几何画板在算法教学中的应用

时间:2019-05-15 03:54:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《几何画板在算法教学中的应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《几何画板在算法教学中的应用》。

第一篇:几何画板在算法教学中的应用

几何画板在算法教学中的应用

摘要摘要:中学数学教学存在一些传统教学手段难以解决的知识难点,如多次计算、重复作图等,这些问题利用算法和程序设计则较易解决。考虑到目前中学数学教师编程能力较弱,且学生普遍难以接受编程学习,因此采用目前比较流行的几何画板的迭代功能来代替编程功能,既可将教师们从繁琐的重复劳动中解放出来,又有助于学生对算法的理解接受。教学实践表明,几何画板有助于降低难度,透视本质,创建模型,能提高学生的作图能力、解题能力、编程能力,全面提升学生的数学才能。

关键词关键词:几何画板;算法教学;信息技术

DOIDOI:10.11907/rjdk.151021

中图分类号:G434

文献标识码:A文章编号文章编号:16727800(2015)004017303

0引言

算法是高中数学教学中的重要内容,属于高考必考范畴,对于培养学生的抽象思维能力和逻辑思维能力具有重要意义[1]。但由于高考并不进行上机操作,一些教师本着应试教育的态度,只要求学生能看懂框图,对学生能力的培养不够重视。算法和程序设计需要较高的抽象思维能力和逻辑思维能力,探索出一条有效的教学方式,既能使学生掌握理论知识,又能在一定程度上培养学生动手能力,是一个颇具意义的研究课题。

直接让学生上机编程,对高中生而言有一定难度。因此在高中阶段,教学生算法,培养其动手能力需要找一个初级入门的阶梯。近几年的教学实践表明,可利用几何画板作为踏板,帮助学生入门[23]。在教学中引入几何画板符合学生认知规律,遵循先易后难、先具体后抽象、先基本后提高的教学原则,让学生逐步掌握知识、逐步深化学习。几何画板的操作与数学思维完全吻合,可见即可得,简单的操作能实现丰富的图形效果,有助于提高学生兴趣,激发学生学习的主动性与积极性。

1几何画板的迭代功能

几何画板是一款优秀的教学辅助软件,由人民教育出版社从美国引进并汉化。几何画板与其它软件平台如Flash、Powerpoint 相比,具有无需程序设计、操作界面直观、能组合各类数学教学资源、易学易用等优点。这些优点使其受到了越来越多人的青睐,几何画板教学逐渐成为21世纪的动态几何[4]。

几何画板不需编程,是指不需要像Flash那样用具体的程序语言编程,但编程思想在几何画板中却得到了充分体现。在计算机编程学习入门阶段,当学习了赋值语句和FOR循环语句等基础知识后,通常教材上会给出这样一个例子:求和S=1+2+3……100。此题因高斯而出名,答案为5 050。若用计算机编程,步骤也相当简单:

(1)新建参数S和i,分别赋值为0和1(初始状态的S可以看作是一个没装东西的大容器)。

(2)将S+i赋值给S,将i+1赋值给i。

(3)新建循环参数n,赋值为100,并将步骤(2)重复n次(此时的S是动态变化的,该过程可看作是陆续往一个大容器向里面加“数”)。

(4)循环结束,输出最后结果S。

利用几何画板来解决此题的思路如下:

①新建参数S和i,分别赋值为0和1;

②计算S+i,i+1,新建循环参数n,赋值为99;

③依次选中S、i、n,按住Shift作深度迭代:S―>S+i,i―>i+1,如图1所示;

④生成迭代数据,如表1所示。

笔者对迭代的本质作如下理解:迭指的是多次,代指的是替换,迭代就是指一个动作或操作重复多次,每一次迭代得到的结果作为下一次迭代的初始值。具体到代数计算,迭代可看作使用输入值来计算输出值的不断重复计算过程,重复地将前一个计算中得到的计算结果作为下一个计算的输入值。

由此可见,几何画板具备一定的“编程”能力。类似例子还有很多,如∑ni=1i2、∑ni=11i2。高中教材上的等差、等比数列,大学教材上的泰勒展式等计算都可以用这种方法。如果将加法换为乘法,或将加法与乘法相结合,还可计算如n!、∑ni=1i!等。

2几何画板迭代功能应用

2.1微积分课件制作

在教学中,将三角形的高n等分,做出n-1个矩形,用迭代来表现当n增大时矩形面积的和与三角形面积的接近程度,其方法如下:

首先需要作“任意等分线段”。①作线段AB为被等分线段;②建参数n,作为线段的等分数,计算1n、n-1;③点A为放缩中心,以1n为放缩比,放缩点为B,缩放后得到点B′;④依次选中点A、n、n-1,以n-1为参数作深度迭代,A―>B′,n―>n-1,得到图2;⑤意调整参数n,等分数随之变化,真正做到任意等分线段,如图3所示。

