关于小学数学教学中几何画板的应用分析5则范文

时间:2019-05-15 03:31:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于小学数学教学中几何画板的应用分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于小学数学教学中几何画板的应用分析》。

第一篇:关于小学数学教学中几何画板的应用分析

关于小学数学教学中几何画板的应用分析

【摘要】科学技术的快速发展推动了新课改进程,并为教学方法的创新指明了方向。近年来,多媒体技术被广泛地引入到各种教学活动中,这不仅为课堂教学增添了生机,还提升了课堂教学效果,而几何画板的应用给小学数学教学带来了极大的便利。本文先简单分析小学数学教学中应用几何画板的重要性,然后着重探讨了小学数学教学中几何画板的应用,最后提出了针对性的改进策略,希望能为小学数学教学提供一定的参考。

【关键词】小学数学

几何画板

应用分析

【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2015)05-0147-01

前言:数学本身具有一定的抽象性,外加处于小学阶段的学生,其空间想象力较弱、逻辑思维不强、作图能力不高,而传统的灌输式教学模式,不利于对几何知识的理解,课堂教学效果并不理想。因此,本文对于几何画板的应用分析对于小学数学教学具有深远的影响。

一、小学数学教学中应用几何画板的重要性

(一)增强学生的逻辑思维能力,开发学生的想象力

数学具有的一定的抽象性和逻辑性,这对于逻辑思维能力和想象力较弱的小学生来说,存在一定的难度,因此,小学数学教师可针对学生的这一特点,引入几何画板,在锻炼学生逻辑思维能力和想象力的同时,消除认知障碍。这是因为几何画板十分容易操作,主要通过动态图形,向学生直观展示作图、计算等过程。几何画板作为数学教学的辅助手段,应合理使用,切忌胡乱使用。综合来说,几何画板的应用,可直观展示几何事物的全过程,便于学生的理解和记忆。

(二)信息化教学的必然要求

科学技术的快速发展有效提高了信息化技术的普及程度,信息化技术被广泛地引入到各个领域中,其中教育事业也不例外。为积极响应新课改标准,全面实现新课改目标,我们应打破传统灌输式教学模式的束缚,充分利用信息化教学手段,不断提升课堂教学效率。

二、小学数学教学中几何画板的具体应用

在制作小学数学课件时,应坚持简单、直观的原则,且便于修改,可充分提升课堂教学效率,而几何画板的应用有利于这一目标的实现,其具体应用主要表现在以下几方面:

(一)动态教学的实现

在具体的教学活动中,时常面临静态和动态相互转换的问题,通常,在数学问题的初步分析阶段,我们会用较多的文字语言帮助学生理解问题,并构建空间图像,然后进行平面作图,以此来全面分析图形的动态变化。此种教学模式要求学生应具备较强的空间想象力,否则,将会产生理解障碍。然而,几何画板的应用,较好地解决了这一问题。例如,在讲解“图形周长”这章的平行四边形周长时,如果教师仅仅通过文字的形式,描述长方形到平行四边形的抽象变化,大多数学生通常无法正确判断周长的变化,此时,教师可借助几何画板,拖拽鼠标,向学生示范从长方形到平行四边形的变化过程,学生通过直观感受,很容易得到无论图形如何变化,周长都不变的结论,因此,拉升后的平行四边形的周长和形变前的长方形的周长相同。几何画板的应用,为教师和学生搭建了交流平台,通过协作探讨,有效解决了各种数学问题,不仅刺激了学生的几何学习欲望,还锻炼了学生的观察能力,并培养了学生独立分析与解决问题的能力。

(二)空间转化的实现

在讲解“物体观察”这节内容时,教师可借助几何画板,将静态抽象物体转变成直观形象的图像,模拟三维图像,以便学生的理解和认知。教师可指导学生从不同的角度出发观察立体图形,重点观察正面、上面以及侧面,并画出立体图形的三视图,锻炼学生的空间想象力,调动数学学习积极性。

