第一篇:三年级数学上册《数学广角——集合》说课稿
《数学广角——集合》说课稿
一、说教材
《数学广角——集合》是人教版新课标数学三年级上册第九单元的知识,涉及了学生在生活和学习中经常遇到的问题:求两个集合的并集或交集的元素个数。(集合是比较系统、抽象的数学思想方法,也是数学中最基本的思想。)本节课教材例1在学生积累了较丰富的学习生活经验的基础上借助学生熟悉的题材,向学生渗透集合的有关思想,使学生理解用直观图(集合圈)表示“重复现象”的方法,了解直观图(集合圈)各部分的意义,特别是重复部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。
二、说学情
三年级学生从一年级开始学习数学时就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。例如在数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象;而且在以后学习的平面图形之间的关系都用到了集合的思想,如把一堆图形按照一定的标准分类,这种分类思想就是集合理论的基础。但这些都只是单独的一个集合圈,学生不一定从集合的角度来思考并解决问题。
三、说目标
在设计本节课的教学时,以新课程理念为指导,将数学知识与学生实际生活有机结合,通过预学提示、自主探究、合作交流、操作实践等方式让学生经历数学知识生成的过程,从而达到感悟知识的目标。基于以上认识,本节课在把握教材意图的基础上,目标定位如下:
1、通过预学观察图表、自主探究和合作交流等活动,让学生经历解决问题的过程,了解简单的集合知识,初步感受集合的意义,获得数学学习的体验。
2、使学生通过理解用直观图(维恩图)表示“重复现象”的方法,学会借助直观图(维恩图)运用集合的思想方法来解决较简单的实际问题,从而感受到数学与生活之间的相互联系。
3、通过课堂教学活动,让学生体验数学的价值,培养学生合作学习的意识和学习的兴趣,提高学生的观察能力、思考能力、创新能力、评价说理能力。
四、说重难点
本节课的重点是让学生感知集合的思想,并能初步运用集合的思想解决简单的实际问题;难点是对重复部分的理解。
五、说设计
1、把自主探究与有意义的接受学习有机结合。
学生对于“重复的人数要减去”是有经验的,因此在充分尊重学生经验认知的基础上,放手让学生先自主探究,独立完成,再汇报交流。配合学生汇报,利用多媒体课件出示维恩图,运用讲授法引导学生认识并理解维恩图,并通过直观演示将两个集合圈合并的过程,引导学生讨论发现“集合中的元素是不能重复出现的”,体会集合元素的互异性;“集合元素的顺序可以不同”,体会集合元素的无序性。并让学生想一想说一说图中每一部分所表示的含义,尤其是“两项都参加的和参加这两项比赛的”,体会交集和并集的含义。
2、放手学生,让学生体会与交、并有关的计算。学生在列式解答时,根据连线或维恩图,会列出多种方法。放手让学生尝试解决,并充分展示学生的方法,同时给予充分肯定。让学生结合维恩图体会各个算式所表示的含义,体会求“两个集合并集的元素个数”就是要将两个集合的元素个数相加后减去其交集的元素个数。突出基本的方法,加深学生对与交、并有关计算的体会和对集合知识的理解。
3、关注“冲突”,激发学生的探究欲望和兴趣。
提出需要解决的问题“参加这两项比赛的共有多少人?”后,学生的不同答案有可能引发“冲突”。抓住这一“冲突”,追问“你能确定有17人吗?”、“你能证明为什么不是17人吗?”,以此激发学生探究的欲望,让学生积极主动的投入解决问题的活动中去,用个性化的思考和处理问题的方式解决问题,为他们自主构建知识的意义提供保障。
4、培养学生收集、整理信息的意识和能力。
本着从实践中来到实践中去的原则,课堂上通过学生生活实际介绍了用维恩图表示集合及其交、并的方法,让学生亲身感知集合的思想,体验知识生成的过程,在过程中体验集合的思想,在过程中感悟重复,并顿悟重复问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验。
5、培养学生思维的严谨严密性。
数学的教学,最重要的不是数学知识的教学,而是数学思维、数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。在教学过程,我注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“参加跳绳人数”和“参加踢毽人数”,而去掉了都参加的部分后是“只参加跳绳人数”和“只参加踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既参加跳绳又参加踢毽”让学生明白这是两种活动都参加的。