这种等分线段的思想是动态的,即要将AB线段n等分,只要在作好点B′后,将B′B线段n-1等分。

接下来彻底解决该问题:①作任意△ABC,新建参数n,将n-1作为矩形个数;②用放缩变换,即可轻松作出图4;③作垂线,得到点D、E,依次连接4点,得到第一个矩形,如图5所示;④运用等分线段的思想,依次选中A、B、n、n-1,以n-1为参数作深度迭代,A―>F,B―>G,n―>n-1,得到图6;⑤调整参数n,矩形个数也随之变化,真正意义上做到了动态演示,如图

7、图8所示,完整地表现了当n增大时矩形面积和与三角形面积的接近程度。

2.2分形课件制作

分形几何是研究不规则图形和现象的新兴数学分支,是描述复杂形态的一种新的几何语言。教授学生分形知识可以使学生感受数学的美学魅力,培养其对分形的兴趣,建立对分形的初步认识,开阔数学视野,体验观察世界的全新角度和方式,形成关注科技前沿的意识和创新意识,对学生日后的发展具有重要意义。分形具有5个基本特征:形态不规则性、结构精细性、局部与整体自相似性、维数非整数性、生成迭代性,具有如上性质的图形被称作“分形”。通常情况下,分形都是极度对称的,甚至对称到了完美的地步,但生成这种图形不需要非常复杂的程序,它们具有无限的细节表面,可以使用递归算法来实现。本文主要介绍如何运用几何画板来制作谢尔品斯基三角形。

数列xn=axn-1+b是一个非常常见的数列序列,随着参数a、b不同,最终所得结果可能收敛,也可能发散。可利用几何画板来研究该数列所生成的图形。

先给出两个特殊数列:

数列1:任意给定一个数k,将它乘以0.5得到一个新的数,将得到的新数乘以0.5,再得到一个新的数。递推公式为:xn=0.5xn-1。以此类推,由无穷等比递缩数列的性质可知,最后那个数必定是0,而得到0之后,再乘以0.5就不再得到新的数了,可见0是f(x)=0.5x的不动点。

数列2:任意给定一个数k,将它乘以0.5,再加上0.5之后得到一个新的数,然后将得到的这个新数乘以0.5,再加上0.5之后又得到一个新的数。递推公式为:xn=0.5xn-1+0.5。以此类推,由无穷等比递缩数列的性质可知,最后那个数必定是1,而得到1之后,再乘以0.5,加上0.5就不再得到新的数了,可见1是f(x)=0.5x+0.5的不动点。

(1)定义坐标系,作任意点A,测量A的横、纵坐标xA、yA。

(2)计算0.5xA、0.5yA、0.5xA+0.5、0.5yA+0.5,作坐标点B(0.5xA,0.5yA+0.5)、C(0.5xA,0.5yA)、D(0.5xA+0.5,0.5yA+0.5)。

(3)新建参数t=10,选中点A和参数t,按住Shift键,在变换菜单中选择带参数的迭代,点击点B,并按Ctrl+A,添加新的映射,点击点C,再按Ctrl+A,添加新的映射,点击点D。也即将点A依次迭代到B、C、D 三点。这时出现的图像会有杂点。适当调整点A的位置,杂点消失,再隐藏所有点,如图9所示。

(4)如果觉得色彩过于单调,可以在建立BCD三点之后,测量三点的横纵坐标,计算横纵坐标和,并除以2,得到3个数,并将这3个数作为BCD三点的颜色参数(设置颜色参数的方法如下:①选择该点与参数;②在显示菜单中选颜色――参数,然后按确定)。其它步骤不变,得到图10。

2.3几何画板“编程”优势与不足

几何画板迭代完全按数学意义逐步完成,这对训练学生的逻辑思维特别有利,不像Mathematica那样,跳过思维过程只留下最终结果。同时,中学生使用几何画板学习数学,对进一步学习程序语言编程大有帮助。但几何画板也有其不足,其计算只能精确到十万分之一,有时不能满足要求,例如∑ni=11i2的结果只能是1.644 93,而不同于Mathematica算得的精确结果π26。

3结语

从上述例子可知,将几何画板应用于教学十分有趣,常常会给广大师生以惊喜。学几何画板,不能将其看作是一款计算机软件,而应该把它看作是数学思想的一个具体载体。几何画板表面上没有编程功能,但其拥有的迭代功能在一定程度上可代替编程环境,甚至可以说,在中学数学算法教学中,几何画板的这一功能比C、VB等程序语言更合适。如何使几何画板的迭代功能发挥更大作用,尚有待进一步研究。

