《线性代数》教学要求及教学要点

时间:2019-05-12 22:54:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《线性代数》教学要求及教学要点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《线性代数》教学要求及教学要点》。

第一篇:《线性代数》教学要求及教学要点

《线性代数》教学要求及教学要点

第一章

矩阵

【本章教学目的和要求】

1、理解矩阵的概念,熟练掌握矩阵的各种运算以及运算法则,熟悉几种特殊的矩阵。

2、理解行列式的概念,熟悉行列式的性质,会用降阶法计算行列式,掌握计算n阶行列式的几种常用技巧。

3、理解分块矩阵的概念,会利用分块矩阵进行矩阵的运算,了解两类特殊的分块矩阵。

4、理解可逆矩阵、逆矩阵的概念,了解矩阵可逆的充要条件;理解伴随矩阵的概念,会用伴随矩阵法求逆矩阵。

5、理解矩阵的初等变换以及初等矩阵的概念,了解矩阵的初等变换与初等矩阵之间的关系;掌握求逆矩阵的初等变换法,会用初等变换法解简单的矩阵方程。

6、理解矩阵的秩的概念,会求矩阵的秩,会做基本的证明题。【本章重点、难点】

1、矩阵的各种运算、运算律。

2、矩阵可逆的条件,用伴随矩阵法求逆矩阵。

3、矩阵的初等变换和初等矩阵之间的关系,用初等变换的方法求逆矩阵、解矩阵方程。

4、矩阵的秩的概念以及有关结论。

第一节

矩阵的概念

一、理解矩阵的概念。

二、熟悉几种特殊的矩阵。

第二节

矩阵的运算

一、掌握矩阵的线性运算的定义,熟悉线性运算满足的运算法则,会进行有关计算。

二、理解矩阵乘法的定义,了解矩阵可乘的条件;能熟练进行矩阵的乘法运算;熟悉矩阵乘法满足的运算法则,了解矩阵的乘法不满足交换律和消去律,了解两个矩阵可交换的定义并会进行有关计算。

三、理解转置矩阵的定义,熟悉矩阵转置的运算法则。

第三节

方阵的行列式

一、熟悉二阶、三阶、n阶行列式的定义。

二、熟悉行列式的性质,知道矩阵乘积的行列式等于行列式的乘积、行列式某一行(列)与另一行(列)的对应元素的代数余子式的乘积之和等于零等结论。

三、会用降阶法计算行列式,掌握计算n阶行列式的几种常用技巧。

四、了解拉普拉斯定理。

第四节

矩阵的分块

一、理解分块矩阵的概念。

二、熟练掌握运用分块矩阵进行矩阵运算的方法。

三、了解两类特殊的分块矩阵。

第五节

可逆矩阵

一、掌握可逆矩阵以及逆矩阵的概念。

(一)理解可逆矩阵和逆矩阵的定义。

(二)熟悉非奇异矩阵和奇异矩阵的定义。

(三)熟悉矩阵可逆的充要条件。

二、掌握伴随矩阵的定义,会用伴随矩阵法求逆矩阵。

三、熟悉逆矩阵的性质,掌握一些做证明题的技巧。

四、会用分块矩阵的方法求逆矩阵。

第六节

矩阵的初等变换

一、熟悉矩阵的初等变换的定义,熟悉初等矩阵的定义和性质。

二、熟悉矩阵的初等变换和初等矩阵之间的关系。

三、熟练掌握求逆矩阵的初等变换法。

四、会用初等变换法解简单的矩阵方程。

第七节

矩阵的秩

一、理解并掌握矩阵的秩的概念。

二、知道矩阵经初等变换后秩不变。

三、会利用初等变换将矩阵化为阶梯形矩阵,并求矩阵的秩。

第二章

线性方程组

【本章教学目的和要求】

1、熟练掌握克莱姆法则及其推论;掌握线性方程组的消元解法;掌握线性方程组有解的判定定理。

2、掌握n维向量、向量的线性运算及运算法则;理解n维向量空间以及子空间的概念。

3、理解向量的线性组合,向量组的线性相关与线性无关等概念。掌握判断一个向量组是否线性相关的方法;熟悉有关向量组线性相关性的结论,掌握一些基本的证明方法。

4、理解向量组的极大线性无关组、向量组的秩的定义;理解矩阵的行秩和列秩的定义,了解矩阵的行秩、列秩和秩的关系;会求向量组的极大无关组并会用极大无关组线性表示其余向量;掌握一些基本的证明方法。

5、理解并掌握齐次线性方程组解的性质、基础解系的定义,会求齐次线性方程组的基础解系,会用基础解系表示齐次线性方程组的全部解;熟悉非齐次线性方程组解的结构,会求非齐次线性方程组的全部解。

6、理解基的定义;熟练掌握向量的内积及性质;掌握向量的长度及性质;掌握向量的正交、单位向量、标准正交基等概念;熟练掌握施密特正交化方法;理解掌握正交矩阵的定义、性质和有关结论。【本章重点、难点】