(三)问题直观化的实现

几何画板的应用可将抽象的小数的分数意义具体化,主要通过几何画板制作以下课件:鼓励学生随意修改小数大小,观察小数变化,总结归纳小数意义,这不仅能缓解教学氛围,还能丰富学生表象。

综上所述,几何画板为小学数学教学活动带来了便利,将动态教学变成现实,然而,在具体的应用过程中,仍然存在一些难点问题,例如,因教师自身素质的制约,将几何画板等同于电子版书,仅用几何画板来演示图形分解,而缺少对分解原理的阐述,无法充分发挥几何画板的教学作用。另外,因几何画板涵盖丰富、大量的知识资源,外加教材中各个章节之间存在较大的跨度,这要求学生应具备较强的逻辑思维能力,十分容易产生学习疲劳的现象,导致学习效率下降,因此,我们应针对几何画板的具体应用,进行适当调整,使其更好地融入到小学数学教学中。

三、小学数学教学中应用几何画板的改进策略

在掌握教学大纲和教学内容的基础上,借助几何画板,由浅入深地指导学生分析、探索,关注前后知识间的关联性,灵活运用,达到预期教学目标;其次,借助几何画板,直观展示教学内容,使其深入记忆教学内容,着重培养学生的数学学习兴趣,提高课堂参与度。

结语:小学数学几何可培养学生的空间想象力,锻炼学生的逻辑思维能力,并为立体几何的学习奠定了扎实的基础。因此,小学数学教师应认识到应用几何画板的重要性,结合学生自身特点,优化几何画板教学手段,提高学生的课堂参与度,进而提升小学数学的课堂教学效果。

第二篇:几何画板在数学教学中的应用

几何画板在数学教学中的应用

正安县杨兴中学:秦月

【摘要】在信息技术突飞猛进的今天,传统的教学方式已不能适应现代教育教学的要求。尤其是在数学教学这样一个比较抽象的学科教学中显得尤为突出,那么如何利用现代信息技术为现在的数学教学服务呢!几何画板是当今数学教师运用最为广泛的软件之一,本文将从以下几个方面作介绍几何画板在数学教学中的应用:几何画板在一次函数教学中的应用、在轴对称图形教学中的应用、在勾股定理教学中的应用、在求解实际问题中的简单应用。希望能起到抛砖引玉的作用。

【关键词】几何画板 函数 参数 动点

在传统的数学教学中,教师靠的主要是一张嘴、一支粉笔、一块黑板进行教学。直到今天,尤其是在我们落后乡村学校,由于各种各样的原因,这种教学方式依然主宰当前的数学课堂,显然这种方式已经不能适应当前的教育发展大趋势,如何改变这种现况,那就得借助现代信息技术,找一个适合数学教学的平台。纵观现在常用的软件,几何画板具有操作简单、功能强大的特点,是广大数学教师进行现代化数学教学理想工具。在现代的数学教学中已发挥着越来越重要的作用。

几何画板又不同于其他绘图工具,它能动态地保持给定的几何关系,便于学生自行动手在变化的图形中发现其不变的几何规律,从而打破传统纯理论数学教学的局面,成为提倡数学实验,培养学生创新能力的新新工具。把它和数学教学进行有机地整合,能为数学课堂教学营造一种动态的有规律的数学教学新环境。

一、在一次函数教学中的应用

在几何画板中,可以新建参数(即变量),然后在函数中进行引用并绘制函数图像,通过改变参数的值来观察函数图像的变化,这在传统教学中无法办到。

如在讲解一次函数y=kx+b的图像一节中,如何向学生说明函数图像与参数“K”、“b”的相互关系一直是传统教学中的重点和难点,学生难以理解,教师也难以用语言文字表达清楚;在作图时,要取不同的“k”、“b”的值,然后列表在黑板上画出多个不同的函数图像,再进行观察比较。整个过程十分繁琐,且费时费力。教师和学生的主要精力放在了重复的计算和作图上,而不是通过观察、比较、讨论而得出结论上。整个过程显得不够直观,重点不突出,学生理解起来也很难。然而在几何画板中,只需改变参数“K”、“b”的值,函数图像便可一目了然。如图:

通过不断改变参数“k”、“b”的值,从而得到不同的函数图像,引导学生观察一次函数图像变化的规律。

①当k>0时,函数值随x的增大而增大;②当k<0时,函数值随x的增大而减小;③当b>0时,函数图像相对于b=0时向上移动;④当b<0时,函数图像相对于b=0时向下移动;⑤当|k|越大时,函数图像变化越快,图像越陡峭;⑥当|k|越小时,函数图像变化越慢,图像越平滑;

经过我们改变一次函数的参数“K”、“b”的值,函数的图像会随之发生变化,这样学生就很容易理解函数图像变化的规律,从而使学生从更深层次理解一次函数的本质。

二、在轴对称图形教学中的应用

几何画板提供了四种“变换”工具,包括平移、旋转、缩放和反射变换。在图形变换的过程中,图形的某些性质始终保持一定的不变性,几何画板能很好地反应出这些特点。

在讲解轴对称图形的教学中,可充分利用几何画板中提供的图形变换功能进行讲解。首先,画一个任意三角形△ABC,然后在适当的位置画一条线段MN,并把双击它即可将其标识为镜面,这时就可以作△ABC关于对称轴MN的轴对称图形。

△ABC和△A′B′C′关于MN轴对称。任意拖动△ABC的顶点、边、对称轴,虽然图形的位置、形状和大小在发生变化,但两个图形始终关于对称轴MN对称。同时可以观察到△ABC与△A′B′C′沿MN对折后完全重合。

三、在勾股定理教学中的应用

几何画板能动态地保持平面图形中给定的几何关系,利用这一特点便于在变化的图形中发现恒定不变的几何规律。如平行、垂直,中点,角平分线等等都能在图形的变化中保持下来,不会因图形的改变而改变,这也许是几何画板中最富有魅力的地方。在平面几何的教学中如果能很好地发挥几何画板中的这些特性,就能为数学教学增辉添色。如在勾股定理的教学中,直角三角形的三边之间有着必然的联系。要弄清楚它们之间的关系,借助于几何画板,则一目了然。

在几何画板里,先画一个直角△ABC,∠C=900。从图右方的度量值可以发现,AB和AC、BC的长度已经知道,观察AB2与AC2+BC2的关系:

如果拖动顶点A(从a图到b图),我们通过改变直角三角形边的长度,从中观察边的平方的关系,发现这样一个定理:在直角三角形中,始终有斜边的平方等于两条直角边的平方和。

再如,在讲解“赵爽弦图”时,传统的教学方法只能教师在黑板上演算过程,而用几何画板更容易发现其中的不变的规律。

首先,在几何画板中构造一个正方形,然后将经过一个顶点作直线,再通过另一相邻的顶点作这条直线的垂线,得到一个交点。用同样的方法,可得出另外几个关键点,再将这几条垂线隐藏,连接对应的点,即可得到下面这个图形。分别度量AB、AF、FB的长度,最后用不同的方法来计算这个正方形的面积:⑴、直接利用正方形的面积公式;⑵、正方形的面积等于其中四个直角三角形和中间的那个小正方形的面积之和;⑶、直接使用几何画板提供的量度面积命令。这三种方法都可得出这个正方形的面积,注意观察得到的结果都是一样的。

再改变正方形的大小及其组成的直角三角形和小正方形的比例,再来观察这三种计算方法得到的结果是否一致,如下图:

四、在求解实际问题中的应用

利用几何画板不但可以给几何问题以准确生动的表达,成为教师教学上的得力“助手”,还可为教师和学生提供几何探索和发现的一个良好环境,动态是几何画板最主要的特点,也正是基于这一点,许多用一般方法不易解决的问题,用它解决起来就要容易得多,现在举例说明。

如图,已知二次函数y=ax2+bx+3的图像经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C。

(1)求顶点M及点C的坐标;

(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边行CDAN是平行四边行;

(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,如果存在,请求出点P的坐标;如果不存在,请说明理由。

