第一篇:抛物线的几何性质例题2
x2y21,求以双曲线的右顶点为焦点的抛物线标准方程[例1]已知双曲线的方程是89及抛物线的准线方程.选题意图:考查抛物线的基本性质.x2y21的右顶点坐标是(22,0). 解:∵双曲线89∴p22,且抛物线的焦点在x轴的正半轴上.2∴所求抛物线的方程和准线方程分别为 y82x,x22.[例2]若抛物线的焦点为(2,2),准线方程为x+y-1=0,求此抛物线的方程.选题意图:考查抛物线的定义.解:设P(x,y)是抛物线上的任意一点,抛物线的焦点为F,由抛物线的定义得: |PF|=d(d为P到准线的距离),∴(x2)2(y2)22
2xy12.整理得:x-2xy+y-6x-6y+15=0.说明:由于抛物线不在标准位置,所以采用抛物线定义求其方程.[例3]定长为3的线段AB的端点A、B在抛物线y2x上移动,求AB中点到y轴距离 的最小值,并求出此时AB中点M的坐标.选题意图:考查对抛物线知识的综合运用能力.
解:如图,设F是抛物线y2x的焦点,A、B两点到准线的垂线分别是AC、BD,M点到准线的垂线为MN,N为垂足,则
|MN|=1(|AC|+|BD|).213(|AF|+|BF|)≥.221.4根据抛物线定义得:|AC|=|AF|,|BD|=|BF|.∴|MN|=设M点的横坐标为x,则|MN|=x+∴xMN1315.4244等号成立的条件是弦AB过点F,由于|AB|>2p=1.∴AB过焦点是可能的,此时M点到y轴的最短距离是即AB的中点横坐标为
5.45,4当F在AB上时,设A、B的纵坐标分别为y1、y2,则y1y2=-p=-21,从而 451222(y1+y2)=y1y22y1y222
42∴y1+y2=±2.∴此时AB中点的纵坐标为±
2.2552∴M的坐标为(,)时,M到y轴距离的最小值为.442说明:此题的难点是求最小值.而利用抛物线定义及梯形中位线性质等几何知识使问题变得非常简单,这再一次说明在解题中注意运用圆锥曲线的定义及有关的几何知识,对解题是非常有益的.
第二篇:新《抛物线的简单几何性质》教案
抛物线的简单几何性质
一、教学目标(一)知识教学点
使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点
从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点
使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题.
二、教材分析
1.重点:抛物线的几何性质及初步运用.
(解决办法:引导学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.
(解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用.)3.疑点:抛物线的焦半径和焦点弦长公式.(解决办法:引导学生证明并加以记忆.)
三、教学过程
问题 抛物线的标准方程是怎样的?
与椭圆、双曲线一样,通过抛物线的标准方程可以研究它的几何性质.
下面我们根据抛物线的标准方程:
【探索研究】
1.抛物线的几何性质
(1)范围
因为,由方程可知
,所以抛物线在 轴的右侧,当 的值增大时,也增
来研究它的几何性质.
大,这说明抛物线向右上方和右下方无限延伸.
(2)对称性
以的轴.
(3)顶点
/ 3
代,方程不变,所以抛物线关于 轴对称.我们把抛物线的对称轴叫做抛物线
抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当顶点就是坐标原点.
(4)离心率
时,因此抛物线的抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知
其他三种标准方程抛物线的几何性质可类似地求得
再向学生提出问题:与椭圆、双曲线的几何性质比较,抛物线的几何性质有什么特点?
(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;
(2)抛物线只有一条对称轴,没有对称中心;
(3)抛物线只有一个顶点、一个焦点、一条准线;
(4)抛物线的离心率是确定的,为1.
【例题分析】
例1已知抛物线关于 轴对称,它的顶点在坐标原点,并且经过点标准方程。
2yl
例2 斜率为1的直线经过抛物线4x的焦点F,且与抛物线相交于A,B两点,求线段
,求它的AB的长.解:抛物线的焦点 F(1 , 0), 直线l的方程为:yx1
/ 3
yx1x26x102y4x
x1322x2322 或 y1222y2222 AB=(x1-x2)2+(y1-y2)2=8
(三)随堂练习
1.求适合下列条件的抛物线方程
①顶点在原点,关于 轴对称,并且经过点
②顶点在原点,焦点是
③顶点在原点,准线是
④焦点是
(四)总结提炼,准线是
抛物线的性质和椭圆、双曲线比较起来,差别较大.它的离心率等于1;它只有一个焦点、一个顶点、一条对称轴、一条准线;它没有中心,也没有渐近线.
