第一篇:人教版小学数学五年级上册《方程的意义》课堂实录
《方程的意义》教学实录
教学内容:五年级上册第五单元第62~63页“方程的意义”。教学目标:
1.借助生活情景理解方程的意义——用含有未知数的等式表示相等的关系。
2.经历从生活情景到方程模型的建构过程,感受方程思想的核心之一,即建模。
3.培养学生观察、描述、分类、抽象、概括、应用等能力。教学重点:准确从生活情景中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:理解方程的意义,即用数学符号表示相等的关系。教学准备:课件 教学过程:
一、创设情境,提出问题
1、超链接《曹冲称象》的故事。
2、问:曹冲是利用什么原理称出大象的质量的?(初探等量代换)板书:=
二、探索交流,解决问题
1.出示天平。问:关于天平.你了解些什么? 生:天平可以称物体的质量。
师:天平是根据什么原理称出物体的质量的?动漫展示:天平的正确使用方法
引导学生说说天平的特点,引出相等、平衡的概念。
2、用天平演示称物体
(1)师:在天平的左盘放入两个50克的玩具小猪,右盘放入100克的砝码,此时的天平平衡吗?你能怎样表示这种关系,你是计算出来的吗?(学生回答,直接从平衡关系中找到的)生:50+50=100(2)在天平的左盘放入玩具小鸭,右盘放入100克的砝码,此时的天平平衡,谁能用一个数学式子来表示天平的这种平衡现象?玩具小鸭的质量不知道,可以用什么表示?生x、a、b等等 生:a=100(3)师:现在老师将左盘的玩具小猪换成了两个30克的玩具小狗天平还平衡了吗?谁能用一个数学式子来表示天平的这种不平衡现象? 生:30+30<100(4)师:为什么?生因为两盘物体质量不相等,所以天平就不平衡,师:怎样才能使它平衡呢? 生:……
师:你们这样做的目的都是为了什么? 生:使左右两盘物体的质量相等。
师:这儿有一个玩具熊猫,它的质量不知道,我们可以怎么表示? 生:可以用字母x表示。
师:现在老师将这个玩具熊猫加在轻的一端,猜猜天平会出现什么现象?并用数学式子表示出来。
生:猜想出以下三种情况:可能加上玩具熊猫后天平平衡,用60+x=100 表示;也可能是加上玩具熊猫后还是比砝码轻,可用60+x<100表示;还可能是加上玩具熊猫后比砝码重,可以用 60=“" x=”“>100 来表示。(此处可能有难度,可让学生讨论一下)师:60+x表示什么?100呢?
生:60+x表示两个玩具小狗和一个玩具熊猫的重量,100还是表示砝码的重量。
师:同学们都理解了这些式子两边的含义,并用正确的符号连接起来,真不错。3.引导分类。
师:刚才我们用了这么多的式子来描述天平的平衡情况。你能将这些式子分分类吗?
(1)小组生讨论,师巡视。(2)汇报交流。生1:我们组是按是否含有未知数来分的,将a+b=100,60+x =100,60+x<100,60+x>100分为一组,其余的分为一组。
生2:我们组是将平衡的分为一类,大于100的分为一类,小于100的分为一类。
生3:我们组是将平衡的分为一类,将不平衡的分为一类。师:拖放课件上的式子,按学生的汇报将不平衡的归到一起。师:(指着含有等于号的式子)像这样的含有等于号的式子,数学上称之为等式。(板书:等式)其它的式子我们都称之为不等式。师:观察这些等式,它们有什么不同的地方? 生:有的没有字母,有的含有字母。
4、揭示课题:
师:这些字母表示——未知数。(板书:含有未知数)像这样的含有未知数的等式,我们称之为方程。今天这节课我们就是研究方程的意义。板书:方程的意义 师:能说说什么叫方程? 老师投影出示方程的意义:像这样含有未知数的等式就叫方程。生:齐读概念。
师:阅读完定义,大家能不能说一说,定义中最关键的几个字是什么? 生:是等式含有未知数(方程首先是个等式,其次要含有未知数)
5、理解方程和等式的联系
师:如果用一个圆来表示等式,那方程应该放在哪里? 等式 方程
三、巩固应用,内化提高 1.练习写方程。
师:大家对方程有了一定的理解,刚才我们列出了一个方程。(指着黑板上已有的方程),下面,大家根据自己对方程的理解任意写几个方程吧!生:在练习纸上写(叫部分学生在黑板上写)。2.交流:
师:先来看看黑板上这几位同学写的,都是方程吗?同桌间再互相检查一下,看大家列的都是方程吗? 生:在教师的指导下一一进行判断,并说说为什么?