分析:这道目,第(1)、(2)问都比较容易解决,第(3)问就是关于动点的,比较抽象,然而运用几何画板后,情况就变得很明显了,给解题帮助很大。

解:(1)因为二次函数经过点A、B、N,且三个点的坐标都已知,可解得二次函数的解析式为y=-x2+2x+3,可解得: C(0,3);M(1,4)。

(2)在几何画板中连接CN、AN、AD,如图: 由于已经知道C、M两点的坐标,直线y=kx+d又经过C、M两个点,可得直线的解析式为y=x+3。D点是直线与X轴的交点,可得D点的坐标为(-3,0),又因为A点的坐标为(-1,0),所以AD=2。再看C、N两点,其坐标都已知,且纵坐标都为3,可得CN与X轴平行,那么自然就与AD平行了。再由C、N两点的坐标可得CN=2,因此AD=CN;在四边形CDAN中两边AD、CN平行且相等,所以它是一个平行四边形。

(3)这个问题比较抽象,因为点P是动点。我们现在借助几何画板对这种情况进行分析。因为A、B两点是二次函数与X轴的交点,自然关于函数的对称轴对称,两点到对称轴上任意一点的距离相等。故以对称轴上的点为圆心作圆,经过其中一个交点,必定经过另外一个点,因此考虑一个点就行了。

先在二次函数的对称轴上任找一点P,连接AP,再以P为圆心,AP为半径作圆,不断的拖动P点,看看这个圆是否能与直线CD相切。如下图:

从上图中可以看出:图a中P点比较靠近X轴,所作圆与直线CD没有交点;图b中,P点离X轴较远,所作圆与直线CD相交,有两个交点。试想:图a中的P点向上移动的到达图b所在的位置过程中,中间肯定有一个点让圆与直线CD相切,如图c所示。

那么应该怎样求P点的坐标呢!看右图:

过P点作直线CD的垂线,垂足为K,要想使圆P与直线CD相切,实际上PK这时是圆P的半径。即PK=PA时,圆P与直线CD相切。

在△DEM中三个点的坐标都知道,可得DE=EM,因此△DEM是一个等腰直角三角形。同样△PMK也是等腰直角三角形,有:

2KP2=MP2 又因为:AP2=AE2+PE2,MP=ME-PE,KP=AP;其中:AE=2;PE=1;ME=4。

可解得:PE=264,P点的坐标为(1,264)。

解到这里,此题看似已完,但如果你够细心,把P点再上下拖动,会发现在X轴的下方还在一个点能使点圆P与直线CD相切,如下图:

相同的方法,可解得:PE=(264)。由于P点在X轴的下方,所以P点的坐标为(1,-(264))。

因此满足这样的点P在对称轴上有两个点: 即P1(1,264);P2(1,-(264))。

从本题中不难看出,运用几何画板给我们在解决动点问题中提供了很大的帮助,在纸上或黑板上不容易发现的问题,在几何画板上只要轻轻拖动鼠标就很容易发现,从而有效的避免了漏解情况的发生。

几何画板在数学教学中应用远远不止这些,如画直观图,在黑板上画是很费时的,但在几何画板中可用鼠标一点完成。因此,只要我们熟练掌握几何画板功能,多实践,不断与数学教学相结合,相信就能使它在数学教学中发挥的作用。

【参考文献】

[1] 田延斌.《《几何画板》教学实例》.[2] 张淑俊.《《几何画板》在数学教学中的妙用》.

第三篇:几何画板在初中数学教学中应用

几何画板在初中数学教学中应用

数学是一门严谨的科学,它具有严密的逻辑性和演绎性.“现代信息技术的广泛运用正在对数学课程内容、数学教学、数学学习等产生深刻的影响.教学中要重视利用信息技术来呈现、以往课堂教学难以呈现的内容.”在传统的教学中由于缺少某些必要的教具和动画演示,许多概念和性质对应的图形无法准确生动表示,学生只能在老师的解释和粗略的草图下进行理解,背离了数学来源于生活,又高于生活的本质,致使学生普遍认为数学抽象难学.另外,一些繁难的计算也浪费了大量时间,使课堂效率降低.为改变这些弊病,老师的教学方式和手段就必须改变.在多媒体基本普及的今天,信息技术的力量使上述问题的解决成为可能的和可行的.“有条件的地区,教学中要尽可能地使用函数计算器、计算机以及有关软件,这种现代教育手段和技术将有效地改变教学方式,提高教学的效益。”(课程标准)