6、锻炼根据实际情况解决问题的能力。
具体情况,具体分析。课堂最后设计的课后思考题目对学生所学知识灵活运用的能力既是锻炼又是提高。
第二篇:数学广角—集合说课稿
《数学广角——集合》说课稿
执教:陈明琴
一、对教材的认识和理解
《集合》是新课标三年级上“数学广角”例1。集合的知识体系集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。例如在数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象。而以后学习的平面图形之间的关系都要用到集合的思想,如,把一堆图形分类,需要一定的标准,这种分类思想就是集合理论的基础,所以集合的重要性由此可见一般。但这些都只是单独的一个集合圈。本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,并利用直观图的方式求出两个小组的总人数。教学要使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。对于三年级学生来说,学习这部分内容,思维力度较强,有一定的挑战性。
二、说说本节课的目标制定
本节课教学目标在教学设计过程中,以新课程理念为指导,将数学知识和生活有机结合,通过自主探究、操作实践让学生经历数学学习的过程,从而达到感悟知识的目标。基于以上认识,本节课在把握教材意图的基础上,目标定位如下:
1、通过整理图表活动,让学生经历问题解决的数学化过程,获得数学学习体验。
2、使学生理解用直观图(韦恩图)表示“重叠现象”的方法,并利用集合的思想方法培养学生解决简单问题的能力。
3、通过课堂教学活动,让学生体验数学的价值,培养和提高学生的观察能力、思考能力,创新能力、评价说理能力。
本节课的重点是让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。难点是对重复部分的理解。
三、课堂上着重体现的数学思想方法有以下几个方面
1、培养学生收集、整理信息的意识和能力。集合的抽象性是在它最终形成结论才具有的,而在结论形成过程中,必然以大量的具体内容为基础。本着从实践中来到实践中去的原则,课堂上我让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,让学生在过程中体验集合的思想,在过程中感悟重叠,并顿悟重叠问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验
2、培养学生思维的严密性严谨性是数学学科的基本特征之一。数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。反思今天的教学过程,我觉得我们也非常注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“喜欢跳绳”和“喜欢踢毽”,而去掉了都参加的部分后是“只喜欢跳绳人数”,“只喜欢踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既喜欢跳绳又喜欢踢毽”让学生明白这是两种活动都喜欢的,课堂上时时注重学生严密的思维。
3、根据实际情况解决问题的能力。具体情境具体分析.最后的题目对这一句话有了很好的诠释。重复的现象,这就需要用到今天学的重复知识来解决。
第三篇:三年级下册数学广角说课稿
三年级下册数学广角“换一换”说课稿
一.说教材
本节课内容是义务教育课程标准实验教科书三年级下册第109页例2的一节课,本课是利用天平的原理,使学生初步体会等量代换的数学思想方法。等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。这个数学思想方法不仅有着广泛的应用,而且是今后进一步学习数学的基础。
二、学情分析:
等量代换有广泛的应用,是今后进一步学习数学的基础,可以培养学生良好的逻辑思维能力。但等量代换的思想在教材中是第一次出现,也是学生第一次接触,而它又是一个非常抽象、非常难以理解的内容,三年级的学生具有一定的相关经验但比较浅显。本课设计理念上,主要是让学生通过操作、观察、思考与交流等活动,突显课堂教学的可操作性、创新性、科学性、思考性、互动性。让学生初步感受到数学思维的训练,逐步形成有序地、严密的思考问题意识,同时使他们逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学的意识。
三、说教法学法:
本课教学以“体验等量关系”、“建构模型、形成数学思想方法”、“运用等量代换的数学思想方法”这三大版块为教学主线,体现了教师的“引”到“放”直至“创”的过程。通过“师生、生生的多元互动”的学习方式,培养学生的思维能力。教学思考贯穿课堂教学始终,注重了学生学习的有效性。
四、说教学目标:
(一)知识与技能
让学生初步认识等量代换的数学思想,学会根据已知信息寻找事物间的等量关系。
(二)过程与方法
通过学生动手实践、观察、思考、猜想、分析等过程,从中认识到“换”是按一定规则进行的,并能找出规则解决生活中和简单问题。
(三)情感态度价值观
让学生初步体验代换给人们生产、生活带来的便利和现实价值,并通过教学活动增强学生的合作意识和竞争意识,使学生感受用数学的乐趣,享受成功的喜悦。
五、说教学重难点
利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想方法,并能解决简单的实际问题,为以后学习代数知识做准备。
六、说媒体运用
理解、接受并运用等量代换思想是本课教学的一个难点,通过课件的直观演示可以帮助学生更好的理解等量代换的过程,帮助学生建构数学模型,使学生形成自己的思想并运用在解决实际问题当中。从而解决了有些孩子仅凭直觉作出判断,脱离实物或直观图就完全失去了方向的问题。
七、说教学过程
(一)激发兴趣, 引入新课
为了增强学生对数学的亲切感,我以同学们喜欢的动画形式引入,(动画1)播放《曹冲秤象》的课件。在学生看完这个动画后谈话,曹冲解决称象的的问题实际是应用了数学中的一种思想方法,是什么思想呢,就是我们这节课要研究的问题。
〔“曹冲称象应用的是什么数学思想?”这一问题将学生带入到了有意义的、思维含量高的问题情境中,使学生初步感受到数学的魅力。〕
(二)构建模型,探究新知
1、出示例2主题图(图片1)并引导学生观察:小明、小红分别在水果摊里提出了什么数学问题?接着引导学生先弄明白第1个和第2个天平的含义:通过天平你知道了什么?能否解答小红提出的问题? 〔设计意图:这样引导是为了让学生更细致地去认识、观察天平,感知、体验等量关系,使学生初步了解什么是等量,只有先了解“等”才能学习后面的“换”。为解决例2这个问题作铺垫。〕 通过以下三步,突破难点,帮助学生形成数学思想:
(1)牛刀小试----小组内动手摆一摆,并交流自己的想法,初步构建模型。(视频1、2)
〔设计意图:正是在这样的摆一摆、换一换、算一算的数学活动中,学生感悟到“等”是“换”的必要条件。学生在亲历知识的形成过程中,初步构建了模型,感悟到等量是如何进行代换的〕(2)曲径通幽----观看课件演示过程,在头脑中建立表象。(动画2)〔设计意图:随着学生对“等量代换”问题的直观感知,隐藏在直观感知中的数学思想方法会逐渐显现出来,在这样一个“朦朦胧胧”、“似有所悟”的关键时刻,作为教师就应抓住知识的发展点,进行及时地启发与引导,直至产生顿悟。〕
(3)拂尘见金----提炼等式,使学生形成数学思想方法。(视频3)〔设计意图:学生对“等量代换”这一问题的建模需要有一个不断渗透、循序渐进、由浅入深,逐步积累形成的过程。在这个过程中,需要我们教师做一个“过程”的加强者和引导者,去“敲打”学生的思维,让学生在一次次的“敲打”过程中,积累、感悟、直到学会应用。〕
(三)巩固内化,拓展提升
适当的教学高度和教学深度有利于激发学生的积极性,我对教材内容进行了合理的扩充,将书中一个例题和几个孤零零的习题进行了巧妙重组,设置了三个练习情境,把学生的思维一步步引向深入,让学生在解决问题的过程中掌握思维的方法,提升逻辑思维的能力。(1)我能行。(图片2)
肯德基店为了庆祝六一,进行了促销活动,一个汉堡换2对鸡翅,一对鸡翅换3个圣代,两个汉堡可以换几个圣代?(学生直接抢答)让学生重点说出换的过程(动画3),老师给予适当的指导。(2)挑战自我。(图片3)
用天平可以准确的称出物体的重量,那么,在我们身边还有一些其他方法可以比较出物体间的重量。出示:两只鸭和一只鹅在玩翘翘板 左边两只鸭 右边一只鹅(平衡)左边四只鸡 右边两只鹅(重些)
1只鸡和1只鸭,谁重些?