3、判断并说明理由。
师:大头儿子也写了两个式子,可是不小心被墨水给弄脏了,猜猜他原来写的是不是方程? 生:……
师:同意吗?为什么? 4.介绍数学文化
师:看来,大家对方程已经有了很深的认识。方程的历史已经非常悠久了,我们一起去了解一下吧!生:听录音,了解方程的历史。
师:随着数学研究范围的不断扩充,方程的作用也越来越重要。方程的类型也由简单到复杂不断地发展。但是,无论类型如何变化,各种各样的方程都是含有未知数的等式。
五、联系实际,巩固应用
1.师:下面咱们来玩个小游戏!把天平下方的材料拖放到天平上,要求大家看到天平的状况就能列出一个方程来。师:你觉得要让大家能列出方程来,关键是什么? 生:天平要平衡,还要有未知数。
师:演示,问:能列出方程吗?能就赶快写在练习本上。师:你们列出的方程是? 生:50+b=100,a+x=100,b+30=z 师:引导学生讲清等式的左边和右边分别表示什么? 生:分别表示两边物体的质量。
师:大家看,这个方程两边都含有未知数,这么复杂的方程都能列出来,大家真了不起。
2、巩固练习。(1)出示练习题1。•独立思考,列出方程。‚交流。
生:3x=36 60+x=100 师:指着60+x=100。问:这个方程刚才出现过,(指黑板上已经列出的同样一个方程).在这里表示的是长度相等,刚才表示的是什么? 生:质量相等。
师:你们能不能再举个例子,让大家也能列出一个这样的方程来呢? 师:60+x=100能表示这位同学所说问题中的数量关系吗? 生:能!师:这个方程又是表示什么相等? 师:看来,字母可以表示未知数,同时含有未知数的式子也可以表示未知数。
(2)出示练习题2.师:大头儿子和小头爸爸在说些什么,我们一起去听听!师:你能从小头爸爸和大头儿子谈话中,选取一些信息列出方程吗? •独立思考,列出方程。(师收集学生作业)‚交流。师:有位同学的列出了37-a=28这样一个方程,请这位同学说说你选择了哪几条信息,为什么这样列? 师:这里还有一位同学列的是a+28=37,37-28=a,谁知道他是怎么想的?
师:有道理!大家看看,这三个方程都是根据这一组信息列出的,像37—28=a这样的方程,和我们以前学的算术方法的思路是一样的,未知数没有参与运算,今后我们用方程解决实际问题时,一般不列这样的方程。
师:再看这位同学列出9-x=3这样一个方程。能说说你的想法吗? 生:……
师:9-x和3+x才分别表示的是儿子给了爸爸x张后两人扑克牌的张数,这时他们的张数才是一样多的。
师:看来我们只有找对了相等关系,才能列出正确的方程。
四、回顾整理,反思提升:
师:今天你有什么收获呢?,其实我们在一年级的时候就已经认识方程的雏形了,教师可以用ppt展示,各年级的未知数的表示,生:…… 附板书设计: 方程的意义
50+50=100 30+30<100 a=”“ b=”100“ p=”“> 60+x<100 60=”“ x=”">1006 60+x=100 含有未知数的等式,叫方程。
第二篇:小学数学五年级数学上册方程的意义
小学数学五年级数学上册方程的意义 教学目标
1、使学生初步理解和辨析“等式”“不等式”的意义。
2、会按要求用方程表示出数量关系,3、培养学生的观察、比较、分析能力。教学重点和难点
教学重点: 用字母表示常见的数量关系,会用方程的意义去判断一个式子是否是方程。教学过程
一、创设情景,建立表象 教师介绍天平各部分名称。让学生操作当天平两端托盘的物体的质量相等时,天平就会平衡,指针指向中。根据这这个原理来称物体的质量。(让学生操作,激发学生的兴趣,借助实物演示的优势。初步感受平衡与不平衡的表象)
二、探索交流,探究新知
1、实物演示,引出方程:
(1)在天平称出100克的左边空杯,让学生观察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一边加100克法码,问学生发现了什么?
