第一篇:《线性代数》教学的一些思考论文(定稿)
[摘要]
《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与认识,提出《线性代数》教学抽象概念的讲解应注意的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。
[关键词]
线性代数;数学概念;教学方法
《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、训练与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与掌握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。
一、加强基本概念的教与学
线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。
在概念的教学中,教师要研究概念的认识过程的特点和规律性,根据学生的认识能力发展的规律来选择适当的教学方式。因此,在概念教学中应注意以下几点。
1.合理借助概念的直观性
尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。
2.充分利用概念的实际背景和学生的经验
教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已掌握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。
二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就容易理解和掌握n阶行列式的性质了。
3.注意概念体系的建立
R.斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。
二、学生要掌握科学的学习方法
学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。
三、加强对学生解题的基本训练
一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证明抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证明矩阵的行列式不为零等。
四、培养与激发学生的学习兴趣
兴趣是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习兴趣。
五、发挥多媒体优势,增强教学效果
多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。
参考文献:
[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),2006.[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,2003.
第二篇:《线性代数》课程教学中的几点思考
【摘 要】针对线性代数课程中存在学时少、内容多、概念抽象、学生学习积极性不高等问题,提出改进线性代数教学方法的几点想法,以激发学生学习的兴趣和积极性,从而提高线性代数的教学效果。
【关键词】线性代数;学生;学习
《线性代数》是各类高等院校的的一门重要基础理论课程,是学习许多后续课程不可缺少的工具。它在自然科学、社会科学和工程技术等诸多领域都有广泛的应用。相比于《高等数学》、《概率论与数理统计》,《线性代数》具有高度的理论性、逻辑性和抽象性,所以它对培养学生的抽象思维能力、严密的逻辑论证能力具有重要作用。但从教学实践看,线性代数课程存在学时少、内容多、概念抽象、学生学习积极性不高等问题。笔者认为建立融洽的师生关系,注重课程的知识结构,在教学中注重数学思想方法的使用和知识的实际应用以及易错问题的讲解,这些措施有助于激发学生学习的兴趣和积极性,培养学生的创造性思维和创新意识,提高线性代数的教学效果。
一、建立融洽的师生关系
师生关系在教育实践中的功效是巨大的,它的和谐与否很大程度上决定了高等教育质量的高低。学生的学习兴趣、学习动机与师生关系间存在较高的相关性。学生经常会把“喜欢教师”作为学习努力的原因之一,“不喜欢教师”也常常是学生对某门课失去兴趣的原因。教师在线性代数教学中应该不断提高自己的教学水平,展现积极的情感、严谨的治学态度和高尚的人格;应该尊重、爱护、了解学生,带动学生一起探究知识,进行学业和思想上的交流。这样可以取得学生的尊重和认可,进而喜欢上线性代数这门课。
因此,建立融洽的师生关系对提高教育教学质量是必要而且可行的。
二、注重课程的知识结构