1、线性方程组的消元解法,线性方程组有解的判定定理。

2、向量的线性组合,向量组的线性相关与线性无关,向量组的极大无关组和秩。

3、线性方程组解的结构。

4、向量的内积、长度、正交,标准正交基;施密特正交化方法。

第一节

线性方程组

一、熟悉克莱姆法则的条件和结论;熟悉含有n个方程的n元齐次线性方程组仅有零解的条件。

二、会用对增广矩阵施行初等行变换的方法解线性方程组。

三、熟练掌握线性方程组有解的判定定理,掌握齐次线性方程组有非零解的判定定理。

第二节

向量及其线性运算

一、掌握n维向量的概念,掌握向量的线性运算及运算法则。

二、理解n维向量空间和子空间的概念。

第三节

向量间的线性关系

一、理解并掌握向量的线性组合、向量组的线性相关和线性无关的定义。

二、理解并掌握有关线性相关与线性组合的定理。

三、掌握判断一个向量组是否线性相关的方法;掌握一些基本的证明方法。

第四节

向量组的秩

一、理解并掌握向量组的极大线性无关组、向量组的秩的定义。

二、理解矩阵的行秩和列秩的定义,了解矩阵的行秩、列秩和秩的关系;会求向量组的极大无关组并会用极大无关组线性表示其余向量。

三、掌握一些基本的证明方法。

第五节

线性方程组解的结构

一、理解并掌握齐次线性方程组解的性质、基础解系的定义,熟练掌握求齐次线性方程组的基础解系的方法,会用基础解系表示齐次线性方程组的全部解。

二、熟悉非齐次线性方程组解的结构,会求非齐次线性方程组的全部解。

第六节

Rn的标准正交基

一、理解基的定义;熟练掌握向量的内积及性质;掌握向量的长度及性质;掌握向量的正交、单位向量、标准正交基等概念。

二、熟练掌握施密特正交化方法。

三、理解掌握正交矩阵的定义、性质和有关结论。

第三章

矩阵的特征值和特征向量

【本章教学目的和要求】

1、理解并掌握矩阵的特征值、特征向量的概念和性质,会求矩阵的特征值和特征向量。

2、理解并掌握矩阵的相似及性质;熟知矩阵可对角化的条件,会判断一个矩阵是否可对角化;对于可对角化的矩阵A,会求可逆矩阵P,使得P-1AP为对角矩阵。

3、了解矩阵的若当标准形。

4、了解实对称矩阵的特征值和特征向量的性质;对一个实对称矩阵A,会求正交矩阵Q,使得Q-1AQ为对角矩阵。【本章重点、难点】

1、矩阵的特征值、特征向量的定义和计算。

2、矩阵可对角化的条件。

3、对可对角化的矩阵A,求可逆矩阵P,使得P-1AP为对角矩阵。

4、对一个实对称矩阵A,求正交矩阵Q,使得Q-1AQ为对角矩阵。

第一节

矩阵的特征值和特征向量

一、理解并掌握矩阵的特征值、特征向量的概念。

二、理解特征矩阵、特征多项式的概念,会求矩阵的特征值和特征向量。

三、熟悉特征值和特征向量的性质,掌握基本的证明方法。

第二节

相似矩阵与矩阵可对角化的条件

一、理解并掌握矩阵的相似及性质;熟知矩阵可对角化的条件,会判断一个矩阵是否可对角化。

二、三、对可对角化的矩阵A,会求可逆矩阵P,使得P-1AP为对角矩阵。了解矩阵的若当标准形。

第三节

实对称矩阵的特征值和特征向量

一、了解实对称矩阵的特征值和特征向量的性质,理解关于实对称矩阵一定可对角化的定理。

二、对一个实对称矩阵A,会求正交矩阵Q,使得Q-1AQ为对角矩阵。

三、掌握基本的证明方法。

第四章

二次型

【本章教学目的和要求】

1、理解并掌握二次型的定义,二次型与对称矩阵的对应关系;理解并掌握线性替换的定义以及矩阵合同的定义、性质;理解并掌握二次型经过非退化线性替换后化为新的二次型

后,两个二次型的矩阵之间的关系。

2、熟悉二次型的标准形、规范形、正、负惯性指数、符号差的定义;会用正交替换法、配方法、初等变换法将二次型化为标准形并写出所作的非退化线性替换;会用配方法、初等变换法将二次型化为规范形并写出所作的非退化线性替换。

3、理解并掌握二次型与对称矩阵的正定、半正定、负定、半负定等概念,掌握二次型与对称矩阵正定的充要条件,会判定二次型与对称矩阵是否具有正定性或负定性。【本章重点、难点】