在众多的信息技术中,《几何画板》软件不仅具有强大的作图、计算及动画功能,而且具有即时性与交互性,在课堂教学中适当使用《几何画板》软件辅助教学可提高教与学的质量.

经过学习和不断实践,尝试使用几何画板教学,收到了良好的教学效果。下面结合实际谈谈利用几何画板软件设计初中数学课的几点做法。

1.创设问题情境,使学生自主探究

数学是从问题开始的。每一节数学课都离不开问题,那么是教师

一道一道的讲解呢?还是由学生自己探究呢?我想这应该不是当代教师的问题。关键是问题情境的创设对学生有没有吸引力。例如:在讲解函数的最值问题时,用画板提出了这样的问题:在圆的内接矩形中,边长比是多少的矩形面积最大?(请用画板软件探索结果)

学生们很快就投入到操作和实践中,通过移动圆上的动点,比较边长的关系,不久便得出了结论:圆的内接正方形即边长比为1的矩形面积最大。教师接着又问,究竟是为什么圆的内接正方形是圆的内接矩形中面积最大的呢?学生们你一言,我一语互相讨论起来,进而在教师的引导下,利用二次函数求最值的方法,得出了证明„„ 学生在课上,经历了探索——猜想——证明,这三个数学学习的必须阶段,使得知识成为条件化的知识,加深了印象并提高了学习数学的兴趣。

2.数形结合,发展学生空间想象能力

众所周知,数形结合是一种很重要的数学思想,数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微”。“数形结合”是学习数学的重要方法,用图形解释抽象的数学现象形象、直观。因此多数教师都非常重视数形结合的教学,上课时尽量地画好图形,力求使图形展现出其变化的趋势。但是无论怎么画,怎么用一个又一个的幻灯片给学生展示,也只能给出一个“死图”,而利用画板平台教学,则可以绘制一幅幅有形有色会运动的“活”图,真正实现数形结合,增大课堂容量,达到良好的教学效果。

3.创造一个动态的、可视的教学情景,能使抽象问题形象化、直观化,激发学生的学习热情和积极性

函数是数学的重要内容,二次函数是初中教学中的一个难点。尤其是图像和各系数的关系这一内容,学生理解起来有很大困难。可以利用画板画出二次函数的图像,再适时地改变各系数的值,让学生观察图象的变化,从而可以很轻松地掌握这一规律。学生在初中首次接触到函数及其图象时难以真正理解函数定义中两个变量的对应关系及一次函数的图象是条直线,而二次函数的图象是抛物线.这时可打开几何画板用画点工具先在x轴上任意作一个点a,以点a的横坐标x为自变量,计算出对应的函数值y,然后以x,y作为点的横、纵坐标绘制点b(x,y),然后 利用动画演示追踪b点的轨迹,就可得到一次函数和二次函数的图象,同时可将b点的坐标绘制成表格.这时结合动画和表格引导学生观察表格中数据的变化讲解函数自变量和应变量的关系时,学生就能更容易理解函数的定义了,将抽象的数学思维转化为形象的图形演示,还可以使教师省去画表格的时间,提高课堂容量. 4.体现数学美,激发学生学习数学的兴趣

“数学是一种冷而严肃的美”可是它的美究竟体现在什么地方呢?教师也很难说清楚,学生更是云里雾里。在初中阶段,和谐的几何图形、优美的函数曲线都无形中为我们提供了美的素材,在以往为了让学生感受,教师花费很大的精力、体力去搜集图片,资料,在黑板上无休止地画图甚至还着色。如今,利用画板几下就可以绘出