我国现行的《线性代数》教材中,主要遵循行列式―矩阵―线性方程组―向量―相似矩阵与矩阵对角化―二次型这样顺序安排教学内容。这些分散的块状结构使得学生普遍感到线性代数知识点较多,内容不连贯,杂乱无章,抓不住重点。行列式、矩阵、向量、二次型都是学生不曾接触过的内容,而线性方程组是他们稍微熟悉的内容。因此,在实际教学中,要注重课程的知识结构,在内容的组织上就要有精心的设计,要分析五部分内容间的关系,让这些内容联系起来。以线性方程组求解为主线,渐次引进行列式、矩阵和向量这些新工具,有了这些工具,就可以理解方程组的类型和通解及解集的结构,也就是本课程第一到第四章的内容。而后围绕相似矩阵与矩阵对角化和化二次型为标准形展开,而这些问题则完全可以看作是行列式、矩阵、线性方程组的的应用。因此,教师在线性代数的教学过程中,通过理清课程主线,构建知识体系,可以使学生掌握线性代数的整个知识脉络,了解各知识点之间的联系及在整个知识体系中的地位和作用,能够突破学习线性代数的重点和难点,充分夯实基础。
三、注重数学思想方法的使用
学生在学习线性代数课程时,通常感到内容抽象,逻辑性强,趣味性少,推导和计算繁琐,对学习缺乏兴趣。所以,在教学的过程中,我们要注意教学方法的运用。在教学中可以将数学思想方法,例如,化归、归纳、演绎、类比等思想方法融入线性代数课程教学中。例如,每一章节或单元的内容可以建立知识链或通过运用图像图表进行归纳总结; 在二阶行列式逆矩阵的计算中可以归纳为两调一除原则;在讲解逆矩阵的性质时,引入穿脱原理这样的比喻。这样可以激发学生学习的兴趣和积极性,提高线性代数课程教学效果,培养学生的创造性思维和创新意识。
四、注重实际应用价值
在教学中,经常会有学生问这样的问题:“老师,学习线性代数课程有什么用?”这反映了当前线性代数课程的教学存在着与实际应用脱节的问题,教师只重视概念、定理,强调计算的传统教学模式,这大大削弱了学生的学习积极性,阻碍了创新应用人才的培养目标。所以,教学过程中,教师更应注重知识的实际应用价值,让学生体会学有所用。教师可以联系实际应用讲解,例如,讲授矩阵的定义时,以生活中城市间航线问题作为实例;讲授向量定义时,以本班学生的身高、一个本科学生的在校成绩作为实例。通过这些实例的讲解,可以加深学生对概念和定理的理解,拓宽学生的思路,激发学生学习的兴趣。
五、注重易错问题的讲解
线性代数课程的概念、定理繁多,学生在解题时常常会出现困难或错误。教师应在学生学习中出现的若干普遍性问题作一些重点分析和讲解。例如,有些学生把矩阵的初等变换与行列式的性质混为一谈。学习了行列式的性质,又学习矩阵的初等变换,学生在矩阵的初等变换时,前后两个矩阵用等号连接。教师就应该在此特别强调矩阵的相等必须是同型矩阵对应元素相等,矩阵的初等变换已经改变了矩阵的元素,前后两个矩阵一定不能用等号连接。再如,在计算(a+b)(a-b)时,很多学生就把它当成和数的运算一样写成a2-b2,作为教师,在这里就要特别强调只有a和b可以交换时才成立。因此,教师在教学过程中通过对易错问题进行有意地反复的强调,可以使学生深刻理解这些知识,达到巩固和深化知识的目的。
以上是作者近几年在线性代数课程教学过程中的一些心得和体会,如何提高课堂教学的有效性,还需要我们在教学中不断地总结经验,不断地探索方法。
第三篇:线性代数发展简史论文
华北水利水电学院
线性代数发展简史
课程名称:线性代数 专业班级: 成员组成:
联系方式:
2011年11月6日
摘要:代数学可以笼统地解释为关于字母运算的学科。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。关键词:高等代数 行列式 矩阵 向量
线性代数发展简史 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。
线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,它不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。
在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。