1、二次型与对称矩阵、非退化线性替换、矩阵合同等概念

2、用正交替换法、配方法、初等变换法将二次型化为标准形;用配方法、初等变换法将二次型化为规范形。

3、二次型与对称矩阵的正定、半正定、负定、半负定,二次型与对称矩阵正定的充要条件。

第一节

基本概念

一、理解并掌握二次型的定义,二次型与对称矩阵的对应关系。

二、理解并掌握线性替换、非退化线性替换的定义以及矩阵合同的定义和性质。

三、熟悉二次型经过非退化线性替换化为新的二次型后,两个二次型的矩阵之间的关系。

第二节

二次型的标准形与规范形

一、熟悉二次型的标准形的定义,会用正交替换法、配方法、初等变换法将二次型化为标准形并写出所作的非退化线性替换。

二、熟悉二次型的规范形、正、负惯性指数、符号差等概念;熟悉惯性定理,会用配方法、初等变换法将二次型化为规范形并写出所作的非退化线性替换。

第三节

二次型与对称矩阵的有定性

一、理解并掌握正定二次型和正定矩阵的概念;理解可逆线性变换不改变二次型的正定性,掌握二次型与对称矩阵正定的充要条件,会判定一个二次型或对称矩阵是否具有正定性。

二、理解半正定、负定、半负定二次型与对称矩阵的概念,会判定二次型或对称矩阵是否具有负定性。

第二篇:线性代数课堂教学的要点和教学方式研究

摘 要:由于线性代数知识抽象程度高、理论性强,多数学生学习兴趣不高、重视程度不够。结合教学实践经验,提出激发学生学习兴趣的三个具体的教学要点,即理论联系实际,通过实例提高大学生的学习兴趣和重视程度;加强知识内容间的内在联系,深化学生对知识内容的理解;运用“三合一”的教学模式,寻求因材施教的教学方法,以期提高线性代数课堂教学效果。

高等数学、线性代数、概率论和数理统计是大学数学的三门基础课程。相比较而言,线性代数抽象程度高、理论性强,既不同于概率统计与生活联系紧密,趣味性强,又不同于高等数学学分多、课时多,受学生重视。所以,多数学生学习线性代数的兴趣不高,重视程度不够,给教学工作带来较大难度。如何激发学生的学习兴趣,增加教学的生动性,成为数学教师应探索的实际问题。结合以往教学经验,本文将针对这一问题提出三个教学要点。

一、理论联系实际,通过实例提高大学生的学习兴趣和重视程度

学生对线性代数兴趣不高,主要是因为该课程过于抽象、学习难度大。因此,教师在教授线性代数时,要结合教学内容,列举应用线性代数知识和方法解决实际问题的具体实例,讲授线性代数知识,提高学生的学习兴趣和学习积极性。备课时,教师要从其他相关学科(如物理学、计算机程序等学科)中寻找应用线性代数知识解决问题的具体事例。比如,教师讲授“线性方程组的解”的理论知识后,可以介绍投入产出模型,即通过编制投入产出表,运用矩阵和线性方程组进行运算,揭示国民经济各部门的内在联系[1];

在工农业生产、经济管理及交通等方面,经常涉及使用或分配劳动力、原材料和资金等问题,采用线性规划模型,运用矩阵和“线性方程组解”的理论,使费用最小或利润最大[1]。此外,还有人口模型、数据的最小二乘处理等都应该用线性代数知识解决具体问题。总之,“兴趣是最好的老师”,通过寻找、列举线性代数解决问题的具体事例,提高学生学习兴趣,是有效开展线性代数教学的方法之一。

二、加强知识内容间的内在联系,深化学生对知识内容的理解

线性代数知识是紧密联系的整体。但由于它的概念定义比较抽象,学生不易掌握概念间、不同章节内容间的联系,且抓不住逻辑主线,知识之间的融会贯通能力弱。针对这个问题,笔者认为课堂教学要抓住以下三个要点。

首先,既要让学生清楚概念的内涵和外延,又要让学生思考、理解概念的不同侧面。例如,教材中对矩阵的秩的定义是:设在矩阵a中有一个不等于0的r阶子式,所有r+1阶子式(如果存在的话)全等于零,那么d称为矩阵a的最高阶非零子式,数r称为矩阵a的秩,记作r(a)[2]。显然,定义中包含三个要点:(1)a中至少有一个r阶子式不为零;(2)所有r阶以上子式均为零;(3)若所有r+1阶子式都为零,则必有所有r阶以上子式均为零。其中,要点(2)和要点(3)是等价条件。同时,“r阶子式是否可以为零?”“小于r阶的子式是否可以为零?”等问题,都是矩阵的秩概念的外延内容,同样需要搞清楚,以加深对该知识点的理解。

其次,有意识地加强概念间、定理间的内在联系和理解运用。例如,提醒学生观察并发现矩阵的秩和向量组的秩的定义的相似之处,进一步引出重要定理--矩阵的秩等于向量组的秩。以同济大学线性代数第五版为例,第三章矩阵的初等变换与线性方程组中定理五至定理七,分别对应第四章向量组的线性相关性中的定理一至定理三。所以,讲授第四章定理一前,不妨先回忆第三章的三个定理,然后对比讲授第四章的三个定理。通过类似的比较分析,使学生清楚掌握定理间的异同,从而加深对定理的理解记忆,起到事半功倍的效果。

最后,采用问题驱动课堂的教学模式,利用问题层层推进,贯穿教学内容,提高学生主动学习和思考的能力[3],加深学生对知识内容的理解。课堂上,教师可以先提出一节课的主要问题,让学生带着问题听课,激发学生的学习兴趣。例如,讲解线性方程组解条件时,先抛出三个问题:一是让学生根据经验,讨论方程组解的情况;二是思考方程组无解的条件;三是思考方程组有解时,解的具体情况。研究矩阵对角化时,也可先提出三个关键问题:一般矩阵能对角化的具有条件;用可逆矩阵将矩阵对角化时,可逆矩阵及对角阵的求解方法;实对称矩阵是否一定可对角化。

第三篇:《线性代数》课程序言部分教学要点分析

《线性代数》课程序言部分教学要点分析

摘 要:对大多数理工科专业而言,线性代数是一门十分重要的课程。线性代数的序言部分,主要是对线性代数课程进行宏观的介绍,并且引入二阶和三阶行列式的概念。教学中应该调节好学生的心理状态,注重定义以及之间的联系,突出重点进行讲解,以确保这部分内容的教学效果。