参考文献参考文献:

[1]宋益大.信息技术和数学教学之关系的思考与研究[J].兵团教育学院学报,2005(1):5153.[2]张景中,李浩.实迭代――解数学题的逆向思维[M].长沙:湖南教育出版社,1991.[3]刘同军.几何画板在数学教学中的应用[M].青岛:中国石油大学出版社,2005.[4]江春莲,彭翕成,杨世军.促进现代信息技术在农村中学数学教学中的应用――现代信息技术在湖北省农村中学数学教学中实施现状的调查与思考[J].湖北教育,2008(11):1519.责任编辑(责任编辑:孙娟)

第二篇:几何画板在数学教学中的应用

几何画板在数学教学中的应用

正安县杨兴中学:秦月

【摘要】在信息技术突飞猛进的今天,传统的教学方式已不能适应现代教育教学的要求。尤其是在数学教学这样一个比较抽象的学科教学中显得尤为突出,那么如何利用现代信息技术为现在的数学教学服务呢!几何画板是当今数学教师运用最为广泛的软件之一,本文将从以下几个方面作介绍几何画板在数学教学中的应用:几何画板在一次函数教学中的应用、在轴对称图形教学中的应用、在勾股定理教学中的应用、在求解实际问题中的简单应用。希望能起到抛砖引玉的作用。

【关键词】几何画板 函数 参数 动点

在传统的数学教学中,教师靠的主要是一张嘴、一支粉笔、一块黑板进行教学。直到今天,尤其是在我们落后乡村学校,由于各种各样的原因,这种教学方式依然主宰当前的数学课堂,显然这种方式已经不能适应当前的教育发展大趋势,如何改变这种现况,那就得借助现代信息技术,找一个适合数学教学的平台。纵观现在常用的软件,几何画板具有操作简单、功能强大的特点,是广大数学教师进行现代化数学教学理想工具。在现代的数学教学中已发挥着越来越重要的作用。

几何画板又不同于其他绘图工具,它能动态地保持给定的几何关系,便于学生自行动手在变化的图形中发现其不变的几何规律,从而打破传统纯理论数学教学的局面,成为提倡数学实验,培养学生创新能力的新新工具。把它和数学教学进行有机地整合,能为数学课堂教学营造一种动态的有规律的数学教学新环境。

一、在一次函数教学中的应用

在几何画板中,可以新建参数(即变量),然后在函数中进行引用并绘制函数图像,通过改变参数的值来观察函数图像的变化,这在传统教学中无法办到。

如在讲解一次函数y=kx+b的图像一节中,如何向学生说明函数图像与参数“K”、“b”的相互关系一直是传统教学中的重点和难点,学生难以理解,教师也难以用语言文字表达清楚;在作图时,要取不同的“k”、“b”的值,然后列表在黑板上画出多个不同的函数图像,再进行观察比较。整个过程十分繁琐,且费时费力。教师和学生的主要精力放在了重复的计算和作图上,而不是通过观察、比较、讨论而得出结论上。整个过程显得不够直观,重点不突出,学生理解起来也很难。然而在几何画板中,只需改变参数“K”、“b”的值,函数图像便可一目了然。如图:

通过不断改变参数“k”、“b”的值,从而得到不同的函数图像,引导学生观察一次函数图像变化的规律。

①当k>0时,函数值随x的增大而增大;②当k<0时,函数值随x的增大而减小;③当b>0时,函数图像相对于b=0时向上移动;④当b<0时,函数图像相对于b=0时向下移动;⑤当|k|越大时,函数图像变化越快,图像越陡峭;⑥当|k|越小时,函数图像变化越慢,图像越平滑;

经过我们改变一次函数的参数“K”、“b”的值,函数的图像会随之发生变化,这样学生就很容易理解函数图像变化的规律,从而使学生从更深层次理解一次函数的本质。

二、在轴对称图形教学中的应用

几何画板提供了四种“变换”工具,包括平移、旋转、缩放和反射变换。在图形变换的过程中,图形的某些性质始终保持一定的不变性,几何画板能很好地反应出这些特点。

在讲解轴对称图形的教学中,可充分利用几何画板中提供的图形变换功能进行讲解。首先,画一个任意三角形△ABC,然后在适当的位置画一条线段MN,并把双击它即可将其标识为镜面,这时就可以作△ABC关于对称轴MN的轴对称图形。

△ABC和△A′B′C′关于MN轴对称。任意拖动△ABC的顶点、边、对称轴,虽然图形的位置、形状和大小在发生变化,但两个图形始终关于对称轴MN对称。同时可以观察到△ABC与△A′B′C′沿MN对折后完全重合。

