圆周率和祖冲之故事[模版]

时间:2019-05-15 12:20:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《圆周率和祖冲之故事[模版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《圆周率和祖冲之故事[模版]》。

第一篇:圆周率和祖冲之故事[模版]

祖冲之(公元429年4月20日─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。

祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。名人故事

祖冲之(429500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。

公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说: “你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。名人故事

尽管当时社会十分**不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。

第二篇:祖冲之的故事

祖冲之的故事

祖冲之(429—500)字文远,祖籍范阳郡遒县,是我国南北朝时期杰出的数学家,科学家。他从小接受家传的科学知识。青年时进入华林学省,从事学术活动。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传。祖冲之算出圆周率π的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,成为当时世界上最先进的成就。这一纪录直到15世纪才由阿拉伯数学家卡西打破。在天文历法方面,祖冲之创制了《大明历》,最早将岁差引进历法。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,他在音律、文学、考据方面也有造诣,他精通音律,擅长下棋,还写有小说《述异记》。

第三篇:圆周率的故事

历史上求圆周率的故事

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。

进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。

历史上最马拉松式的计算,其一是德国的鲁道夫,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为鲁道夫数;其二是英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。

据说,从前有位私塾先生,经常想出怪招来惩罚学生,而他自己却溜出去玩。有一次上课时,一位学生调皮,老师罚所有学生放学后留下背出圆周率小数点后20位数字才能回家,而他自己却跑到山顶上的一个寺庙里与和尚喝酒。大家很郁闷,怎么也背不出来。一位学生看看自己、想想老师,灵感勃发,用了谐音的方法编了一套顺口溜,迅速背出了圆周率:“山巅一寺一壶酒(3.14159),尔乐苦煞吾(26535),把酒吃(897),酒杀尔(932),杀不死(384),乐尔乐(626)”。老师回来,一看大家能在很短的时间内能把圆周率背到小数点后22位,惊诧不已;听着大家背诵的内容,不由得脸红了。

大家都知道,我国南北朝时的祖冲之最早把圆周率到在3.1415926和3.1415927之间。他按照当时计算使用分数的习惯,祖冲之还采用了两个分数值的圆周率:“约率”22 / 7(或称之为“疏率”)以及“密率”355 / 113,比欧洲人早了1000多年。

我国桥梁专家茅以升小时候为了锻炼自己的记忆力和毅力,能把圆周率背到小数点后100多位。

一项数字世界里的新世界纪录于日前诞生:一名日本人Akira Haraguchi将圆周率π算到了小数点后的83431位。在一个现场解说验证活动中,这名孜孜不倦的59岁老人向观众讲解了长达13个小时,最终获得认同。这一纪录已经被收入了Guinness世界大全中。

据报道,此前的纪录是由一名日本学生于1995年计算出的,当时的精度是小数点后的42000位。

第四篇:圆周率的故事

圆周率的故事

标签: 圆周率

圆,是人类最早认识的一种曲线,也是用途最广的一种曲线。还在遥远的古代,火红的太阳、皎洁的月亮、清晨的露珠,以及动物的眼睛,水面的波纹,都给人以圆的启示。现代,从滚动的车轮到日常用品,从旋转的机器到航天飞船,到处都有圆的身影。人们的生活与圆早已结下了不解之缘。圆,以它无比美丽的身影带给人们无限美好的遐想。圆满、团圆,这些美妙的词语寄托了人们多少美好和幸福的憧憬!

圆周率是圆的灵魂,是圆的化身,可是这位仙子,却迟迟不肯揭开她那神秘的面纱。

人们对圆周率的认识经历了漫长的历史岁月,许多数学家为此献出了毕生的精力。现在,就让我们穿过时间隧道,与这些伟大的数学家作一次亲密接触吧!

早在三千多年以前的周朝,我们的祖先就从实践中认识到圆的周长大约是直径的3倍,所以在距今2000多年前的西汉初年,在我国最古老的数学著作《周髀算经》里就有了“周三径一”的记载。

随着生产的发展和文明的进步,对圆周率精确度的要求越来越高。西汉末年,数学家刘歆提出把圆周率定为3.1547。到了东汉,张衡——就是那位发明候风地动仪的天文学家,建议把圆周率定为3.1622。但是,这两种建议都因为缺乏科学依据而很少有人采用。一直到了公元263年,三国时期魏国的刘徽创立了割圆术,才使圆周率的计算走上了科学的道路。