关键词:行列式 线性代数 序言 学习心理

《线性代数》是很多理工科专业的一门基础课程,是学习后续专业课程的基础课。同时,《线性代数》还是考研的必考科目。因此,搞好《线性代数》的教学工作具有重要的意义[1]。《线性代数》的序言部分是带领同学们进入线性代数殿堂的第一课,是学生们与线性代数的初次相识,“第一印象”十分重要。如果能够让学生们对线性代数的研究内容产生兴趣,充满信心,那么日后的教学过程都将变得简单。反过来说,如果学生们在听这部分内容的过程中不能对线性代数的研究对象进行透彻完整的了解,而只是被动地听到了教师对行列式、矩阵、向量组、方程组等等抽象的数学名词的乃至彼此之间关系的介绍,他们很可能就会对线性代数望而却步,日后再想让他们充满信心和兴趣可能相对就比较难了。总而言之,线性代数序言部分的讲解也是教学中很重要的一个环节,有必要对其教学要点进行分析。

一、教学内容总结

任何一门课程都有序言部分,《线性代数》课程的序言部分主要也是作为一个总开端,对《线性代数》进行介绍,导入后面的核心内容。从教学内容上看,序言部分包括两大方面:第一部分,主要是带领学生们认识《线性代数》这门课程,知道《线性代数》在整个专业培养计划中所处的地位,了解线性代数的研究对象与课程特色,掌握学习线性代数的方法;第二部分,主要是通过方程与行列式的关系,引入二阶和三阶行列式的定义、计算及简单的应用,为后续推广到n阶行列式的相关内容打好基础。

二、学生心态把握

大学生作为经过全国高考统一考试选拔出来的优秀人才,事实上,他们当中的大多数都是精力充沛,积极乐观,求知欲旺盛,此处主要分析学生中可能影响学习的负面心理,旨在有的放矢地促进教学效果。第一,在课程设置上,《线性代数》多安排在第一学年的第二个学期上课,学生们在经历了大一上学期的《高等数学》的学习以后,多会对数学类课程产生一种“畏难”情绪,严重的甚至会厌烦数学类的课程。因此,作为一门数学类课程,《线性代数》首先可能会或多或少地受到?W生们心理上的抵触,这就形成了《线性代数》的一个“先天劣势”。第二,课堂中的学生们往往来自不同的省份,数学功底各不相同,有的学生中学阶段没有学过任何行列式知识,有的学生甚至没有学过向量,从心理上,他们对序言部分内容的兴趣也是不同。第三,《线性代数》序言部分的讲授处于新学期的起始阶段,甚至被安排在新学期第一周的第一节课,好多学生经过了返回学校的行程,疲惫感还没有完全消除,也还没有从“假期综合症”中恢复过来。此时,学生们的心态还有所浮躁,对课程内容的吸收能力有限。第四,新学期新课程的开始阶段,学生们与教师也是初次见面,有些学生对教师本身的外在形象比较敏感,对于教师的教学特色和个人魅力还处于观望状态,对于课程本身的注意力不足,大部分同学还都存有首先观望老师的心态,想看看老师的“水平”,往往只有很少一部分同学会对即将开始的课程进行预习。第五,在当今的快节奏时代,各种各样的信息量铺天盖地,学生们主动或者被动地面对很多信息已经成为一种常态,学生们多重视应用,重视看得见摸得着的现实的事例,对于抽象的数学概念及数学逻辑兴趣不足,这也是线性代数序言教学中所无法忽视的。