行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的 Cramer 克莱姆法则)。1764年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的手续系统化了。对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是该方程组有非零解的条件。法国数学家范德蒙(Vandermonde)是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人,并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。法国数学家拉普拉斯(Laplace)在1772年的论文《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则,并推广了他的展开行列式的方法,用r行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比(Jacobi)也于1841年总结并提出了行列式的系统理论。另一个研究行列式的是法国数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了Laplace的展开定理。行列式现在的两条竖线记法是英国数学家凯莱(Cayley)最先给出的。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日乘数法。为了判定多元函数的最大、最小值,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负定二次型及正、负定矩阵的定义。尽管拉格朗日没有明确地提出利用矩阵。1848年英格兰数学家西尔维斯特(Sylvester)首先提出了矩阵这个词,它来源于拉丁语,代表一排数。1855年英国数学家凯莱(Cayley)建立了矩阵运算的规则。Cayley研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST的系数矩阵变为矩阵S和矩阵T的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的凯莱-哈密尔顿(Cayley-Hamilton)理论即断言一个矩阵的平方就是它的特征多项式的根,就是由Cayley在1858年在他的矩阵理论文集中提出的。利用单一的字母A来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式det(AB)= det(A)det(B)为矩阵代数和行列式间提供了一种联系。数学家Cauchy首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值。1878年德国数学家弗罗伯尼(Frobenius)发表了关于矩阵论的很有影响的论文,提出矩阵的最小多项式(即以矩阵为根的次数最低的多项式)是特征多项式的因式而且是唯一的。他又将不变因子和初等因子的概念引进到矩阵理论中来,得到矩阵等价的充分必要条件是它们有相同的初等因子或不变因子的结论。他还发表了埃尔米特使用过的正交矩阵这个术语的正式定义,引进了矩阵的秩的概念。他的论述还涉及矩阵的相似变换,合同矩阵等。高斯(Gauss)大约在1800年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在两千多年前我国的数学名著《九章算术》中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯-约当消去法则最初是出现在由Wilhelm Jordan撰写的测地学手册中。许多人把著名的法国数学家约当(Camille Jordan)误认为是“高斯-约当”消去法中的约当。
向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度、散度、旋度就更有说服力。第一个涉及一个不可交换向量积(即v×w不等于w×v)的向量代数是1844年由德国数学家格拉斯曼(Grassmann)在他的《线性扩张论》一书中提出的。在这部名著中,他引入了欧几里得n维空间概念,研究了点、直线、平面、两点间距离等概念,并把这些概念推广到n维空间。在19世纪末美国数学物理学家吉布斯(Gibbs)发表了关于《向量分析基础》的著名论述。其后英国物理学家迪拉克(Dirac)提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在20世纪由物理学家给出的。
西尔维斯特在二次型的化简和创立标准形理论方面起了重要作用。在二次型化简的研究中西尔维斯特得到了两个二次型等价的充分必要条件是它们有相同的秩和相同的指数,相继得到的另一个重要结果就是著名的“惯性定律”,即秩为r的一个实二次型f(x1,x2,...,xn)可以通过非奇异的线性变换化成规范形
y12+ y22+„+ yp2-yp+12-„-yr2
其中指数p是唯一确定的,现在教科书中称为正惯性指数.当时西尔维斯特没有给出证明,这个定律后来被J.雅可比(Jacobi)重新发现并证明.判定二次型是否正定具有重要的理论和实用价值。将二次型化为规范形来判定是方法之一,但是能否不用化简,只用二次型的系数进行判定呢?西尔维斯特对这个问题进行了研究,得到著名的西尔维斯特定理:一个n元实二次型正定的充分必要条件是该二次型的n个顺序主子式全为正数。