什么是割圆术呢?原来,刘徽在整理我国古老的数学著作《九章算术》时发现,所谓的“周三径一”,实质上是把圆的内接正6边形的周长作为圆的周长的结果。于是他想到:如果用圆的内接正12边形、24边形、48边形、96边形……的周长作为圆的周长,岂不是更加精确。这就是割圆术。用他自己的话说就是:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”但是,因为计算过程随着边数的增加越来越复杂,限于当时的条件,刘徽只计算到圆的内接正96边形,使圆周率精确到两位小数,得到3.14。后来,刘徽又算到圆的内接正3072边形,使圆周率精确到四位小数,得到3.1416。还记得,我们那一代人上小学的时候,圆周率用的就是这个值。

又过了大约200年,到了南北朝的时候,我国出了一位大数学家,也是天文历算学家祖冲之。祖冲之于公元429年4月20日出生于范阳郡遒县(现在的河北省涞水县)。他小时候没上过什么学,也没得到过什么名师指点,但是他自学非常刻苦,尤其是对天文、数学有着浓厚的兴趣。他广泛搜集认真阅读了前人有关天文、数学的许多著作,却从来不盲目接受,总要亲自进行测量和推算。公元460年,他采用刘徽的割圆术,一直算到圆的内接12288边形,推算出圆周率应该在3.1415926到3.1415927之间。同时,他还提出用两个分数作为圆周率的近似值,一个是22/7,叫“疏率”,约等于3.142857;另一个是355/113,叫“密率”,约等于3.1415929。祖冲之对圆周率的计算,开创了一项世界纪录,比欧洲早了一千多年。国际上为了纪念这位伟大的中国数学家,把3.1415926称为“祖率”,并把月球上的一座环形山命名为“祖冲之山”。这是我们中华民族的骄傲。

向往完美,向往精确是人类的天性。尽量把圆周率算得准确一点,一直成为人们的不懈追求。

在古希腊,人们也是把圆周率取为3。后来也发现了疏率22/7,直到1573年,德国数学家奥托才发现了密率355/113,比祖冲之晚了1113年。

在古埃及的纸草书(以草为纸写的书)中,有一道计算圆形土地面积的题目,所用的方法是:圆的面积等于直径减去直径的1/9,然后再平方。如果我们假设半径为1,直径就是2,圆的面积就是2÷9×8再平方,约等于3.16,也就是说圆周率约等于3.16。(因为S=πr2,当r=1时,S=π。)

1593年,荷兰数学家罗梅,用割圆术把圆周率算到了小数点后15位,虽然打破了祖冲之的纪录,但是已时隔1133年。

1610年,德国数学家卢道夫,用割圆术使π值精确到小数点后第35位,几乎耗费了他一生的大部分心血。

随着数学的发展,人们又陆续发明了另外一些计算圆周率的方法。

1737年,经过瑞士大数学家欧拉的倡导,人们开始广泛地使用希腊字母π表示圆周率。1761年,德国数学家兰伯特证明了π是一个无限不循环小数。

1873年,英国的向克斯用了20年的精力,把π值计算到小数点后707位。可惜后来有人用电脑证明,向克斯的计算结果,在小数点后第528位上发生了错误,以致后面的179位毫无意义。一个数字之差使向克斯白白耗费了十多年的精力!他的失误警示人们,科学上容不得半点疏忽。这个教训值得我们永远记取。

随着电脑的不断升级换代,π值的计算不断向前推进,早在上个世纪80年代末,日本人金田正康已将π值算到了小数点后133554000位。当代,π值的计算已经成为评价电子计算机性能的指标之一。

最后,还有两件与圆周率有关的趣事不能不谈。

第一件:1777年,法国数学家布丰用他设计的,看似与圆周率毫无关系的“投针试验”,求出圆周率的近似值是3.12。1901年意大利数学家拉兹瑞尼用“布丰投针试验”求出圆周率的近似值是3.1415929。至于什么是“布丰投针试验”,请看拙文“布丰投针试验的故事”。

第二件:用普通的电子计算器就能算出圆周率的高精度近似值。算式是:

1.09999901×1.19999911×1.39999931×1.69999961≈3.141592573…

这几个小数很好记,如果不看小数点的话四个因数都是对称的,中间是5个9,前面两位分别是10、11、13、16,后面两位分别是01、11、31、61。至于是什么道理,不清楚。据我猜测,很可能是某位有心人,殚精竭虑编出的一道趣味数学题。

无独有偶,下面这些由十个不同数字组成的算式,也可以算出圆周率的高度近似值。

76591÷24380

95761÷3048

239480÷12567 97468÷3102

537869÷1205

495147÷30286

49270÷1568

383159÷26470

78960÷25134 显然,这些题目中的数字是凑出来的,渗透了创编者的良苦用心。

在分享了上面这些算式带给我们的惊喜和启迪之余,不禁要对这两位数学爱好者表示崇高的敬意!