三、教学设计分析

基于以上分析,在序言部分教学中应把握以下几个方面:第一,讲解的深度宜浅不宜深,尽量从实际事例中引入方程组和行列式。对于二元线性方程组,如果用诸如“鸡兔同笼”问题引入,可以很容易地使学生们契入到对问题思考中,加强他们的参与意识,使他们很快进入角色。《线性代数》本身是一个复杂的课程,其中的行列式、方程组、向量组和矩阵等各种的概念互相交叉[2],想学好是很不容易的。但在序言部分,如果过多地引用《线性代数》的专业术语,例如用逆序数法定义行列式[3]等等,这将增大学生们听课的难度,容易使得一部分学生从课程一开始就对《线性代数》望而却步。实际上,《线性代数》也有简单的一面,从一定程度上说,《线性代数》书中的概念与中学知识的衔接并不太大,它的几乎所有定义都是独立于之前的高中数学的函数、不等式、二次曲线等复杂数学知识的。学好《线性代数》并不需要很扎实的数学基础知识,只要学生们能够入门,能够进入到《线性代数》的思维方式,教学工作就成功了一大步,后续的具体计算中,大多也都是100以内的加减乘除,所以应极力避免一上来用复杂的讲解把学生“当头打蒙”,反过来说,深入浅出地讲解更有助于增强学生们的信心,持续不断地激发他们的学习兴趣。第二,对于《线性代数》的研究对象应该讲解到位。首先,应该要介绍清楚“线性”所代表的含义。“线性”,从运算上来讲,主要也就是加减和数乘运算,不涉及到变量之间的乘积。用学生们的知识结构可以理解的话来讲,《线性代数》研究的核心问题也就是解方程组。这样的一种讲解方式,更利于学生们对《线性代数》的研究内容进行整体的很好的把握,更容易把学习与应用结合起来。第三,应当要讲解好《线性代数》的学习方法。学习方法听起来虽然抽象,但能否把学习方法讲解好却是很考验一个教师对整门课程的把握的一个重要体现。毕竟,只有在对课程整体的很好的把握的前提下,才能高屋建瓴地提出对《线性代数》的最适宜的学习方法。对大多数高校《线性代数》课程的教学和期末考试而言,对思维深度的要求并不是很高。然而,线性代数涉及到行列式、矩阵、向量组、方程组等理论,各个理论独立完善且互相之间也都有联系,因此熟练地从一种理论叙述转换到另一种理论叙述是学完本课程后所应达到的对知识“学活学透”水平的一种体现,这对思维的灵活性要求很高。而达到这一水平的前提,就是要对定义有熟练透彻的掌握。线性代数的学习方法,也应当是重视对基本定义的掌握。为了达到这一目的,要有必要的练习。这个学习方法,应该跟学生们讲解透彻。第四,在课堂上要增强学生们的参与意识,要让他们成为推动课堂活动往下进展的主人,要让他们的大脑活动起来。例如,在消元法解二元线性方程组时,可以让学生们真正动手去做,让学生们亲身体会消元的过程,让他们自己去发现方程组的系数行列式出现的过程以及该行列式在方程组解的表达式中所处的位置。从而,使得行列式的引入不会显得特别突兀,也为学生们对后续课程中克莱默法则的学习产生良好的铺垫作用。通过构造系数行列式以及通过用方程组的常数项来替代系数行列式的列向量来构造行列式,通过此类行列式的比值来求解方程组是本节中的新的方法,应努力使学生们对此种求解方法产生新的印象,看到行列式在求解方程组中的不可替代的作用,这一过程,也应当努力想办法让学生们最大限度地参与进来,充分利用好课上时间,让他们学有所得。第五,要注意讲解好二阶和三阶行列式的定义。二阶与三阶行列式虽然简单,但是它们毕竟是不同于以前的新的定义,从行列式的形式到它的内容,都要让学生们建立起完整的概念。形式上,二阶行列式,就是两行两列的数表两边加上两个竖线,内容上,行列式是一个式子,对于数表中是已知数值的情况,行列式就是一个可以计算的数值。如果行列式中存在未知变量,那么行列式与一个数值的相等,就构成了一个方程。事实上,行列式的定义也包含了它的求解方法,行列式的表达式中很容易看出来它的计算方法――对角线法则。首先要把主对角线和副对角线的概念给学生们讲解清楚。对于行列式的表达式而言,每一个乘积项的元素都是由不同行不同列的元素所组成的,注意到这一点,学生们就不会丢落元素,而能够把行列式表达式完整准确地表示出来。同时很重要的是,应当要强调对角线法则只适用于二阶与三阶行列式,对于高阶行列式,对角线法则将不再成立。事实上,如果结合后续章节中关于行列式的严格定义的话,容易知道,这主要是由于行列式表达式中参与加减的各个乘积项都是且是所有的不同行不同列的元素的乘积,对角线法则中所确定各个乘积项的方法显然不可能把所有的乘积项表达出来,所以,对角线法则对于4阶及更高阶的行列式不再成立是有充分理论支撑的。

结语

综上所述,《线性代数》课程序言部分的教学工作十分重要,它关系到学生们对线性代数整个这门课程的认识问题,关系到学生们学习的信心和学习的兴趣的问题。教学中应未雨绸缪,细致地把握好现场学生的心理状态,提前重点做好教学设计,深入浅出地开展讲解,激发学生的信心与能动性,为后续克莱默法则的教学打好直接的基础,也为《线性代数》教学开一个好头,为《线性代数》整体内容的教学做好铺垫。

参考文献

[1] 段炼,方贤文.线性代数教学中高阶行列式若干计算方法探究[J].教育教学论坛,2017(36):195-196.[2] 居余马等.线性代数(第2版)[M].北京:清华大学出版社,2002

[3] 刘玉军,陆宜清.线性代数[M].上海:上海科学技术出版社,2017.作者简介

康浩(1987-),男,汉族,河北行唐人,河北师范大学,讲师,博士,研究方向:建筑环境与能源应用工程专业相关课程教学。

第四篇:线性代数教学建议

关于线性代数的教学建议

张梦雅

一、引言:

《线性代数》是一门比较难懂难学的高等数学学科,作为软件学院的一员在学习线性代数的同时还要学习一元函数微积分课程。两门课程都不容易学习,而且同学们刚迈入大学大门,还不能很好地适应大学中的学习方式(即为自学占主要部分)。没有老师的督促和指引,同学们学起来比较困难,故而线性代数的学习更加需要两位老师的帮助。而我作为课堂成员的一员,在此结合我平常的学习经验和上课体会,来给老师提出一些建议。

二、线性代数学习教学方法的分析:

之优点:

1、课堂分为两个部分

部分一:星期

一、星期四的课上同学们学习课本上的知识内容,老师带领同学们过一遍新的知识点,讲解书本上的习题。

部分二:星期五的课上老师则带领同学们做一些有关上节知识点的习题(通常为课本上的或老师PPT上的),帮助同学们加深知识点的理解和记忆。

2、课堂老师提问

本学期的线性代数课全是上午的1、2两节课程,往往这个时候大部分同学刚起床就赶过来。老师上课提问可以让同学们紧张起来,集中注意力,让同学们好好听讲,而不是继续趴在桌上睡觉。另外,提问这一环节能调动同学们课下复习的积极性,给同学们施加压力,让同学们及时的复习课本。并且,课上提问能让同学们加深对某些重要知识点的理解。