线性代数的主要理论成熟于十九世纪。由于代数运算是有限次的,而且缺乏连续性的概念,也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证的统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别地研究认识,再综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本思想和方法。代数学注意到离散关系,并不能说明这是它的缺点,时间已经多次、多方位的证明了代数学的这一特点是有效的。其次,代数学除了对物理、化学等科学有直接的实践意义外,就数学本身来说,代数学也占有重要的地位。代数学中产生的许多新的思想和概念,大大地丰富了数学的许多分支,成为众多学科的共同基础。二次世界大战后随着现代数字计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。
参考文献
【1】 上海交通大学数学系线性代数(第二版)科学教育出版社
分工情况
第一部分由 孙红超 完成第二部分由 安亦斐 完成
第四篇:线性代数教学建议
关于线性代数的教学建议
张梦雅
一、引言:
《线性代数》是一门比较难懂难学的高等数学学科,作为软件学院的一员在学习线性代数的同时还要学习一元函数微积分课程。两门课程都不容易学习,而且同学们刚迈入大学大门,还不能很好地适应大学中的学习方式(即为自学占主要部分)。没有老师的督促和指引,同学们学起来比较困难,故而线性代数的学习更加需要两位老师的帮助。而我作为课堂成员的一员,在此结合我平常的学习经验和上课体会,来给老师提出一些建议。
二、线性代数学习教学方法的分析:
之优点:
1、课堂分为两个部分
部分一:星期
一、星期四的课上同学们学习课本上的知识内容,老师带领同学们过一遍新的知识点,讲解书本上的习题。
部分二:星期五的课上老师则带领同学们做一些有关上节知识点的习题(通常为课本上的或老师PPT上的),帮助同学们加深知识点的理解和记忆。
2、课堂老师提问
本学期的线性代数课全是上午的1、2两节课程,往往这个时候大部分同学刚起床就赶过来。老师上课提问可以让同学们紧张起来,集中注意力,让同学们好好听讲,而不是继续趴在桌上睡觉。另外,提问这一环节能调动同学们课下复习的积极性,给同学们施加压力,让同学们及时的复习课本。并且,课上提问能让同学们加深对某些重要知识点的理解。
3、新颖的讲课内容或方式:
有次课上老师用自己和家人的图片为同学们讲解矩阵的排列问题,引起了同学们的好奇心和兴趣,让同学们更加地在课堂上集中精神。偶尔老师的几个冷笑话或其他的小幽默也能引起同学们的注意,但这些东西只是为了帮助同学们学习的小插曲,不宜过多而失掉课堂上应有的学术氛围,理应适当才有益处。
4、老师能够顾及同学们的听课感受:
当投影仪上的字体过小时,老师及时调整字体以便教室中的每位同学都能看清楚;当同学们跟不上老师讲课的节奏时,老师会适当地放慢讲课速度;当讲到某些关键内容时,老师总会提醒同学们此内容为重点等等以便同学们有重点的学习。三:线性代数学习教学方法的分析: 之建议:
1、若时间充裕,我认为老师可以效仿张波老师,每每讲完部分知识点就会问同学们关于这部分的知识同学们有什么问题,而后老师再把同学们问的问题清楚地表达出来(赞!)然后进行讲解。私下认为这样的做法能让同学们及时的把疑惑问出来并解决,有时若是等到下课后再问同学们可能忘记刚才的疑惑或是因为要补觉而选择不去或等会去,这样可能导致同学们的问题不能及时解决,等到考试时遇见困难就追悔莫及了。
2、希望老师在讲课时语速能稍微放慢一些,声音更加大一些。个人提出几点建议:
(1)、老师号召同学们尽量坐在前排位置,不要过于分散(我注意到第一排的位置经常少有人坐,估计是害怕老师提问)
(2)、老师可以如李忠伟老师一样手中拿一个类似于扩音器的物品,以便于随时放大声音;或是佩戴扩音器等提高音量。
(3)、老师可以时不时的询问同学们是否听清,防止同学们错过某些知识。
3、关于某些难以记忆的知识点,老师可以传授自己的记忆技巧或在课堂上向同学们征集记忆方法,以便大家能够快速牢固的记住知识点。
在最近学习的第六章的“基变换和坐标变换”中,矩阵A(过渡矩阵)和新、旧坐标、基的位置容易混淆。比如
A在后
A在前,还有A的逆出现等等
这样有时就不能导出正确答案,同学们难以分辨出A的位置和A和A逆的使用。
4、希望老师能够在每节课上花费几分钟的时间或是用一节课的时间来串讲一下知识点,帮助同学们形成网络框架图,更加清晰的掌握所学内容。
个人认为随着学习内容的增多以及难度的增加,同学们学习的越来越吃力,内容混在一起乱成一团,在做题的时候往往不能准确而又迅速的找到合适的方法以及公式来解决问题。若是能够梳理一下所学内容则会大有益处。
