(4)limf(x)A,limg(x)B,且0当0xx0时,f(x)g(x)则xx0xx0AB.
(5)limf(x)A,limg(x)B,则
xx0xx0xx0limf(x)g(x)AB
limf(x)g(x)AB
limxx0f(x)g(x)xx0AB(B0)
要求:①进行运算的项数为有限项;②极限为有限数. 7 夹逼定理 若0,使得x:0xx0,有f(x)g(x)h(x),且
xx0xx0xx0limf(x)limh(x)A,则limg(x)A. Cauchy收敛准则
函数f(x)在x0的空心邻域内极限存在0,0,使得x,x,当0xx0,0xx0时,有f(x)f(x). 无穷小量的比较
设lim(x)0,lim(x)0,且limxx0xx0(x)(x)xx0k,则
(1)当k0时,称(x)为(x)的高阶无穷小量,记作(x)o(x);(2)当k时,称(x)为(x)的低阶无穷小量;(3)当k0且k时,称(x)为(x)的同阶无穷小量.
特别的,当k1时,称(x)和(x)为等价的无穷小量,记作(x)~(x).
注1 上述定义中,自变量的变化过程xx0也可用x,x,x,xx0,xx0之一代替. 注2 当x0时,常见的等价无穷小有:
sinx~x,tanx~x,1cosx~
x22,e1~x,ln(1x)~x,(1x)xm1~mx
注3 在用等价无穷小替换计算极限时,一般都要强调限定对“乘积因式”的等价替换.因为:
若(x)~(x)(P),则
limPf(x)(x)limPf(x)(x)f(x)limP(x)(x)(x)或
limg(x)(x)limg(x)(x)PP(x)(x). limg(x)(x)
(P为某逼近过程)
P而对于非乘积因式,这样的替换可能会导致错误的结果.
注4 在某一极限过程中,若(x)为无穷小量,则在此极限过程,有
(x)o(x)~(x). 10 两个重要极限(1)limsinxx1x01;
(2)lim(1x)xe.
x0
二、典型例题
例 用定义证明下列极限:(1)limx(x1)x12x112;
12(2)limxx1x2x.
例 limf(x)A,证明:
xx0(1)若A0,则有lim31f(x)2xx01A2;
(2)lim3xx0f(x)A.
例 设f(x)是[a,b]上的严格严格单调函数,又若对xn(a,b](n1,2,),有limf(xn)f(a),试证明:limxna.
nn
例 函数f(x)在点x0的某邻域I内有定义,且对xnI(xnx0,xnx0),且 0xn1x0xnx0(nN),有limf(xn)A,证明:limf(x)A.
nxx0
例
设函数f(x),x(0,1),满足f(x)0(x0),且
f(x)f()o(x)(x0)
2x则
f(x)o(x)(x0)
问:在题设条件下,是否有f(0)0?答:否.如f(x)01x0x0.
例
设函数f(x)在(0,)上满足议程f(2x)f(x),且limf(x)A,则
n
f(x)A(x(0,)).
例
求下列函数极限(1)limn0xb(a0,b0);
axxb(2)lim(a0,b0);
n0ax12exsinx(3)lim. 4n0x1ex 8
例
求下列极限(1)lim1tanxx1tanxn0e1;
(2)lim1cosxx)x;
n0x(1cosln(sin22(3)limxe)x2xn0ln(xe)2x.
例
求下列极限:(1)limn0etanxexsinxxcosx;
(2)lim1cosxcos2x3cos3xx2.
n0 10
例
求下列极限:(1)limx1xlnxx;
n1(2)lim(ax)ax2xx.
n0
例
求下列极限:
1(1)lim(cosx)n0ln(1x)2;
11(2)lim(sinn1xcos1x);
nx1xa(3)设ai0(i1,2,,n),求limn0ax2ax. nxn
例
(1)已知lim(1xaxb)0,求常数a,b;
n33ln(1f(x)(2)已知limn0sin2xx31)5,求limn0f(x)x2.
第五篇:函数极限
习题
1.按定义证明下列极限:
(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x
x251;(4)lim(3)lim2xx1x2
(5)limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf(x)≠ A.xx0
3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0
4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0
5.证明定理3.1
6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x
x;(2)f(x)= [x]
2x;x0.(3)f(x)=0;x0.1x2,x0.
7.设 limf(x)= A,证明limf(xxx01)= A x
8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0
习题
1. 求下列极限:
x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22
x21x113x;
lim(3)lim;(4)
x12x2x1x0x22x3
xn1(5)limm(n,m 为正整数);(6)lim
x1xx41
(7)lim
x0
2x3x2
70;
a2xa3x68x5.(a>0);(8)lim
xx5x190
2. 利用敛性求极限:(1)lim
x
xcosxxsinx
;(2)lim2
x0xx4
xx0
3. 设 limf(x)=A, limg(x)=B.证明:
xx0
(1)lim[f(x)±g(x)]=A±B;
xx0
(2)lim[f(x)g(x)]=AB;
xx0
(3)lim
xx0
f(x)A
=(当B≠0时)g(x)B
4. 设
a0xma1xm1am1xam
f(x)=,a0≠0,b0≠0,m≤n,nn1
b0xb1xbn1xbn
试求 limf(x)
x
5. 设f(x)>0, limf(x)=A.证明
xx0
xx0
lim