金光闪闪的五角星、旋转变换的正方形组合等等一系列能体现数学美丽一面的图形。用它们来引入正题,学生会很快进入角色,带着问题、兴趣、期待来准备听课,效果可想而知。

例如:在讲解三角形内角和定理应用时,我首先在屏幕上迅速制作了一个有颜色变化的三角形,同学们很快就被吸引,教师跟着提出问题。三角形的三个角的度数和是多少呢?学生们七嘴八舌,议论纷纷,当教师用画板的度量功能和计算功能得出它的三个角的和为180度时,学生们惊讶不已。立刻就有同学着手证明,在总结出一般解法之后,教师进一步提出问题,四边形、五边形、六边形、七边形„„内角和的读数和是多少呢?一节课在积极热烈的气氛中进行着。

以上是教学中应用《几何画版》进行初中数学教学设计的几点做法和想法。《几何画板》作为一种新的认知工具,其独特优势是任何传统的教学手段和模型所无法替代的,而且有良好的教学效果,在实践中,教师们通过自已的努力一定会创造出更加实用和更加符合学生认知规律的方案,为学生的学习更好地服务!

充分利用媒体来优化数学课堂教学,改变一堂课的设计理念。只要我们教师充分了解学生,一心为学生的学习服务,就一定能把现在的数学课堂改造成学生学习的乐园。

第四篇:几何画板在教学中的应用案例分析

初中数学课堂教学案例分析

碧鸡中学

晏仲鹤

几何画板是一个通用的数学、物理教学环境,提供丰富而方便的创造功能使用户可以随心所欲地编写出自己需要的教学课件。软件提供充分的手段帮助用户实现其教学思想,只需要熟悉软件的简单的使用技巧即可自行设计和编写应用范例,范例所体现的并不是编者的计算机软件技术水平,而是教学思想和教学水平。可以说几何画板是最出色的教学软件之一。下面是我在教学《圆内接四边形的性质》时使用几何画板的案例:

【教学片段】 1.概念学习

四个顶点都在圆上的的四边形叫圆内接四边形。2.探讨性质

(1)打开几何画板,任意画⊙O和⊙O的内接四边形ABCD。

(2)度量可测量的所有值(圆的半径和四边形的边,内角,对角线,周长,面积,这些值的度量几何画板软件可以自动完成),并观察这些值之间的关系(大小、和差、倍分)。

(3)改变圆的半径大小,这些量有无变化?由(2)观察得出的某些关系有无变化?(4)移动四边形的顶点,这些量有无变化?由(2)观察得出的某些关系有无变化? ⑹用文字语言表述刚才实验得出来的结论。4.性质的证明及巩固练习

猜想结论:圆内接四边形的对角互补。证明猜想: ……

【案例分析】

这一教学片段的某些细节还需要进一步改进完善,但如实反映了目前数学课堂教学时使用多媒体的一些情况,本课例在引导学生得出圆内接四边形的性质时,通过使用几何画板,从而实现了改变圆的半径,移动四边形的顶点等,从而使初中平面几何教学发生了重大的变化,那就是让图形出来说话,充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。计算机所特有的,对数学活动过程的展示,对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想。

如教材中有这样一个平面几何题“证明:顺次连接四边形四条边的中点,所得的四边形是平行四边形。”对于这个问题,也可以用几何画板进行动态演示,用计算机来演示一个形状不断变化的四边形,让学生观察它们四条边中点的连线组成一个什么样的特殊四边形。在学生完成猜想和证明过程后,我们进而可提出如下问题:”要使顺次连接四条边的中点所得的四边形是菱形,那么对原来的四边形应有哪些新的要求?如果要使所得的四边形是正方形,还需要有什么新的要求?”通过这些改造,常规题便具有了“开放题”的形式,例题的功能也可更充分地发挥。而通过几何画板的动态演示,也让这个抽象的几何问题变得更直观,更易于理解和记忆。