5、建议老师把课后习题的答案发到教育在线上或是向同学们推荐有关书籍,老师推荐书籍更能与课本上所学内容相契合,避免了同学们盲目地选购复习资料而选择不当(我买了同济版的辅导书,但觉得内容有些不符合)还望老师多费一些心思帮助同学们选购以及推荐。
6、建议老师督促学生不要上课迟到或是踩着铃声来上课,有时再交作业则会出现上课铃响教室还嘈杂声一片的情况。(最近经常出现这种情况)也许适当的轻微惩罚或者督促能够改善这种不良现象。
7、老师偶尔点名时间一般在5分钟左右,本来课上时间仅仅只有45分钟,所以在课上点名浪费少许时间。个人建议老师可以在第一节下课课间或是第二节下课后(有20分钟的休息时间)点名,这样也能防止某些学生投机取巧,第一节课来,第二节课走。
四、总结:
已经学习线性代数大半年左右,但是有些同学还是不知如何去学习,足以见得这门课的难度和深度。况且,线性代数是极为重要的一门课程,培养同学们的计算能力以及逻辑分析能力,学好这门课程是必须且很有必要的。接下来的时间里,只有同学和老师的共同努力才能让大家更好地学习这门课程。
五、参考文献:
《高等代数》第四版 北大 王萼芳著 2 “基变换与坐标变换” 百度文库
六、作者介绍:
张梦雅(1997-12-21生),女,河南省周口人,毕业于河南省漯河市高级中学。南开大学软件学院2014级,学号1412706。多次获得市级三号学生称号,获得化学竞赛一等奖。
第五篇:线性代数教学体会[定稿]
《线性代数》教学的一点体会
线性代数历来是让学生感到既爱又恨的一门课程,刚学时做运算兴趣昂然,到后来发现该课知识结构错综复杂,就又束手无策,恐惧心理油然而生。分析原因,一方面是因为线性代数确实是一门较为抽象的课程,里面充斥着符号演算和逻辑推导;另一方面是线性代数教材多是基于理论的准确和证明的严格,以及知识内容的相对独立性来编写的,自然学起来就不太容易。
同微积分一样,线性代数是一门传统的课程,具有十分丰富的运用价值,特别是由于计算机技术信息技术的飞速发展,线性代数对于科技人员已经是必不可少的,若学好了它则能成为他们发展的有利工具,否则就是一种障碍。因而如何教好学好线性代数就是一项十分紧迫而重要的任务。
在教学过程中,经过思考,探索与改革,我有了一些教学体会。
1.注意保持学生的兴趣和好奇心
只有有了浓厚的兴趣,学生才会保持旺盛的学习激情。线性代数的前面部分特别是行列式计算对于学生来说还算是相当有趣的,因为只要做一做简单的加减乘除就能将一个个庞然大物化为一个数。这个阶段,我在教学中注意利用学生的这种情绪,碰到问题尽量让学生自己去想去猜测,去演算,在课上遇到较复杂的行列式(n阶),我也先不说明做法,而是在n阶行列式的旁边写上一个低阶的(如5阶,6阶)同类行列式,然后给学生留下三五分钟让他们自己思索,讨论,求解。最后当我将完整正确的解答阐述明白后,许多学生面露喜色,摇头晃脑不亦乐乎,看来他们想对了,做对了,而且之所以得意忘形是因为有了莫大的成就感。考虑到线性代数后面的知识较抽象和难于解释,所以保持学生学习的这种兴趣就是十分重要的。只有这样学生才能主动积极的学习,将全章的难点和疑点各个击破,赢取学习的胜利。
2.注意让学生从全局和总体把握课程
“线性代数要做什么?”这是我上第一次课时说的第一句话。当然学生们无法回答,但他们很期待答案。之所以这么问,我是想从一开始就给学生们树立一个观念,那就是这样一门课,这样一本书,虽然它的知识点很多,可能也较困难,但是它要达到的目的是简单的是容易把握的。
我自己回答了这个问题,线性代数的主要目的是寻求m个n元一次(线性)方程组成的方程组的求解方法:当n=m时,我们会使用一种工具:矩阵;当n不等于m时我们要使用另一种工具:矩阵;为了使得到的解表达得更确切,我们要有新的一些观念:线性表达和线性空间等。当然这些工具和观念本身又成为除解方程但之外线性代数的主要内容。
在教学过程的始终,我总是让学生认清这一主要目的,而我们之所以做的一切不过是在发展一种符号系统,例如行列式其实只是高斯消元法的一种简化书写的记号,矩阵只是一个数表,它实际上就是没有写出变量的方程组,所以方程组消元和矩阵运算实际 1
上是一样的,我们研究矩阵的运算和运算技巧以及标准形,只是为了解决代数的问题。
学生了解了矩阵和行列式在代数中的地位和作用,自然学习就有了主线,有了方向性和目的性,就会去主动的考虑一些问题,总结和掌握一些方法。
3.注意将抽象内容直观化,几何化