〔这是等量代换思想的一种变式练习。直接比较1只鸡和1只鸭谁重比较困难,引导学生可以转化为2只鸡和2只鸭,或4只鸡和4只鸭比较。〕
(3)题目大变脸。(图片4)○+ □ =91 △ + □ =63 ○ + △ =46 ○= ?△= ?□= ?
〔这道题属于课后*题,有一定的难度,直接用等量代换的方法来解决很困难,可以先把三个等式的左边相加,右边相加,可得到2X(○+□+△)=200所以○+□+△=100,然后再利用等量代换,依次求出○、□、△的值。〕
(四)小结回顾,突出重点
同学们,这节课我们学了哪些知识?你们对自己今天的收获满意吗?
(五)布置作业, 课堂延伸
数学来源于生活而又应用于生活,在古代,人们不是用钱来买物品的,而是用物品来换物品,你能帮帮这个老爷爷吗?(图片5)用4个番薯可以换2棵大白菜。用8棵大白菜可以换2斤米。用2只鸡可以换10斤米。
老爷爷:我今天带了一只鸡,可以换些什么呢?(图片6)
八、说教学反思
等量代换的理论是比较系统、抽象的数学思想方法,需要形象直观的演示来帮助学生构建模型,电化教学手段的运用给数学教学灌输了新的动力,在本课教学中,电化媒体为学生们提供了形象的直观演示,在学生形成表象的过程中起到了使学生顿悟的作用。学生不仅轻松地的学会了数学知识,还有效地突出重点,突破难点,从而很好地实现数学课堂与信息技术的整合。
第四篇:三年级上册数学广角教案
数学广角
教学内容;人教版科书数学三年级上册P112例
1、例2 教学目标:
1.使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。
2.培养学生有顺序地、全面地思考问题的意识。
3.使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。
4.使学生在数学生活动中养成与人合作的良好习惯,并初步培养学生表达解决问题的大致过程和结果
教学准备:教师用多媒体课件一套、每组学生准备一套衣服学具。
教学过程:
一、导入新课
今天笑笑要带我们去一个很有趣的地方!出示:数学广角。
二、情境一服饰搭配
1.探究:既然参加活动,就要穿得漂亮些。衣柜里有这样几件衣服,笑笑一共有几种不同的穿法呢?
(1)观察并同桌讨论
(2)小组合作,动手实践
老师为你们准备几种不同的搭配方法,每人选择一种搭配方法试试看。搭配的时候要注意怎么搭配才能不重复不遗漏。搭配 1
好的小朋友可以和你组里的小朋友说说你是怎样想的。看看你们组有几种不同的方法。等下把你们认为组里面最棒的方法推荐给同学。
2.归纳、演示:
搭配方法一:用学具摆一摆。先确定上装,再确定下装。或先确定下装,再确定上装。
搭配方法二:连线。
搭配方法三:列式
搭配方法四:用编号
[备选]若学生提出其他搭配方法,只要有道理都给予肯定。
3.小结:你们真能干,想出了这么多的办法,有的把所有的穿法都表示出来了,有的用画画的方法,有的用连线的方法,还有的用编号的方法,还有一些特别聪明的同学一下子算出了有六种穿法。而且一个都没有漏掉,也没有重复。那你最喜欢哪一种方法?为什么?怎么样才能做到不重复,也不漏掉?
不管是用什么方法只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
三、情境2--早餐搭配
1.出发前,笑笑的妈妈还为她准备了丰富的早餐(出示练习二十五中的第1题早餐图)
2.合理的早餐应该是一种饮料配一种点心,看看这儿共有几种不同的吃法?
3.学生独立思考
4.展示学生的方法,同时让学生说说自己的搭配方法。哪种方法更好?
5.如果加上一杯果汁,一共有几种搭配方法呢?同桌互相说说想法。
6.小结:生活中看似平常、简单的事情,都藏着数学知识,可见数学知识和生活的关系密不可分。学好数学知识,就可以解决生活中的许多问题!像这样的数学问题需要按一定的顺序思考,找出所有的搭配方法。
四、情境三--游玩数字乐园
1.探究:猜数游戏
这个数是由9、3、7这三个数组成的三位数,可以组成几种不同的三位数?