(让学生感受天平慢慢倾斜,水是未知数)引出100+X>200,往右加100克法码,问:哪边重些?(学生初步感受平衡和不平衡的表象)问:怎样用式子表示?100+X<300(3)教学100+X=250 问:如果是天平平衡怎么办?(让学生讨论交流平衡的方案)把100克法码换成50克的砝码,这时会怎样?(引导学生观察这时天平出现平衡),问:现在两边的质量怎样?现在水有多重知道吗?如果用字母X表示怎样用式子表示?得出:100+X=250
2、理解“等式”和“不等式的关系以及“方程”的意义
示题:100+X<250 100+X=250 4X+50>100 40+40=80
X÷2=4 5X-12=27 请学生观察合作交流分类:
(一)引出(1)两边不相等,叫做不等式。(2)两边相等叫做等式。
(二)(1)不含未知数的等式40+40=80(2)含有未知数的等式100+X=250 X÷2=4 揭示:(2)这样的含有未知数等式叫做方程(通过分类,培养学生对方程意义的了解)
问:方程的具备条件是什么?(感知必须是等式,而一定含有未知数)你能写出一些方程吗?(同桌交流检查)
(三)练习:)判断那些是方程?那些不是方程?
6+2X=14 103+X 250÷2=125 6+X>2 51÷A=3 X+Y=180(让学生加深对方程的意义的认识,培养学生的判断能力。)
3、方程和等式的关系
教师:我们能够判断什么是方程了,方程和等式有很密切的关系,你能画图来表示他们的关系吗?(小组合作讨论交流)方程 等式(让学生通过观察、思考、分析、归类,自主发现获得对方程和等式的关系理解,同时初步渗透教学中的集合思想。)
小结问:什么是方程?(含有未知数的等式)
三、练习巩固
1、判断:(1)等式都是方程
()
(2)6X=0也是方程
()(3)方程也是等式
()
(4)含有未知数的等式叫方程()
2、课本:做一做
四、课堂总结
同学们这节课都很专心听课,学习了方程在我们今后在解决数学问题上有很大的帮助,很多数学难题上,用方程来解决就轻而易举的解决,只要大家学好了,长大了同样可以成为数学家的哦,好、今天我们学了什么?什么是方程?
《用字母表示数》微课的教学设计
教学例三:
1、出示正方形,你还记得正方形的周长和面积是怎样计算的吗? 谁来用文字说一说。
正方形的周长= 边长 X 4 正方形的面积 = 边长 X 边长
2、课件出示:如果正方形的边长用a表示,周长用C表示,面积用S表示。你能用字母表示出正方形的周长和面积公式吗?
学生思考,指名回答。
3、课件出示:正方形的周长:C=a×4 正方形的面积:S=a×a
4、比较文字公式和字母表示的公式,你喜欢哪一种?
5、看来用字母比用文字表示公式要简单多了,关于用字母表示数还有更多的知识,含有字母的乘法式子还有更简便的写法,你想知道吗?请听童话故事介绍《零国王的故事》。强调:
①数字和字母相乘时,乘号可以写成小圆点,或者干脆省略不写,但数字必须写在字母的前面;(例如:a×3简写成3∙a或者3a)
字母与字母相乘时,乘号可以写成小圆点,或省略不写。(例如:a×b简写成a∙b或者ab)
②两个相同的字母相乘,可以写成平方的形式。(例如:x×x简写成x2)③字母与1相乘时,1可以省略不写。(例如:a×1简写为a)
6、你现在会简写正方形的周长和面积公式吗? C= a X 4
S= a X a =a∙4
= a∙a =4a
= a2
7、其他还有字母的式子你会简写吗? 省略乘号,写出下面各式
4×b =4b
x ×5 =5x
a ×c =ac ×x =x
x ×x =x²
8、小结
今天这节课同学们学会简写含有字母的乘法算式,在简写过程中,我们应该注意些什么呢?
第三篇:新人教五年级数学上册《方程的意义教案》
《方程的意义》教案
教学内容:人教版小学数学五年级 上册第62~63页内容。教学目标:
1.知识目标:理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。
2.能力目标:培养学生认真的观察、思考分析问题的能力。
3.情感目标:通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。
教学重点:理解和掌握方程的意义。教学难点:弄清方程和等式的异同。教学准备:多媒体课件 教学过程:
一、新课导入(完成目标一)
课件出示天平,让学生说说天平的特点。师概括总结得出天平的平衡这一特点。
师:怎样才能使天平左右两边相等?
出示一架天平的左边是有物体20克和30克,右边是50克 师:用算式怎么表示? 生:20+30=50 引导总结得出这个一个等式。
二、合作学习(完成目标二)
再出示天平左边是20克的物体和?克的物体,右边是100克的物体。
师:“?”表示什么?我们可以用什么表示?