第五篇:几何画板在小学数学教学中的有效应用

几何画板在小学数学教学中的有效应用

摘要:数学教学是我国小学教育教学活动中的一项重要内容,科学、高效的课程教学对促进学生学科知识储备,培养其数学思想,提高学生学习水平等均具有重要作用。同时,现阶段已有多项教研报告指出,在小学数学课堂教学中合理运用几何画板辅助教学,可有效激发学生学习兴趣,营造良好课堂氛围,增强学生对教学内容的理解,提高教学效率。本文主要从“几何画板”出发进行分析,研究并探讨了新时期背景下于小学数学教学中借助几何画板提高教学效率的有效对策。

关键词:小学数学;几何画板;运用策略

中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2018)05-0109

?缀位?板作为当前小学数学教学中的一种重要信息设备,是一种全新的教学方法,促进了教学方法的创新,将传统的题海教学转变为信息化教学。将结合画板运用到较为抽象的数学概念中,降低了数学教学的难度,强化了学生的理解能力,促进数学教学取得良好的教学效果。但是由于小学生的逻辑思维能力不强,无法深入了解数学知识点,导致数学教学效率低下,无法提升小学数学教学效果,给小学数学教学带来诸多挑战。

一、吸引学生学习兴趣

少部分教师在教学过程中不愿尝试几何画板,认为自身多年的教育经验要来得更加实际。单纯注重如何把知识点正确地讲出来,却没有考虑到如何增加学生对于课程学习的兴趣。对于几何画板研究得不够透彻,了解得不够深入,没有看到几何画板的优势所在,对运用几何画板的意识还比较单薄。

在小学数学教学阶段,培养学生对于数学的兴趣是最重要的任务。在使用几何画板教学的过程中,教师可以让学生在课堂上自己操作,这样既能使他们记住课程内容,同时也能增加课程的趣味性。针对数学中的难点,教师应当利用好几何画板的特性,把难以理解的数量关系,转化为容易看清的几何关系,以此来帮助学生更好地理解小学数学的含义,也能培养他们独立思考的能力。例如,在讲述圆的相关知识时,教师可以在几何画板中事先做出圆形轨迹的运动动画。先让学生看几何画板上的动画,再根据其中的内容讲述里面的数学含义。最后让学生自己思考,提出问题,培养他们自主学习、独立思考的能力。

二、降低学生学习难度

传统的数学教学更注重逻辑思维的全过程,导致忽略了学生是否直观掌握数学知识。新课程的推出,使得这类情况正在改变。新课程标准要求教师注重学生直观思维,处理好直观与抽象的关系。而几何画板可以很形象地展示教学内容,把动态、形象的内容展示给学生,让教学内容更加直观、形象,有利于提高学生的学习兴趣,降低学习难度及教师的教学难度。

例如,通过几何画板创建动态动画效果,“让圆的半径不变的情况下,使直线到圆心的距离从0开始增大”,这样学生在直观环境下看到直线与圆相交及分开的动态过程,也更容易发现圆和直线的位置关系。通过几何画板这样处理,让学生在学习过程中变得更加轻松,当然小学数学的课堂效率也随之提高了。

三、提高学生探究能力

在小学数学教学中,积极地运用几何画板,有助于学生对未知数学世界的探求。比如在进行“圆的面积”这一课节的教学的时候,可以创设以下情境:在一块青草地上,将一头羊拴在正方形的一个角点处,让羊一边行走一边吃草。这个时候,教师可以发问:“同学们,通过以上的图画,你们有什么问题?在羊的运行的轨迹之内,羊可以吃到多大面积的草?”这时,组织小学生学习探索――积极地对课件进行自主的拖动。在拖动中,让小学生能够直观地感受和体会。学生在操作中,对于图形中的线段尺度进行不断的调适,由此学生就会积极地提出一些在课件设置时候没有预设到的问题。