2.你能不能像刚才穿衣服,吃早餐那样按一定的顺序,不重复、不遗漏地写出这些三位数
3.独立思考
再四人小组交流,互相学习。
4.师生归纳:
同学们都能有条有理地思考,不错!介绍一下,你们是怎样想的?
这样想有什么好处吗?
5.小结:这三个数字可以有条有理、按一定顺序地进行排列。可以先定百位,再写十位和个位,这样写就不会重复、不会遗漏。生活中有许多像这样的“排列组合”问题。
6.确定范围:由9、3、7组成的最大三位数
五、情境四--活动乐园
笑笑要从儿童乐园经百鸟园到猴山(电脑出示练习二十五中的第2题)在媒体上出示编号①②③④⑤有几种线路可以选择
1.独立思考,指名回答。
你能简单地画一画吗?
2.师:是不是这6条路都要选呢?如果是你,你选哪一条?为什么?
师:对,在生活中,可以根据实际情况,选择一条最佳路线。
六、情境五--游戏乐园
(一)跑道问题
小军、小兵、小华要进行跑步比赛,一人一个跑道的话有几种不同的站法呢?
(二)词语搭配
“小”“大”搭配“河,树,山,船”你有几种搭配方法哪种方法好?
同学们能从不同的角度想出不同的方法,并且能从中选出最佳方案。真了不起!
四、情感沟通,全课总结:
1.本次数学广角,你玩得开心吗?你最感兴趣的是什么?从这里你学到了什么吗?
2.生活中经常会遇到,是不是所有的方案都要选择呢?怎么办?
通过“猜想--讨论--实践--汇报--比较--归纳”等环节,充分展开探索过程。学生可以有各自的表达方法,包括数学化和非数学化的表达方式,从而体现解决问题的多样化和个性化。通过进一步的活动,给学生一个比较广泛的问题,给学生探索的空间,初步培养学生有顺序、全面地思考问题,体验、经历数学活动的过程。
选择最佳方案,联系了生活实际,体现数学的应用价值。与语文学科结合,数学的搭配理念也可以拓展到别的学科。
第五篇:三年级上册数学广角教案
《数学广角》——教学设计
教学内容:人教版《义务教育课程标准实验教科书》数学三年级上册
P113页例2及P116页4-6题。
教学目标:
1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数。
2、培养学生有顺序地、全面地思考问题的意识。
3、引导学生使用数学方法解决实际生活中的问题,学会表达解决问
题的过程。
4、培养学生的合作意识和交际能力。
5、感受数学与生活紧密联系,激发学生学好数学的信心。
教学重点:自主探究,掌握有序排列的方法,并用所学知识解决实际
生活的问题。
教学难点:怎样排列可以不重复,不遗漏。
教具准备:课件、数字卡片、头饰。
教学过程:
一、创设情境,复习迁移
师:同学们,你们喜欢看表演吗?(喜欢)今天聪聪、明明要跟我们到影剧院看表演,我们大声地喊他们出来啊!
师:好朋友见面,握握手。(聪聪、明明跟大家握手)如果全班36个同学分别跟聪聪、明明握手,一共要握多少次?为什么?(不管谁先跟谁握手,都是同是两个人)
师:对,这是我们上节课学的知识,这节课我们继续学习数学广角。(板书课题)
师:那我们赶紧进影剧院吧!(课件出示影剧院门口)
二、合作学习,探究新知。
1、情景激趣
师:(课件出现密码二字)密码?哎呀!我把密码给忘了,是379?还是739呢?我只记得这个密码是由7、3、9组成的其中一个三位数,同学们,怎么办呢?没密码可进不去啊!