几千年来,圆周率精确值不断推进的过程,反映了人类崇高的科学精神,闪烁着人类智慧的光芒,同时也让热爱数学、甘愿为数学献身的人们充分感受到数学的无比美妙,享受到数学给予他们的无限幸福。

在相当长的一段历史时期内,人们往往用圆周率的精确程度,作为衡量一个国家、一个民族数学发展水平的标志。我国古代数学一直处于世界领先的地位,作为炎黄子孙,我们一定要继承祖先的光荣传统。而作为小学数学教师,一定要教育我们的学生,学无止境,科学的发展也没有止境,一座座科学高峰正等待着他们去攀登。刘徽、祖冲之、卢道夫……这些光辉的名字永远是鼓舞全人类前进的榜样。

第五篇:数学家祖冲之的故事

数学家祖冲之的故事

大家好!今天我给大家讲一位中国古代数学家的故事,他就是祖冲之。

祖冲之是我国古代著名的数学家,也是天文学家,生于1500多年前的南北朝时期,河北涞源人。他最伟大的成就就是把圆周率计算到小数点后7位,领先于西方国家1000多年。

为什么说祖冲之厉害呢?这要从如何计算一个圆圈的周长说起。现在我们都知道,圆的周长=圆的直径乘以圆周率,圆周率是一个无限不循环小数,3.1415926等等,用这个公式可以方便的算出圆的周长。但在2000多年前,人们可不知道有这么方便的公式,也不知道有圆周率的存在!人们计算圆周长的方法是用直径乘以三,误差非常的大。后来,人们发现圆周率应该比三大,但是到底大多少却无法确定。祖冲之经过多年的刻苦研究,计算出圆周率在3.1415926和3.1415927之间,世界纪录协会世界将祖冲之列为第一位将圆周率值计算到第7位小数的科学家。人们为了纪念祖冲之的重大贡献,将圆周率称为“祖率”。

祖冲之小时候就非常喜欢钻研数学和天文。一天晚上,他躺在床上想老师教的“圆周是直径的3倍”的计算公式。第二天一早,他就拿了一段绳子,跑到村头量车轮。祖冲之先用绳子量了车轮的周长,再把绳子折成同样大小的3段,去量车轮的直径。量来量去,他发现车轮的直径根本不是圆周长的1/3。这究竟为什么?他决心要解开这个谜题。正是这种精神,让他成为了一位伟大的数学家。

祖冲之不但研究数学,也喜欢研究天文。他经常观测太阳和星球运行的情况,并且做详细记录。在他33岁时,编制了《大明历》。测定出地球绕太阳转一圈的时间,跟现代科学测定的一年的时间相差只有五十秒,测定月亮绕地球一圈的时间,跟现在的相差不到一秒!让我们不得不惊叹,在没有计算机的古代,这么准确是怎么做到的?

祖冲之还有很多科学发明。他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,一天可以航行一百多里。

祖冲之“认真学习、刻苦钻研、态度严谨、不怕困难”的优秀品质永远值得我们学习。

这就是我给大家讲的祖冲之的故事。谢谢!

下载圆周率和祖冲之故事[模版]word格式文档
下载圆周率和祖冲之故事[模版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学家的故事祖冲之

    数学家的故事——祖冲之 祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、......

    数学家的故事——祖冲之5篇范文

    数学家的故事——祖冲之 祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、......

    数学家的故事(祖冲之与华罗庚)

    祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。祖冲之在数......

    数学故事:最精密的圆周率

    最精密的圆周率 夜很深了,桌上的油灯已经加了两次油。书堆放着已经看完的《周骸算经》竹简,张衡的《灵简。祖冲之手中正在翻阅三国时代的布衣数学家给《九章算术》作的注解,他......

    名人故事精选:中国古代伟大的数学家——祖冲之

    祖冲之(429~500)-中国南北朝时代南朝数学家、天文学家、物理学家,范阳遒(今河北涞水)人。 祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从......

    圆周率快速记忆法

    一、背圆周率的口诀3.14***932384626山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。***9716939937死珊珊,霸占二妻。救吾灵儿吧!不只要救妻,一路救......

    圆周率记忆训练

    圆周率记忆训练 我先举例记忆圆周率前100位,首先就是将这100位数字转化成50个词语,然后利用奇象连锁记忆法串成故事来记忆。若不会转化的朋友请看我博客中数字转码记忆训练。......

    我也说说祖冲之

    谈谈祖冲之 物理研究所 09级某白 这里就自己的一些了解来谈谈我国南北朝时期的大数学家祖冲之。 中国古代的数学,可以说研究深入,涉猎广泛,但是很难看出什么具体的体系。而且中......