3、新颖的讲课内容或方式:

有次课上老师用自己和家人的图片为同学们讲解矩阵的排列问题,引起了同学们的好奇心和兴趣,让同学们更加地在课堂上集中精神。偶尔老师的几个冷笑话或其他的小幽默也能引起同学们的注意,但这些东西只是为了帮助同学们学习的小插曲,不宜过多而失掉课堂上应有的学术氛围,理应适当才有益处。

4、老师能够顾及同学们的听课感受:

当投影仪上的字体过小时,老师及时调整字体以便教室中的每位同学都能看清楚;当同学们跟不上老师讲课的节奏时,老师会适当地放慢讲课速度;当讲到某些关键内容时,老师总会提醒同学们此内容为重点等等以便同学们有重点的学习。三:线性代数学习教学方法的分析: 之建议:

1、若时间充裕,我认为老师可以效仿张波老师,每每讲完部分知识点就会问同学们关于这部分的知识同学们有什么问题,而后老师再把同学们问的问题清楚地表达出来(赞!)然后进行讲解。私下认为这样的做法能让同学们及时的把疑惑问出来并解决,有时若是等到下课后再问同学们可能忘记刚才的疑惑或是因为要补觉而选择不去或等会去,这样可能导致同学们的问题不能及时解决,等到考试时遇见困难就追悔莫及了。

2、希望老师在讲课时语速能稍微放慢一些,声音更加大一些。个人提出几点建议:

(1)、老师号召同学们尽量坐在前排位置,不要过于分散(我注意到第一排的位置经常少有人坐,估计是害怕老师提问)

(2)、老师可以如李忠伟老师一样手中拿一个类似于扩音器的物品,以便于随时放大声音;或是佩戴扩音器等提高音量。

(3)、老师可以时不时的询问同学们是否听清,防止同学们错过某些知识。

3、关于某些难以记忆的知识点,老师可以传授自己的记忆技巧或在课堂上向同学们征集记忆方法,以便大家能够快速牢固的记住知识点。

在最近学习的第六章的“基变换和坐标变换”中,矩阵A(过渡矩阵)和新、旧坐标、基的位置容易混淆。比如

A在后

A在前,还有A的逆出现等等

这样有时就不能导出正确答案,同学们难以分辨出A的位置和A和A逆的使用。

4、希望老师能够在每节课上花费几分钟的时间或是用一节课的时间来串讲一下知识点,帮助同学们形成网络框架图,更加清晰的掌握所学内容。

个人认为随着学习内容的增多以及难度的增加,同学们学习的越来越吃力,内容混在一起乱成一团,在做题的时候往往不能准确而又迅速的找到合适的方法以及公式来解决问题。若是能够梳理一下所学内容则会大有益处。

5、建议老师把课后习题的答案发到教育在线上或是向同学们推荐有关书籍,老师推荐书籍更能与课本上所学内容相契合,避免了同学们盲目地选购复习资料而选择不当(我买了同济版的辅导书,但觉得内容有些不符合)还望老师多费一些心思帮助同学们选购以及推荐。

6、建议老师督促学生不要上课迟到或是踩着铃声来上课,有时再交作业则会出现上课铃响教室还嘈杂声一片的情况。(最近经常出现这种情况)也许适当的轻微惩罚或者督促能够改善这种不良现象。

7、老师偶尔点名时间一般在5分钟左右,本来课上时间仅仅只有45分钟,所以在课上点名浪费少许时间。个人建议老师可以在第一节下课课间或是第二节下课后(有20分钟的休息时间)点名,这样也能防止某些学生投机取巧,第一节课来,第二节课走。

四、总结:

已经学习线性代数大半年左右,但是有些同学还是不知如何去学习,足以见得这门课的难度和深度。况且,线性代数是极为重要的一门课程,培养同学们的计算能力以及逻辑分析能力,学好这门课程是必须且很有必要的。接下来的时间里,只有同学和老师的共同努力才能让大家更好地学习这门课程。

五、参考文献:

《高等代数》第四版 北大 王萼芳著 2 “基变换与坐标变换” 百度文库

六、作者介绍:

张梦雅(1997-12-21生),女,河南省周口人,毕业于河南省漯河市高级中学。南开大学软件学院2014级,学号1412706。多次获得市级三号学生称号,获得化学竞赛一等奖。

第五篇:线性代数教学体会[定稿]

《线性代数》教学的一点体会

线性代数历来是让学生感到既爱又恨的一门课程,刚学时做运算兴趣昂然,到后来发现该课知识结构错综复杂,就又束手无策,恐惧心理油然而生。分析原因,一方面是因为线性代数确实是一门较为抽象的课程,里面充斥着符号演算和逻辑推导;另一方面是线性代数教材多是基于理论的准确和证明的严格,以及知识内容的相对独立性来编写的,自然学起来就不太容易。

同微积分一样,线性代数是一门传统的课程,具有十分丰富的运用价值,特别是由于计算机技术信息技术的飞速发展,线性代数对于科技人员已经是必不可少的,若学好了它则能成为他们发展的有利工具,否则就是一种障碍。因而如何教好学好线性代数就是一项十分紧迫而重要的任务。