2、合作交流,探讨方法
师:那么7、3、9可以组成多少个不同的三位数呢?请大家拿出数字卡片,小组合作摆一摆,摆的时候注意:
①要小组合作,共同完成。
②你用什么方法做到不重复、不遗漏。
③比一比哪组最快。
学生活动、汇报。
师:你们找出来多少个不同的三位数?谁愿意那上来给大家介绍他们组的摆法。(可多拿几个不同顺序的,然后让学生说。)
引导学生说:排列的时候,先确定百位上是3,分别交换十位和个位上的数7、9就有两种不同的排法;再确定百位上是9,分别交换十位和个位上的数3、7又有两种不同的排法,最后确定百位上是7,分别交换十位和个位上的数3、9又有两种不同的排法,合起来一共摆出6个不同的三位数,这6个三位数分别是379、397、739、793、973、937,这样按顺序排列,既不会重复也不会遗漏。
师:同学们刚才听了几位同学的方法介绍,你觉得谁的更好些?(比较发现重复、或遗漏或无顺序排列,从而引出按一定顺序排列较好)
学生发言。
3、引导学生小结:
排列时,先确定一个数位上的数,然后交换其他两个数位上的数,各有两种不同的排法,合起来都能组成不同的三位数,这样做到既不重复也不遗漏。
4、指导看书质疑
师:请大家打开书本P113页例2,边看书边自己说说书本上是怎么摆的?
学生活动
师:谁看懂书本上的想法,给大家讲一讲。(强调方法)
师:密码到底是哪一个呢?你认为是几?好,那请大家把自己心中的密码大声地喊出来吧!(课件演示密码转动过程)
是:739,猜对的举手,yes!我们可以进去了,向前冲,嘿、嘿、嘿!
三、实践应用,开放练习
1、创设情境,完成P113页“做一做”
师:哇!这影剧院真漂亮!同学们赶快找座位坐好。看看第一场表演什么?(西游记)嘿!很熟悉。谁来说说你对“西游记”的认识有多少?
学生发言
师:同学们知道的真多,那图中的四师徒在干什么?谁来说说。(学生说大意,注意说完整)
师:你觉得××同学说得怎样?师傅说:“交换位置,再来一张”(课件出示)那交换三个徒弟的位置可以有多少种不同的排法?
师:那请大家在小组里面排一排,照一照,并说说你是怎么排的。小组活动
小结:引导学生说出先确定一个人的位置,再交换两个人的位置,各有两种排法,合起来一共照出6张不同的照片。
2、完成P116页第5题
师:“西游记”好看吗?下一场表演什么呢?(课件出示小红帽)这个故事你们听过吗?好,谁上来给大家讲讲。
学生上台讲故事。
师:××同学讲故事真好听,你们有留意到屏幕出现故事中的哪些人物呢?(小红帽,猎人,大灰狼)同学们观察得真仔细。这时,扮演过猎人的小朋友说:“该让我演大灰狼了吧?”你知道他想干什么?(想变换角色,他不想演猎人,想演大灰狼了。)他们的角色还可以怎么变化?你们能帮助他们排一排吗?
学生活动
师:哪组愿意上台演一演。
学生上台表演。
师:刚才表演的同学真棒,一下子就把6种不同的角色变化都找出来了。
3、完成书本P116页第4题。
师:表演结束了,老师觉得有点饿,这样的天气去吃点什么好呢?你们想吃什么?
学生发言
师:你们的介绍也不错,不过天气越来越冷,我想吃点辣的来暖暖身子,你们怕辣吗?哦!有的怕辣,有的不怕辣,那不、怕、辣这三个字共有几种不同的排法呢?请大家用练习本排一排,再读一读看一共有几种读法。
学生活动,学生汇报。
师:不怕辣的同学,放学后可以建议你的父母去吃一顿麻辣火锅。
四、拓展延伸,提高能力
师:在回来的路上聪聪、明明要考一考我们。我们看题目。(课件出示题目)请拿出数字卡片动手摆一摆,要注意可以随意摆放的,看一共能摆出几个不同的三位数。
师:谁来说说你找出几种不同的三位数。
学生活动、汇报,师板书。
五、全课总结
师:这节课你有什么收获?还有不明白的地方吗?
师:你觉得自己、同学和老师表现得怎样?
六、板书设计
数学广角
379397
739793
937973