三、在勾股定理教学中的应用

几何画板能动态地保持平面图形中给定的几何关系,利用这一特点便于在变化的图形中发现恒定不变的几何规律。如平行、垂直,中点,角平分线等等都能在图形的变化中保持下来,不会因图形的改变而改变,这也许是几何画板中最富有魅力的地方。在平面几何的教学中如果能很好地发挥几何画板中的这些特性,就能为数学教学增辉添色。如在勾股定理的教学中,直角三角形的三边之间有着必然的联系。要弄清楚它们之间的关系,借助于几何画板,则一目了然。

在几何画板里,先画一个直角△ABC,∠C=900。从图右方的度量值可以发现,AB和AC、BC的长度已经知道,观察AB2与AC2+BC2的关系:

如果拖动顶点A(从a图到b图),我们通过改变直角三角形边的长度,从中观察边的平方的关系,发现这样一个定理:在直角三角形中,始终有斜边的平方等于两条直角边的平方和。

再如,在讲解“赵爽弦图”时,传统的教学方法只能教师在黑板上演算过程,而用几何画板更容易发现其中的不变的规律。

首先,在几何画板中构造一个正方形,然后将经过一个顶点作直线,再通过另一相邻的顶点作这条直线的垂线,得到一个交点。用同样的方法,可得出另外几个关键点,再将这几条垂线隐藏,连接对应的点,即可得到下面这个图形。分别度量AB、AF、FB的长度,最后用不同的方法来计算这个正方形的面积:⑴、直接利用正方形的面积公式;⑵、正方形的面积等于其中四个直角三角形和中间的那个小正方形的面积之和;⑶、直接使用几何画板提供的量度面积命令。这三种方法都可得出这个正方形的面积,注意观察得到的结果都是一样的。

再改变正方形的大小及其组成的直角三角形和小正方形的比例,再来观察这三种计算方法得到的结果是否一致,如下图:

四、在求解实际问题中的应用

利用几何画板不但可以给几何问题以准确生动的表达,成为教师教学上的得力“助手”,还可为教师和学生提供几何探索和发现的一个良好环境,动态是几何画板最主要的特点,也正是基于这一点,许多用一般方法不易解决的问题,用它解决起来就要容易得多,现在举例说明。

如图,已知二次函数y=ax2+bx+3的图像经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C。

(1)求顶点M及点C的坐标;

(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边行CDAN是平行四边行;

(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,如果存在,请求出点P的坐标;如果不存在,请说明理由。

分析:这道目,第(1)、(2)问都比较容易解决,第(3)问就是关于动点的,比较抽象,然而运用几何画板后,情况就变得很明显了,给解题帮助很大。

解:(1)因为二次函数经过点A、B、N,且三个点的坐标都已知,可解得二次函数的解析式为y=-x2+2x+3,可解得: C(0,3);M(1,4)。

(2)在几何画板中连接CN、AN、AD,如图: 由于已经知道C、M两点的坐标,直线y=kx+d又经过C、M两个点,可得直线的解析式为y=x+3。D点是直线与X轴的交点,可得D点的坐标为(-3,0),又因为A点的坐标为(-1,0),所以AD=2。再看C、N两点,其坐标都已知,且纵坐标都为3,可得CN与X轴平行,那么自然就与AD平行了。再由C、N两点的坐标可得CN=2,因此AD=CN;在四边形CDAN中两边AD、CN平行且相等,所以它是一个平行四边形。

(3)这个问题比较抽象,因为点P是动点。我们现在借助几何画板对这种情况进行分析。因为A、B两点是二次函数与X轴的交点,自然关于函数的对称轴对称,两点到对称轴上任意一点的距离相等。故以对称轴上的点为圆心作圆,经过其中一个交点,必定经过另外一个点,因此考虑一个点就行了。

先在二次函数的对称轴上任找一点P,连接AP,再以P为圆心,AP为半径作圆,不断的拖动P点,看看这个圆是否能与直线CD相切。如下图:

从上图中可以看出:图a中P点比较靠近X轴,所作圆与直线CD没有交点;图b中,P点离X轴较远,所作圆与直线CD相交,有两个交点。试想:图a中的P点向上移动的到达图b所在的位置过程中,中间肯定有一个点让圆与直线CD相切,如图c所示。

那么应该怎样求P点的坐标呢!看右图:

过P点作直线CD的垂线,垂足为K,要想使圆P与直线CD相切,实际上PK这时是圆P的半径。即PK=PA时,圆P与直线CD相切。

在△DEM中三个点的坐标都知道,可得DE=EM,因此△DEM是一个等腰直角三角形。同样△PMK也是等腰直角三角形,有:

2KP2=MP2 又因为:AP2=AE2+PE2,MP=ME-PE,KP=AP;其中:AE=2;PE=1;ME=4。

可解得:PE=264,P点的坐标为(1,264)。

解到这里,此题看似已完,但如果你够细心,把P点再上下拖动,会发现在X轴的下方还在一个点能使点圆P与直线CD相切,如下图:

相同的方法,可解得:PE=(264)。由于P点在X轴的下方,所以P点的坐标为(1,-(264))。

因此满足这样的点P在对称轴上有两个点: 即P1(1,264);P2(1,-(264))。

从本题中不难看出,运用几何画板给我们在解决动点问题中提供了很大的帮助,在纸上或黑板上不容易发现的问题,在几何画板上只要轻轻拖动鼠标就很容易发现,从而有效的避免了漏解情况的发生。

几何画板在数学教学中应用远远不止这些,如画直观图,在黑板上画是很费时的,但在几何画板中可用鼠标一点完成。因此,只要我们熟练掌握几何画板功能,多实践,不断与数学教学相结合,相信就能使它在数学教学中发挥的作用。

【参考文献】

[1] 田延斌.《《几何画板》教学实例》.[2] 张淑俊.《《几何画板》在数学教学中的妙用》.

第三篇:几何画板在现代教学中的应用

几何画板在现代教学中的应用

几何画板5.06是几何画板的最新版本,备受数学老师青睐。众多数学老师表示几何画板不仅能够帮助他们制作出生动的几何课件,更加有助于学生理解教学内容,并在长期的教学中提高学生的数学理解能力。本教程将向大家介绍几何在现代教学中的应用。

几何画板在教学中的应用示例

一、几何画板在低年级的应用

低年级的学生很容易被几何画板生动的特性所吸引,从而可以非常迅速地掌握这些基础技巧。几何画板可以帮助学生们在案例中快速地学习和培养数形转换的能力,从而更深刻的了解分数计算、数据统计和代数学。

二、几何画板在代数学中的应用

有些数学问题,虽然可以通过代数演算得到答案,但是还是会觉得不够直观,给人知其然而不知其所以然的感觉。这时,我们可以借助几何画板,画出数学图形,从几何的角度审视原题,帮助学生更直观地理解原题中的数学本质。

三、几何画板在几何学中的应用

利用几何画板可以画出非常精确的图形,必要时还可以将图像“放大”,获得更精细的图像,帮助学生发现解答中的疏忽或错误,并引导学生进一步思考错解 的原因。学生还可以通过直接操纵几何图形的构造、变换、测量和动画进行深入的概念理解并提高学习信心,还可以有效地促进学生之间的学习交流及他们的推理和 证明的能力。

四、几何画板在高等数学中应用 几何画板不仅为数学实验提供可操作的模型,而且为数学猜想提供验证的工具。如学生们可以使用几何画板绘制以几何图形为代表的复杂图形、为微积分等创 建动态模型。除了强大的函数绘图功能,了解几何画板那高级教程的学生还可以使用自定义工具、基因座、自定义转换、数字和几何迭代等功能来构建或编辑数学模 型。

综上所述,可见在现代教学中几何画板的应用还是比较广泛,是全国初高中人教版教材指定软件。几何画板5.06版本在之前的版本基础上进行了大量的改进,可以为广大用户带来更加高效便捷的使用体验。

第四篇:浅谈几何画板在教学中的应用

浅谈《几何画板》在数学教学中的应用

常宁市职业中专 谭新芽

对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家A.H.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。”因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革──用计算机辅助教学,改善人们的认知环境──越来越受到重视。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。那么,《几何画板》在高中数学教学中有哪些应用呢?作为一名高中数学教师笔者就此谈几点体会:

一、《几何画板》在高中代数教学中的应用

函数”是中学数学中最基本、最重要的概念,它的概念和思维方法渗透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻划,这又决定了它是对学生进行素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。”函数的两种表达方式──解析式和图象──之间常常需要对照(如研究函数的单调性、讨论方程或不等式的解的情况、比较指数函数和对数函数图象之间的关系等)。为了解决数形结合的问题,在有关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。

具体说来,可以用《几何画板》根据函数的解析式快速作出函数的图象,并且可以在同一个坐标系中作出多个函数的图象,如在同一个直角坐标系中作出函数y2x和y12的图象,比较图象的形状和位置,归纳指数函数的性质;还可以作出含有若干参数的函数图象,当参数变化时函数图象也相应地变化,如在讲函数y=Asin(ωx+φ)的图象时,传统教学只能将A、ω、φ代入有限个值,观察各种情况时的函数图象之间的关系;利用《几何画板》则可以以线段b、T的长度和A点到x轴的距离为参数作图(如图1),当拖动两条线段的某一端点(即改变两条线段的长度)时分别改变三角函数的首相和周期,拖动点A则改变其振幅,这样在教学时既快速灵活,又不失一般性。