生:用字母表示。
师:你认为用哪个式子更能表示天平的作用两边是平衡的? 引导得出:20+x=100 表示天平左右两边是平衡的.出示6架天平,根据天平的平衡状态写算式。把这8个算式标号,得练习:
①20+30=50
⑤ 80<2χ
②20+χ=100
⑥ 3χ=180 ③50×2=100
⑦100+20<100+50 ④50+2χ> 180
⑧100+2χ=3×50 思考:你能给这些式子分类吗?并说说是按照什么标准分类的。同桌合作交流汇报
等式
不等式
①20+30=50
④50+2χ> 180 ②20+χ=100
⑤ 80<2χ
③50×2=100
⑦100+20<100+50 ⑥ 3χ=180 ⑧100+2χ=3×50 含有未知数的式子
不含未知数的式子 ②20+χ=100
①20+30=50
④50+2χ> 180
③50×2=100 ⑤ 80<2χ
⑦100+20<100+50 ⑥ 3χ=180 ⑧100+2χ=3×50 师:既是等式,又含有未知数的的式子有哪几个? 生:②20+χ=100
⑥ 3χ=180
⑧100+2χ=3×50 像这种含有未知数的等式我们今天给它起个新的名字,称为“方程” 并板书课题
方程
练习:下面哪些是方程?哪些不是方程?
① 35-χ =12
()⑥ 0.49÷χ =7()② Y+24
()
⑦ 35+65=100()③ 5 χ+32=47
()
⑧ χ-14> 72()④ 28< 16+14
()
9b-3=60()⑤ 6(a+2)=42
()
χ +y=70()
你会自己写出一些方程吗?(请同学板演,其他同学在练习本上写)
三、总结归纳(完成目标三)
课件出示:“方程一定是等式,等式也一定是方程”
这句话对吗?
你能用自己的方式表示方程和等式之间的关系吗?
• 引导概括得出:方程一定是等式; •
但等式不一定是方程
四、课堂练习
五、课外拓展:方程史话 六:作业布置
课本练习十四66页:第1题
第四篇:五年级数学上册方程的意义教案
方程的意义
【学习内容】人教版小学数学五年级上册第62页、第63页 【课程标准描述】
1.结合简单的实际情境,了解等量关系,并能用字母表示。2.能用方程表示简单情境中的等量关系,了解方程的作用。【学习目标】
1.借助天平的演示,了解等式的意义,能正确判断给出的式子是等式还是不等式。2.借助天平的演示,在师生交流中,明确方程与等式的关系,能用自己的语言表达方程的意义。
3.在解决问题中,能根据方程的意义正确列出方程。【学习重点】
借助天平的演示,在师生交流中,明确方程与等式的关系,能用自己的语言表达方程的意义。
【学习难点】
借助天平的演示,在师生交流中,明确方程与等式的关系,能用自己的语言表达方程的意义。
【评价活动方案】
1.借助天平的演示,学生能够用不含未知数的式子表示出天平的变化,并判断给出的式子是等式还是不等式,评价目标1。
2.借助天平的演示,通过师生交流,引导学生写出用含有未知数的式子表示等量关系,学生能够运用图表或语言表示出方程和等式的关系,通过练习,准确判断方程和等式的区别,评价目标2。
3.通过例题,学生能根据方程的意义,写出等量关系,并正确列出方程,评价目标3。【学习过程】
一、情境导入
师:在生活中有很多工具能帮我们测量出相同重量的物体。你们都知道有哪些吗?(学生举例回答)今天就先来认识其中的一种:天平。
出示天平。
让学生说一说对天平有哪些了解?
预设:学生可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等。
教师做补充:天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。
二、借助天平的演示,学生列式表示天平的变化(评价目标1)
在天平的右边放一个50g的砝码,在左边放2个20g的砝码和1个10g砝码,天平是一个什么样的状态?(预设:生:平衡)平衡意味着什么呢?
预设:意味着左右两边的质量是相等的。
教师引导学生根据天平平衡的状态列出等式:20+20+10=50 学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)
提问:如果我把左边托盘上的10g砝码取下来,你认为天平会发生什么变化。
引导学生通过天平的状态列出不等式:20+20<50
三、借助天平的演示,让学生尝试写出含有未知数的等式。(评价目标2)1.出示课件,引导学生仔细观察天平的状态,说出等量关系:
一个鸡蛋的质量+一个小砝码的质量=一个大砝码的质量 提问:此时,鸡蛋的质量你知道吗?(不知道)那就是一个未知数,这个未知数可以用什么表示?(x,y,z……)都可以。那么根据平衡的现象,以及刚才同学们所说的等量关系,你能用式子将它表示出来吗?