单独地学习一套抽象的符号系统及演算,对于学生来说确实会存在一些困难,特别是非数学专业,本身对数学的演绎和推理就是模糊和陌生的,大多数情况下他们并不清楚这套体系后面所蕴涵的背景和实质。有些教师认为不敢给学生讲得太多,特别是有些观念和定理的几何背景。或许是怕学生无法理解和掌握,从而更加影响教学的效果。但我认为只有在讲解时把握适当的准确性和深入性,是有助于加深学生对知识点的理解的,也有助于他们数学思维的形式,从而为以后课程的学习奠定较好的数学基础。在讲到向量组的线性关系时,我会用“共线”、“共面”等概念来加深他们的印象,在讲到向量组的秩时,我会用“三个向量的一个平面上”,“四个向量在一个三维空间重”等来帮助理解;在讲施密特正交化过程时,我会在黑板上用简单的图形演示该过程的实质,以利于我们理解这些向量是怎样“逐个”正交地;在讲矩阵的特征值和特征向量时,我会简单的说明该矩阵代表的线性变换在各个特征方向是怎样“压缩”或“拉长”的。这些讲解当然不能太难,而且必须适可而止,只要达到学生能够理解的地步即可。学生学习一门课程的目的并不是单纯的会演算该门课的各样习题,而是要掌握课程的实质和思想而加以运用,我想在这方面做如此的尝试是有益的。
4.注重各知识点的衔接、使知识点组织成网,提高学生分析能力
就线性代数本身而言,虽然知识块不多,但各块的知识点却非常多,从内容上看纵横交错,前后联系密切,环环相扣,相互参透,学生要将如此多的知识点组织起来确实困难。因此,在课堂上除了要有对上次课内容精炼的复习之外,更要时刻注意提醒学生当前知识与以往知识的联系与区别,以利于学生对此掌握。如在讲线性方程组解的结构时,我会让学生回忆第一章的克拉默法则,第三章的用初等变换解题的方法,并用新的知识来看待旧的问题,找出联系,比较异同,在讲向量组的秩时,注意及时复习矩阵秩的各种判定法及行列式的若干性质,从而让学生弄清两种秩的关系。在课程的后半部分,我会让学生们下去后自己总结一下行列式、矩阵的各种用途,是他们能自主地将各种知识串接起来,以加深理解。
当然关于线性代数的教学方法很多,因人而异,也各有特点。我想不管什么方法,其主要目的都是为了帮助学生学好这门重要的课程,培养出学生良好的数学思维能力和运用这种思维去解决日后学习和工作中遇到的各种困难的能力。因此作为教师,我们应该学会在教学实践中不断地掌握,比较,总结,从而形成一套行之有效而独具特色的教学方法,是我们的数学教育生动起来。
线性代数教学体会
线性代数课程内容多,比较抽象,具有一套特有的理论体系、思维方法及解题技巧。通过第一章的教学,感觉学生在开始时不易接受。比方说在第一章学完后他们在求三阶行列式时仍用定义来求,计算量大,而且容易出错。这说明一方面对求行列式的基本技巧没有掌握,另一方面,对课本知识比如行列式的性质没熟练掌握,比较生疏。我感觉很大程度上是因为线性代数不同于高等数学的特点。
根据前一段时间的教学我觉得应作好以下几个方面的工作:
要学会正确处理教材。任何学科的教学都不是把教材照搬到课堂上,而是要分清难点和重点,从而有针对性地讲解,这样便于学生接受。由于课本例题较多,课时少,更应该突出重点,所以在教学过程中应分清主次,及时提醒学生注意重点掌握的知识点,在必要的时候还应对有关的知识点做一下总结传授给学生。特别是在上习题课时要准备的充分一些,把解决重要类型的题目的方法系统的传授给学生。从中能培养学生的数学素质,数学思维。
多与学生和其他教师交流。仅有教学理论还不够,在实践中我难免还是把握不住“度”的问题,于是这就要求我要多与其他有经验的教师交流,从中了解一些要注意的问题,我感觉在与其他教师的交流中学到了很多,比如教材如何处理,哪些知识学生不易接受,容易出现什么错误等。同时还要听取学生的反馈意见,以及时弥补教学中的漏洞。从学生的作业中,发现了许多细节问题,比如字母书写不规范,一些约定的表达方式不会用,有时还用错,做题步骤混乱等。多数学生都有这些小毛病,而且他们本身也意识不到。这就要求平时就要及时给他们指出。由于学生学习程度不同,因此在教学工作中一方面要照顾“吃不了,消化不好”的同学,另一方面又要兼顾“吃不饱,还嫌少”的同学。
在教学中,还应注意总结,注意概念,注意实际,注意方法,使同学们在学习中取得好成绩。在教学工作中,注意阶段性的总结和随时有针对性的小结。阶段性总结,是要在章,期中,或期末告一段落时,进行总结。其目的是让同学们掌握那些是重点,那些是难点,各种概念,定义,公式的联系及区别,使学习的知识系统化。注意概念,由于同学们的学习经历了从高等数学到线性代数的转化,在概念的掌握上就显得特别重
要。注意实际意味着注意实际的应用,线性代数从实际中来,应当让它回到实际中去。在教学中注意联系实际的问题,无论对掌握知识本身,还是将来的同学们运用这些知识,都是至关重要的。在教学中,如矩阵的引入,就可由注实际背景引入。注意方法,在教学中,针对学生的专业特点和个性,注意教学方法,由浅入深,由此及彼,努力扩大同学们的知识面,加强对学生数学素质的培养。
最后也是非常重要的一点就是要培养学生学习的兴趣。兴趣是最好的老师。往往学得好的学生都会有较强的学习欲望。所以平时要多鼓励他们,帮他们克服刚接触新知识时的畏难情绪。最后希望能变“要我学”为“我要学”。