在教学过程中,经过思考,探索与改革,我有了一些教学体会。

1.注意保持学生的兴趣和好奇心

只有有了浓厚的兴趣,学生才会保持旺盛的学习激情。线性代数的前面部分特别是行列式计算对于学生来说还算是相当有趣的,因为只要做一做简单的加减乘除就能将一个个庞然大物化为一个数。这个阶段,我在教学中注意利用学生的这种情绪,碰到问题尽量让学生自己去想去猜测,去演算,在课上遇到较复杂的行列式(n阶),我也先不说明做法,而是在n阶行列式的旁边写上一个低阶的(如5阶,6阶)同类行列式,然后给学生留下三五分钟让他们自己思索,讨论,求解。最后当我将完整正确的解答阐述明白后,许多学生面露喜色,摇头晃脑不亦乐乎,看来他们想对了,做对了,而且之所以得意忘形是因为有了莫大的成就感。考虑到线性代数后面的知识较抽象和难于解释,所以保持学生学习的这种兴趣就是十分重要的。只有这样学生才能主动积极的学习,将全章的难点和疑点各个击破,赢取学习的胜利。

2.注意让学生从全局和总体把握课程

“线性代数要做什么?”这是我上第一次课时说的第一句话。当然学生们无法回答,但他们很期待答案。之所以这么问,我是想从一开始就给学生们树立一个观念,那就是这样一门课,这样一本书,虽然它的知识点很多,可能也较困难,但是它要达到的目的是简单的是容易把握的。

我自己回答了这个问题,线性代数的主要目的是寻求m个n元一次(线性)方程组成的方程组的求解方法:当n=m时,我们会使用一种工具:矩阵;当n不等于m时我们要使用另一种工具:矩阵;为了使得到的解表达得更确切,我们要有新的一些观念:线性表达和线性空间等。当然这些工具和观念本身又成为除解方程但之外线性代数的主要内容。

在教学过程的始终,我总是让学生认清这一主要目的,而我们之所以做的一切不过是在发展一种符号系统,例如行列式其实只是高斯消元法的一种简化书写的记号,矩阵只是一个数表,它实际上就是没有写出变量的方程组,所以方程组消元和矩阵运算实际 1

上是一样的,我们研究矩阵的运算和运算技巧以及标准形,只是为了解决代数的问题。

学生了解了矩阵和行列式在代数中的地位和作用,自然学习就有了主线,有了方向性和目的性,就会去主动的考虑一些问题,总结和掌握一些方法。

3.注意将抽象内容直观化,几何化

单独地学习一套抽象的符号系统及演算,对于学生来说确实会存在一些困难,特别是非数学专业,本身对数学的演绎和推理就是模糊和陌生的,大多数情况下他们并不清楚这套体系后面所蕴涵的背景和实质。有些教师认为不敢给学生讲得太多,特别是有些观念和定理的几何背景。或许是怕学生无法理解和掌握,从而更加影响教学的效果。但我认为只有在讲解时把握适当的准确性和深入性,是有助于加深学生对知识点的理解的,也有助于他们数学思维的形式,从而为以后课程的学习奠定较好的数学基础。在讲到向量组的线性关系时,我会用“共线”、“共面”等概念来加深他们的印象,在讲到向量组的秩时,我会用“三个向量的一个平面上”,“四个向量在一个三维空间重”等来帮助理解;在讲施密特正交化过程时,我会在黑板上用简单的图形演示该过程的实质,以利于我们理解这些向量是怎样“逐个”正交地;在讲矩阵的特征值和特征向量时,我会简单的说明该矩阵代表的线性变换在各个特征方向是怎样“压缩”或“拉长”的。这些讲解当然不能太难,而且必须适可而止,只要达到学生能够理解的地步即可。学生学习一门课程的目的并不是单纯的会演算该门课的各样习题,而是要掌握课程的实质和思想而加以运用,我想在这方面做如此的尝试是有益的。

4.注重各知识点的衔接、使知识点组织成网,提高学生分析能力

就线性代数本身而言,虽然知识块不多,但各块的知识点却非常多,从内容上看纵横交错,前后联系密切,环环相扣,相互参透,学生要将如此多的知识点组织起来确实困难。因此,在课堂上除了要有对上次课内容精炼的复习之外,更要时刻注意提醒学生当前知识与以往知识的联系与区别,以利于学生对此掌握。如在讲线性方程组解的结构时,我会让学生回忆第一章的克拉默法则,第三章的用初等变换解题的方法,并用新的知识来看待旧的问题,找出联系,比较异同,在讲向量组的秩时,注意及时复习矩阵秩的各种判定法及行列式的若干性质,从而让学生弄清两种秩的关系。在课程的后半部分,我会让学生们下去后自己总结一下行列式、矩阵的各种用途,是他们能自主地将各种知识串接起来,以加深理解。

当然关于线性代数的教学方法很多,因人而异,也各有特点。我想不管什么方法,其主要目的都是为了帮助学生学好这门重要的课程,培养出学生良好的数学思维能力和运用这种思维去解决日后学习和工作中遇到的各种困难的能力。因此作为教师,我们应该学会在教学实践中不断地掌握,比较,总结,从而形成一套行之有效而独具特色的教学方法,是我们的数学教育生动起来。