《几何画板》在高中代数的其他方面也有很多用途。例如,借助于图形对不等式的一些性质、定理和解法进行直观分析──由“半径不小于半弦”证明不等式“a+b≥2(a、b∈R+)等;再比如,讲解数列的极限的概念时,作出数列an=10-n的图形(即作出一个由离散点组成的函数图象),观察曲线的变化趋势,并利用《几何画板》的制表功能以“项数、这一项的值、这一项与0的绝对值”列表,帮助学生直观地理解这一较难的概念。

二、《几何画板》在立体几何教学中的应用

立体几何是在学生已有的平面图形知识的基础上讨论空间图形的性质;它所用的研究方法是以公理为基础,直接依据图形的点、线、面的关系来研究图形的性质。从平面图形到空间图形,从平面观念过渡到立体观念,无疑是认识上的一次飞跃。初学立体几何时,大多数学生不具备丰富的空间想象的能力及较强的平面与空间图形的转化能力,主要原因在于人们是依靠对二维平面图形的直观来感知和想象三维空间图形的,而二维平面图形不可能成为三维空间图形的真实写照,平面上绘出的立体图形受其视角的影响,难于综观全局,其空间形式具有很大的抽象性。如两条互相垂直的直线不一定画成交角为直角的两条直线;正方体的各面不能都画成正方形等。这样一来,学生不得不根据歪曲真象的图形去想象真实情况,这便给学生认识立体几何图形增加了困难。而应用《几何画板》将图形动起来,就可以使图形中各元素之间的位置关系和度量关系惟妙惟肖,使学生x 2 从各个不同的角度去观察图形。这样,不仅可以帮助学生理解和接受立体几何知识,还可以让学生的想象力和创造力得到充分发挥。

像在讲二面角的定义时(如图2),当拖动点A时,点A所在的半平面也随之转动,即改变二面角的大小,图形的直观地变动有利于帮助学生建立空间观念和空间想象力;在讲棱台的概念时,可以演示由棱锥分割成棱台的过程(如图3),更可以让棱锥和棱台都转动起来,使学生在直观掌握棱台的定义,并通过棱台与棱锥的关系由棱锥的性质得出棱台的性质的同时,让学生欣赏到数学的美,激发学生学习数学的兴趣;在讲锥体的体积时,可以演示将三棱柱分割成三个体积相等的三棱锥的过程(如图4),既避免了学生空洞的想象而难以理解,又锻炼了学生用分割几何体的方法解决问题的能力;在用祖恒原理推导球的体积时,运用动画和轨迹功能作图5,当拖动点O时,平行于桌面的平面截球和柱锥所得截面也相应地变动,直观美丽的画面在学生学得知识的同时,给人以美的感受,创建一个轻松、乐学的氛围。

三、《几何画板》在平面解析几何教学中的应用

平面解析几何是用代数方法来研究几何问题的一门数学学科,它研究的主要问题,即它的基本思想和基本方法是:根据已知条件,选择适当的坐标系,借助形和数的对应关系,求出表示平面曲线的方程,把形的问题转化为数来研究;再通过方程,研究平面曲线的性质,把数的研究转化为形来讨论。而曲线中各几何量受各种因素的影响而变化,导致点、线按不同的方式作运动,曲线和方程的对应关系比较抽象,学生不易理解,显而易见,展示几何图形变形与运动的整体过程在解析几何教学中是非常重要的。这样,《几何画板》又以其极强的运算功能和图形图象功能在解析几何的教与学中大显身手。如它能作出各种形式的方程(普通方程、参数方程、极坐标方程)的曲线;能对动态的对象进行“追踪”,并显示该对象的“轨迹”;能通过拖动某一对象(如点、线)观察整个图形的变化来研究两个或两个以上曲线的位置关系。

具体地说,比如在讲平行直线系y=x+b或中心直线系y=kx+2时,如图6所示,分别拖动图(1)中的点A和图(2)中的点B时,可以相应的看到一组斜率为1的平行直线和过定点(0,2)的一组直线(不包括y轴)。再比如在讲椭圆的定义时,可以由“到两定点F1、F2的距离之和为定值的点的轨迹”入手──如图7,令线段AB的长为“定值”,在线段AB上取一点E,分别以F1为圆心、AE的长为半径和以F2为圆心、AE的长为半径作圆,则两圆的交点轨迹即满足要求。先让学生猜测这样的点的轨迹是什么图形,学生各抒己见之后,老师演示图7(1),学生豁然开朗:“原来是椭圆”。这时老师用鼠标拖动点B(即改变线