(五)布置作业
/ 3
第三篇:8.4双曲线的简单几何性质例题(一)
高二圆锥曲线方程同步练习4(双曲线的简单几何性质)
例1 已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线与椭圆有公共焦点,且椭圆的长半轴比双曲线的实半轴大4,两曲线的离心率之比为3:7,求两曲线方程.例2 直线y-ax-1=0和双曲线3x2-y2=1相交于A、B两点,a为何值时,以AB为直径的圆经过原点.x2y22例3 在双曲线221(a>0,b>0)的两条渐近线上分别取A、B两点,使OAOBc,其中cab是半焦距,O是中心,求AB中点P的轨迹方程.—1— 例4 已知双曲线c的实半轴长与虚半轴长的乘积等于3,c的两个焦点为F1、F2,直线l过F2点,且与直线F1F2的夹角为φ,tanφ=
21,l与F1F2线段的垂直平分线的交点是P,线段PF2与双曲线的交点2为Q,且PQ:QF22,求此双曲线的方程.说明:此题意在增强学生建立坐标系的意识,并进一步熟悉双曲线的几何性质及待定系数法.—2—
第四篇:§8.4双曲线的简单几何性质例题(四)
[例1]过点P(8,1)的直线与双曲线x24y24相交于A、B两点,且P是线段AB的中点,求直线AB的方程.选题意图:考查直线与曲线位置关系等基础知识.解:设A、B的坐标分别为(x1,y1)、(x2,y2)
则x124y12=4 ①
x24y24 ② 22①-②得(x1x2)(x1x2)4(y1y2)(y1y2)0 ∵P是线段AB的中点,∴x1x216,y1y22 ∴y1y2x1x2x1x24(y1y2)2
∴直线AB的斜率为2,∴直线AB的方程为y-1=2(x-8).即2x-y-15=0.说明:此题也可设直线的斜率为k,然后待定k的值.[例2]过双曲线xa22yb221的焦点F(c,0)作渐近线
ybax的垂线,求证:垂足H在与此焦点相对应的准线x证明:过F与ybaa2c上.ab(xc)x垂直的直线的方程是y2axc得yabc.ay(xc)b由方程组ybxa
即H点的坐标是(∴H在直线上xa2c2,abc),ac.y20[例3]已知双曲线的一条准线方程为x是(-2,与这条准线相对应的焦点的坐标,2),且双曲线的离心率为
2,求双曲线的方程.选题意图:灵活运用双曲线的定义解决数学问题.解:设P(x,y)是双曲线上的任一点,P到直线xxy22y20的距离为
.P到焦点的距离为
(x2)(y22)2,∴(x2)2(y22)22
xy2∴(x2)2(y2)2xy2.两边平方,得:
x222x2y222y2x2y222xy22x22y
∴xy=-1.即所求双曲线的方程为xy=-1.[例4]如图,已知梯形ABCD中,|AB|=2|CD|,点E分有向线段AC所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点,当2334时,求双曲线离心率e的取值范围.选题意图:考查坐标法、定比分点坐标公式,双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力.分析:关键找e与λ的关系.解:建立如图所示的直角坐标系,设双曲线方程为
xa22yb221.∵双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于y轴对称.依题意,记A(-c,0),c(,h),E(x0,y0)
2c其中c12AB,h是梯形的高.(2)c2(1),y0由定比分点坐标公式得x0h1
ca∵点C、E在双曲线上,将点C、E的坐标和e= e2代入双曲线方程得:
4e2hb(221 ①
21hb4)222(e12)2hb221 ②
由①得: 又ee2241代入②并整理得:
12
34,,得:
23ee22231234
解得7≤e≤10
∴双曲线离心率的取值范围为[7,10].说明:e2ee2212也可整理成
3121212231
观察之7≤e≤10
第五篇:§8.4双曲线的简单几何性质例题(三)
[例1]已知双曲线
xa22yb22b>0)的焦点坐标是F1(-c,0)和F2(c,0),P(x0,y0)1(a>0,是双曲线上的任一点,求证:|PF1|=|a+ex0|,|PF2|=|a-ex0|,其中e是双曲线的离心率.选题意图:巩固双曲线的第二定义,给出双曲线焦半径的推导方法.证明:双曲线xa2xa22yb221的两焦点F1(-c,0)、F2(c,0)相应的准线方程分别是
c和xa2c.∵双曲线上任一点到焦点的距离与它到相应准线的距离的比等于这个双曲线的离心率.∴PF1x0a2e,PF2x0a2e.cc化简得:|PF1|=|a+ex0|,|PF2|=|a-ex0|.说明:|PF1|、|PF2|都是双曲线上的点到其焦点的距离,习惯称作焦半径.|PF1|=|a+ex0|,|PF2|=|a-ex0|称作焦半径公式.
[例2]双曲线的中心在坐标原点,离心率为4,一条准线方程是x程.选题意图:研究离心率、准线与a、b、c的关系,考查准线的几何意义.解:∵ca4,a212,求双曲线的方c12
∴a=2,c=8,∴b2822260.∴双曲线的方程是x24y2601.说明:双曲线的准线总与实轴垂直.[例3]在双曲线倍.选题意图:考查双曲线准线方程、第二定义等基本内容.
解:设P点的坐标为(x,y),F1、F2分别为双曲线的左、右焦点.∵双曲线的准线方程为x∴PF1x165PF2x165x216y291上求一点P,使它到左焦点的距离是它到右焦点距离的两
165..∵|PF1|=2|PF2|, ∴P在双曲线的右支上,∴2PF2x165485PF2x165,x4852
把x代入方程x216y91得:y35119.所以,P点的坐标为(485,35119)
此题也可用焦半径解答.