线性代数教学体会

线性代数课程内容多,比较抽象,具有一套特有的理论体系、思维方法及解题技巧。通过第一章的教学,感觉学生在开始时不易接受。比方说在第一章学完后他们在求三阶行列式时仍用定义来求,计算量大,而且容易出错。这说明一方面对求行列式的基本技巧没有掌握,另一方面,对课本知识比如行列式的性质没熟练掌握,比较生疏。我感觉很大程度上是因为线性代数不同于高等数学的特点。

根据前一段时间的教学我觉得应作好以下几个方面的工作:

要学会正确处理教材。任何学科的教学都不是把教材照搬到课堂上,而是要分清难点和重点,从而有针对性地讲解,这样便于学生接受。由于课本例题较多,课时少,更应该突出重点,所以在教学过程中应分清主次,及时提醒学生注意重点掌握的知识点,在必要的时候还应对有关的知识点做一下总结传授给学生。特别是在上习题课时要准备的充分一些,把解决重要类型的题目的方法系统的传授给学生。从中能培养学生的数学素质,数学思维。

多与学生和其他教师交流。仅有教学理论还不够,在实践中我难免还是把握不住“度”的问题,于是这就要求我要多与其他有经验的教师交流,从中了解一些要注意的问题,我感觉在与其他教师的交流中学到了很多,比如教材如何处理,哪些知识学生不易接受,容易出现什么错误等。同时还要听取学生的反馈意见,以及时弥补教学中的漏洞。从学生的作业中,发现了许多细节问题,比如字母书写不规范,一些约定的表达方式不会用,有时还用错,做题步骤混乱等。多数学生都有这些小毛病,而且他们本身也意识不到。这就要求平时就要及时给他们指出。由于学生学习程度不同,因此在教学工作中一方面要照顾“吃不了,消化不好”的同学,另一方面又要兼顾“吃不饱,还嫌少”的同学。

在教学中,还应注意总结,注意概念,注意实际,注意方法,使同学们在学习中取得好成绩。在教学工作中,注意阶段性的总结和随时有针对性的小结。阶段性总结,是要在章,期中,或期末告一段落时,进行总结。其目的是让同学们掌握那些是重点,那些是难点,各种概念,定义,公式的联系及区别,使学习的知识系统化。注意概念,由于同学们的学习经历了从高等数学到线性代数的转化,在概念的掌握上就显得特别重

要。注意实际意味着注意实际的应用,线性代数从实际中来,应当让它回到实际中去。在教学中注意联系实际的问题,无论对掌握知识本身,还是将来的同学们运用这些知识,都是至关重要的。在教学中,如矩阵的引入,就可由注实际背景引入。注意方法,在教学中,针对学生的专业特点和个性,注意教学方法,由浅入深,由此及彼,努力扩大同学们的知识面,加强对学生数学素质的培养。

最后也是非常重要的一点就是要培养学生学习的兴趣。兴趣是最好的老师。往往学得好的学生都会有较强的学习欲望。所以平时要多鼓励他们,帮他们克服刚接触新知识时的畏难情绪。最后希望能变“要我学”为“我要学”。

下载《线性代数》教学要求及教学要点word格式文档
下载《线性代数》教学要求及教学要点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线性代数考试要点

    线性代数考试要点: 1、 行列式(要求只要是4阶的行列式会求) (1) 会利用行列式的定义来计算行列式(包括逆序数的求法); (2) 会利用行列式的性质来计算行列式; (3) 利用按行、列展开公式来......

    线性代数复习要点

    “线性代数”主要题型(以第三版的编号为准) (注意:本复习要点所涉及的题目与考试无关) 一、具体内容 第一章、行列式: 1.1、四阶或者五阶行列式的计算。比如第1.3节例3、例4,第四......

    2012线性代数Ⅱ复习要点

    《线性代数Ⅱ》复习要点 教材:工程数学《线性代数》第五版,同济大学数学系编 1、掌握行列式的相关性质与计算 2、掌握行列式的按行按列展开法则 3、掌握矩阵的各种运算及性质,......

    教学活动设计要点及要求

    教学活动设计要点及要求 一、什么是教学设计? 就是为了达到一定的教学目的,对教什么(课程、内容等)和怎么教(组织、方法、传媒的使用等)进行设计。二、教学活动设计的要点(一)关......

    线性代数各章复习要点

    第一章:1.3节 例5、例6; 1.5节 性质1~6、例7、例8、 例10;1.6节 引理、定理3、例12、推论、例13; 1.7节克拉默法则、例14、例16; 第二章:2.2节 矩阵的乘积、转置、行列式及性质、......

    线性代数考试要求09年

    线性代数考试要求 第一章行列式 本章考查重点:行列式的定义、行列式的性质,解线性方程组的克莱姆法则,掌握行列式 的常用计算方法。 本章试题类型: (1)n阶行列式的定义、性质的运......

    32学时线性代数教学目标

    1. 学习线性代数的基本知识和基本理论,掌握常用的矩阵、行列式和线性方程组理论等基础知识,熟练掌握矩阵、行列式的基本计算,系统的了解方程组的解及解空间的结构,使学生能够掌......

    《线性代数》教学的一些思考论文(定稿)

    [摘要]《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与认识,提出《线性代数》教学抽象概念的讲解应注意的几点问......