段AB的长),使得|AB|=|F1F2|,如图7(2),满足条件的点的轨迹变成了一条线段F1F2,学生开始谨慎起来并认真思索,不难得出图7(3)(|AB|<|F1F2|时)的情形。经过这个过程,学生不仅能很深刻地掌握椭圆的概念,也锻炼了其思维的严密性。

综上所述,使用《几何画板》进行数学教学,通过具体的感性的信息呈现,能给学生留下更为深刻的印象,使学生不是把数学作为单纯的知识去理解它,而是能够更有实感的去把握它。这样,既能激发学生的情感、培养学生的兴趣,又能大大提高课堂效率。

第五篇:几何画板在教学中的应用

几何画板在教学中的应用

新都区龙安中学

骆春梅

几年来我在数学学科的”整合”实践中,应用”几何画板”的辅助教学实验获得了一些经验,尤其在培养学生”创新思想”和”实践能力”方面,取得了一些成效。下面我将作一些介绍。

1.在动态中表达几何关系的图版

“几何画板”是美国软件“The Geometer’s Sketchpad”的汉化版,打开“几何画板”后我们看到的界面,就像一块黑板。图版的左侧是一列工具图标:移动、画点、画圆、画线、和文字工具。可以用这些工具按照尺规作图的法则画出各种几何图形。

画出的图形与黑板上的图形不同是动态的,在动态中保持设定的几何关系不变。在画板上任意取A、B、C三点,连接成三角形同时作出AB边上的中点D。此时利用“移动”工具拉动A点就看到了一个变化着的三角形,在变化中D点保持为AB线段的中点。

同样可以拉动B、C两点或是移动三角形的边(亦能运用一些技巧让某几个元素同时移动)。如果作出三角形ABC三条边上的中线,就可以在这种动态变化中清楚观察到“任意三角形三中线交于一点”的现象。过去讨论这一条几何定理是必须依靠逻辑证明的,现在利用“几何画板”可以根据观察来确认这个事实。

还可以利用系统提供的其它功能(例如度量的功能,动态地观察有关的数据),来发现图形中存在的规律和各种关系。就是可以用一种区别于传统手段的,全新的、更加直观的过程来学习几何。

2.探索性学习的直观环境

过去我们讨论同一个圆内,对应一段弧的圆周角与圆心角的关系,必需要靠证明。现在可以:在圆O上任意作出C、D、E三点,得到圆周角CDE和圆心角COD;度量出它们的角度,就能看出是圆周角为圆心角的一半。然后在圆上移动E点,度量的值将随着E点的移动而变化,总能看到圆周角是圆心角的一半的关系。我们还可以移动D点,将看到所有的度量值不变化。其实这也是一个定理:“同弧上的圆周角相等”。当D点移动到与C、O在同一直线上时,就是证明圆周角有关定理的特殊位置。这说明利用“几何画板”对图形观察的过程中,也是可能启发我们得到进行逻辑证明的思路。圆O的大小和位置也是能够变化的,从而保证了动态观察和分析的普遍性。

上述过程可以是在教师的指导下,由学生独立或分组进行观察和分析,不必用教师讲学生听的传统教学方式进行。这就实现了又充分发挥教师的主导作用、又使学生成为学习的主体,是一个探索性学习的直观环境,是一种新型的教学模式。

其实“几何画板”提供的动态几何环境,不仅一般地帮助学生直观地去理解教师指定的图形或问题。而是能为学生提供了一个培养创造能力的实践园地。甚至可以让他们对一些“异想天开”设想的几何图形系统,实施动态的观察和分析研究。在圆O上任取一点E和圆外一点F作一线段,过线段中点G作垂线,若E点在圆上运动则垂线将跟随着运动,我们想知道垂线的运动规律。在这个设定的条件下,是可以讨论(推导)出某些结果的,但是对一般的学生(甚至对教师)来讲实在是要求太高了,在传统的学习环境下无论是观察和推导都很困难。

现在就不一样了,可以在“几何画板”上让E点在圆上移动,同时跟踪(使垂线现出轨迹)观察垂线的运动看看出现什么,然后再作进一步的分析和思考。分别让F点在圆外较远处、较近处、F点在圆内,三种不同位置在图上留下的垂线轨迹。看到这些直观图不难产生一些猜想:直线轨迹的包络线是二次曲线族(椭圆、双曲线、抛物线)?同学和教师可能有能力进一步的分析和讨论,发现这组图形中许多有趣的现象和规律。