学生小组讨论后回答。
提问:如果我将50g砝码换成一个20g的砝码,你认为天平会发生什么变化?请你用一个式子将这种变化表示出来。
2.观察每个式子;并进行分类,概括方程的意义
教师引导学生观察课件上所列的式子①20+20+10=50;②20+20<50;③x+50=100;④x+20>100;⑤2y=500,并分类。
预设1:根据是否含有未知数,分为①②一类,③④⑤一类;
预设2:根据是否为等式,分为②④一类,①③⑤一类。
提问:仔细观察,在①③⑤中,它们有什么不同的地方呢?
预设:③⑤含有未知数,①没有未知数。
总结:像③⑤这样的等式,我们把它叫做方程。你能说一说,什么是方程吗?把你的想法跟组员交流一下,小组讨论后回答:像这样含有未知数的等式就是方程。3.根据大家总结的方程的意义,你能说出方程与等式的关系吗?
引导学生运用图示法直观地看出,等式包含方程,方程属于等式。4.练习巩固,判断下面的式子,哪些是方程
出示课件,引导学生仔细观察这些式子,哪些是方程,并说出判断的依据。① x-3=6;②35+65=100;③6a=24;④y+24;⑤x-14>72;⑥3x+2y=9
四、巩固拓展(评价目标3)
1.组织学生观看例1,引导学生在图中获得有效信息并说出存在的等量关系。
预设:每块月饼的质量×4=380 提问:如果用y表示每块月饼的质量,你能根据等量关系列出方程吗? 预设:4y=380 2.组织学生观看例2,引导学生根据题意找出等量关系并列出方程。
学生独立思考后小组交流并汇报
预设:后来的人数-下车的人数=现在的人数 x-5+8=22
五、课堂小结
提问:回顾本节课的学习,你有哪些收获? 【学习目标检测】: 1.下面那些式子是方程?
x+3.6=7 a×2<2.4 3-1.4=1.6 3÷B 8-x=2 6.2÷2>3 4×2.4=9.6 5y=15 2x+3y=9 2.你会根据下面的图列出方程吗?
第五篇:五年级数学方程意义说课稿
五年级数学方程意义说课稿
一、教材分析,学情解析,目标定位
(一)教材分析:
《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。
《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。
(二)教学目标:
结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:
1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。
2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。
3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。
(三)教学重难点
列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。
基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。
(四)学情分析:
课前我们对学生进行了调研,调研内容主要有三项:
一、求未知数
这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。
二、给式子分类,并写出每类的特点。
设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。
三、你们在生活中见过与跷跷板类似的物品吗?
设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。
(五)教法:
新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、
合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:
1、用直观的操作和演示,让每位学生理解和归结出结论。
2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。
3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。
(六)、学法
为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。
二、教学过程
教学活动主要安排了五个环节:
1、创设情景,抽象出等量关系,理解等式的性质
等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。
活动一:感知平衡,体会等式含义,理解等式性质。
课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。
活动二:观察发现,抽象出不同的式子
创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。同时也为下一个教学环节——给式子分类做好准备。
2.引导分类,抽象出方程的意义
运用刚才得出的式子进行分类,并让学生说说分类标准,然后从学生按照等式不等式的标准分类的教学资源中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,找到方程的特点,从而进一步得出方程的意义。在分类的过程中,尊重学生的想法,肯定他们分类的方法。这样的设计主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。
3.讨论比较,辨析、概念——等式与方程的关系
为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过同桌合作用自己的方法创作“方程”与 “等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。这是一道富有思维容量的习题,不但锻炼了学生的思维,培养了学生思维的灵活性和深刻性,而且能激发学生的创新意识,使学生的积极性、创造性得到保持与发展,同时渗透集合思想
4.巩固深化,拓展思维——练习
在这一环节中,我们设计了“介绍方程”、“写方程”和“判断方程”三个活动。为了激发学生学习的兴趣,我们设计了“如果你是方程,你怎样介绍自己”之后让学生自己写一个方程,这样一个介绍,一个练写,不仅使学生爱做,而且还让学生进一步理解了方程的意义。然后让学生看式子进行判断,辨析;出示“方程一定是等式,等式也一定是方程”这句话让学生分析这句话对吗?说出理由。通过这些活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是方程的判断,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,方程与等式的异同,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。
5.小结新知,明确收获
让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。