四、数形结合巩固新知

在教学中,教师可以利用几何画板,引导学生认识数形结合的概念,帮助学生巩固新知。教师应当有针对性地选择含有数形结合概念的题目让学生利用几何画板来学习。在教学初期,教师应当发挥好引导作用,利用几何画板,引导学生从数形结合的角度去解决问题。经过一段时间的训练之后,教师可以给学生布置相应的任务,由学生自己动手利用几何画板解决问题,并且运用在课堂上学到的各种技能,不断地去发现自己在学习中遇到的问题,在教师的帮助之下得到巩固和提升。特别是针对小学高年级学生,教师应适当地将小学与初中的数学学习进行连接,从长远的角度打算,学生从数形结合的角度入手来认识数学,并且在教师的帮助下,利用数形结合的形式来接受和巩固各种知识。

五、提高学生的创新能力

随着教育事业的不断发展,家长对学生的要求也在不断提高。因此,为了满足家长的要求,提高学生的学习成绩,在数学教学过程中,教师就应着重培养学生的创新能力,使学生能够实现全面发展。比如为了使学生掌握三角形的特性,并理解直角三角形、等边三角形、等腰三角形的特点,在课堂上教师可以利用几何画板,通过不同角度的三角板工具,让学生拼凑出直角三角形、等边三角形以及等腰三角形,然后对这三种三角形的角度进行测量,总结不同点。在拼凑时,有的学生使用两个相同的等腰直角三角形拼成一个等腰三角形;有的学生使用两个相同的直角三角形拼成一个等腰三角形。在实践过程中培养了学生的创新意识,提高了学生的创新能力,使学生能够发散思维,想出多种组合。

六、结语

几何画板具有强大、多样的辅助功能,其能够清晰地阐述数量和空间形状之间的关系,在小学数学教学中运用几何画板,能够起到重要的辅助作用。如果不能合理运用几何画板,也会影响小学数学教学的成效。因此,在小学数学实践教学活动中,教师必须合理运用几何画板工具,针对不同的知识点和题型及时引入几何画板,才能提高小学数学教学质量。

参考文献:

[1] 李金臣.形象感知,动态生成――几何画板在小学数学教学中的有效应用[J].当代教育实践与教学研究:电子刊,2017(2).[2] 常莉燕.几何画板在小学数学教学中的运用[J].文理导航(下旬),2017(3).(作者单位:浙江省乐清市北白象镇第七小学 325600)

下载关于小学数学教学中几何画板的应用分析5则范文word格式文档
下载关于小学数学教学中几何画板的应用分析5则范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几何画板在小学数学平面图形中的应用

    几何画板在小学数学平面图形中的应用 王计山 南和县新区小学 摘要:在本文中我们通过几个实例说明几何画板课件在小学数学平面图形教学中的广泛应用, 并指出几何画板在解决其......

    几何画板在数学教学中的应用[五篇范文]

    几何画板在数学教学中的应用 《新课程标准》指出:“数学课程的设计与实施应重视运用现代技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供......

    《几何画板》在初中数学教学中的应用实例

    《几何画板》在初中数学教学中的应用实例 摘要:《几何画板》是实现“数形结合”思想的一个有效的辅助教学工具,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有......

    《几何画板》与数学教学

    存档编号 赣南师范学院科技学院学士学位论文 《几何画板》与数学教学 届 别 2012届 专 业 数学与应用数学 学 号 0820151207 姓 名 程思华 指导老师 黄进红 完成日期 201......

    几何画板在小学数学教学中的应用 (优秀范文五篇)

    几何画板在小学数学教学中的应用 【摘要】:《几何画板》软件是目前应用在数学教学方面最为广泛的软件,是一种形象化的强有力的几何工具,是21世纪的动态几何。《几何画板》提供了......

    几何画板在现代教学中的应用

    几何画板在现代教学中的应用 几何画板5.06是几何画板的最新版本,备受数学老师青睐。众多数学老师表示几何画板不仅能够帮助他们制作出生动的几何课件,更加有助于学生理解教学......

    浅谈几何画板在教学中的应用

    浅谈《几何画板》在数学教学中的应用 常宁市职业中专 谭新芽 对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在......

    几何画板在教学中的应用5篇

    几何画板在教学中的应用 新都区龙安中学 骆春梅 几年来我在数学学科的”整合”实践中,应用”几何画板”的辅助教学实验获得了一些经验,尤其在培养学生”创新思想”和”实践能......