学生还可以在平时解几何问题时,根据给定的已知条件,用“几何画板”作出草图然后去求解。由于在“几何画板”上作出的草图不但准确而且是“动态的”,学生可能在它的动态变化中的某些特殊位置,找到求解的思路。

3.培养创造性能力的实践园地

在使用“几何画板”给予学生探索性学习的环境以后,我们看到了培养他们创新精神和实践能力的奇特效果。其实“几何画板”提供的动态几何环境,不仅一般地帮助学生直观地去理解教师指定的图形或问题。而是能为学生提供了一个培养创造能力的实践园地。甚至可以让他们对一些“异想天开”设想的几何图形系统,实施动态的观察和分析研究。

初中几何课本中的一个习题,从圆O任意一条弦的中点E作两根直线与圆交得四个点,连接两条线段后得图形像一只蝴蝶,两线段与弦分别交于L、M两点则有:LE=EM,即蝴蝶两翼截得的线段相等,称为“蝴蝶定理”。

有这样一位同学,他不满足于一般的证明完成这个练习。首先他使用“几何画板”的”度量”功能,通过移动E点观察两线段长度确实相等,“看到了”定理是成立的。他加了一个同心圆,两圆与直线交得八个点,连接得一扩展的蝴蝶,其两翼与弦交得四点。他猜想左侧线段SE、TE与右侧线段EU、EV也应该有某种等式关系。他猜想可能有SE + TE = EU + EV 或SE * TE = EU * EV 这样的猜想并不稀奇,但在传统的学习环境下这些猜想很难证实或否定,最后只能不了了之掩灭了创造的火花。现在他利用“几何画板”度量了这些线段的长度,并进行了计算,计算的结果否定了他的两个猜想。这位同学没有停止探求,在他锲而不舍的努力下终于找到了它们之间的等式关系。利用“几何画板”的度量和计算,找到了这个有趣的关系式并完成了证明,他命名其为“广义蝴蝶定理”。此后他还对这个图形进行了更多的扩展和深入的分析研究,这是一个多么令人兴奋的成果啊!

中学生在学习的过程中的发现是否有价值并不重要,运用”智能教学工具平台培养了他的创新精神和创造性思维的能力,是很有意义的。其实,在目前已经知道的学生或学生与教师共同运用“几何画板”安排探索性教、学的过程中,一些创新的命题和成果,也有很多是有价值的。

我们正继续进行运用”几何画板”等”平台”,推广计算机辅助中学数学教学的实验,希望能够有所突破,找到有效的实现计算机辅助数学教学的途径和模式。并总结在数学教学中培养学生创新精神和实践能力的方法和经验。

下载几何画板在算法教学中的应用word格式文档
下载几何画板在算法教学中的应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    尝试几何画板在教学中的应用

    尝试《几何画板》在新课标教学中的运用 江西省万载县万载中学 曾才明 新课标提倡教学内容与信息算技术相结合。我们可以借助现代教学手段进行教学实验,数学的活动不再局限于......

    《几何画板》在高中数学教学中的应用

    《几何画板》 在高中数学教学中的应用 《几何画板》在高中数学教学中的应用对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最......

    《几何画板》在高中数学教学中的应用

    《几何画板》在高中数学教学中的应用 对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着......

    几何画板在初中数学教学中应用

    几何画板在初中数学教学中应用 数学是一门严谨的科学,它具有严密的逻辑性和演绎性.“现代信息技术的广泛运用正在对数学课程内容、数学教学、数学学习等产生深刻的影响.教学中......

    几何画板在初中几何教学中的几点应用

    浅谈几何画板在初中数学教学中的几点应用 泰兴市南沙初中 刘岩碧 摘 要:几何画板是现代信息技术与课程整合的一项杰出创作.应用几何画板可以提高几何教学的直观性和准确性,弥补......

    超级画板在初中几何教学中的应用

    超级画板在初中几何教学中的应用 [摘 要] 超级画板辅助教学主要体现在优越的图形工具中,可用其代替部分传统教具,而它的动画功能可以让静止的图形动起来,体现直观的效果,也易于......

    几何画板在教学中的应用案例分析

    初中数学课堂教学案例分析 碧鸡中学晏仲鹤 几何画板是一个通用的数学、物理教学环境,提供丰富而方便的创造功能使用户可以随心所欲地编写出自己需要的教学课件。软件提供充分......

    几何画板在《圆锥曲线》中的应用举例

    几何画板在《圆锥曲线》中的应用举例 高二数学组刘中维 在《圆锥曲线方程》这一章中,一些曲线的图像、性质都比较抽象,学生难以理解和接受,如双曲线的渐进线、圆锥曲线的离心率......