几何画板在《圆锥曲线》中的应用举例

时间:2019-05-15 04:48:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《几何画板在《圆锥曲线》中的应用举例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《几何画板在《圆锥曲线》中的应用举例》。

第一篇:几何画板在《圆锥曲线》中的应用举例

几何画板在《圆锥曲线》中的应用举例

高二数学组

刘中维

在《圆锥曲线方程》这一章中,一些曲线的图像、性质都比较抽象,学生难以理解和接受,如双曲线的渐进线、圆锥曲线的离心率与开都的关系、一些数形结合的题目等,只凭学生的想象力是很难理解掌握有关图像的性质和图像之间的相互关系的,若我们只借助尺规作图的方法画图,一般难以达到满意的效果,还容易把图像画错。但若我们能利用《几何画板》精确的画图功能、动画功能加以演示,将能引起学生的学习兴趣,帮助学生的理解,提高学生对平面图形的想象思维能力,起到事半功倍的作用。下面举几个用几何画板解决圆锥曲线问题的例子。

一、在“几何画板”中作直线与圆锥曲线的交点

在“几何画板”中可以直接作出直线与直线的交点,直线与圆的交点以及圆与圆的交点.但不能直接作出直线与圆锥曲线的交点.本文介绍直线与圆锥曲线的交点制作、制作原理,该制作过程适合三种圆锥曲线.首先是三个工具的制作:

工具一

已知直线AP,A在圆锥曲线上,求作直线AP与圆锥曲线的另一个交点B.(以椭圆为例)作图过程

在椭圆上任取4个点C、D、E、F,作DE与PA交于点L,作AF与CD交于点M,作LM与EF的交点N,作NC与直线PA的交点B,则点就是直线PA与椭圆的交点(如图1).

图1 图2

制作成工具(命名为工具一)就可以直接使用,先决条件是圆锥曲线、点A、点P,不需要其它的,适合椭圆、双曲线、抛物线.

Q、R共线制作原理

任意圆锥曲线的内接六边形的三组对边的交点P、(以椭圆为例,如图2).(帕斯卡定理)

工具二

过圆锥曲线外一点作两条切线.

图4

图5

图6 作图过程2.1 若P为椭圆外任意一点,以F1为圆心,2a为半径作辅助圆,以P为圆心,A、BPF2为半径作圆与辅助圆交于点Q、R,分别取

QF1QF2、RF2的中点,则PA、PB为所求的切线,与PA的交点、RF1与PB的交点为对应切点(如图4).

作图过程2.2 若P为双曲线外任意一点,以以P为圆心,A、BF12a为半径作辅助圆,为圆心,PF2为半径作圆与辅助圆交于点Q、R,分别取

QF1QF2、RF2的中点,PA、PB为所求的切线.

与PA的交点、RF1与PB的交点为对应切点(如图5).

作图过程2.3 若P为抛物线外任意一点,以P为圆心,PF为半径作圆与准线交于点Q、R,分别取QF、RF的中点A、B,PA、PB为所求的切线.过点Q作准线的垂线与PA的交点、过点R作准线的垂线与PB的交点为对应切点(如图6).

把过圆锥曲线外一点作两条切线的过程制作成工具,需要说明的是要分成两个工具:(1)对于椭圆双曲线,工具先决条件是两个焦点段、点P;(2)对于抛物线,工具的先决条件是焦点方便,统一称之为工具二.

F1F1、F2、长度2a的线,准线,点P;为了叙述工具三

已知点P不在圆锥曲线上,求作点P的极线.(有关极点、极线问题在《高等几何》中有详细地说明,此处利用的是它们的性质)作图过程

在圆锥曲线上任取两点A、D,利用工具一作直线PA、PD与圆锥曲线的另一个交点B、C,连结AC、BD交于E,AD、BC交于F,就得到了点P的极线EF(如图7);如果点P在圆锥曲线内也按此法,因为圆锥曲线内接四边形ABCD中,点P的极线是EF,点E的极线是PF,点F的极线是PE.制作成工具(命名为工具三),先决条件是圆锥曲线、点P.

图7

图8

图9 作图问题

已知两点P、Q不在圆锥曲线上,求作PQ与圆锥曲线的交点A、B.

(1)利用工具三作出点P的极线,(如图

8、图9两种情况);(2)同理利用工具三作出点Q的极线,两条极线相交于点R;

图10

图11(3)利用工具二,过点R作圆锥曲线的两条切线(如图

10、图11);

(4)两切线与直线PQ相交得到交点A、B即为所求交点. 以上过程亦可制作成工具.

制作原理

要想得到直线PQ与圆锥曲线相交的交点A、B,只要能预先作出以交点A、B为切点的两条切线就可以了,设两切线相交于点R,而过点R作圆锥曲线的切线问题已经由作图问题二解决;这个点R其实是直线ABPQ的极点,根据极线和极点的“点U在点V的极线上移动时,点U的极线也绕点V而转动”这一性质,我们知道点R也是由P、Q两点的极线的交点来确定.

二、和两圆都相切的圆心的轨迹

(一)、制作结果

如图:单击“动画”按钮,D点在圆周上运动,从而圆(C,D)的大小和位置不断发生改变,但始终和圆C1和圆C2相切,圆心C的轨迹是双曲线。圆C1和圆C2的圆心和半径都能改变,轨迹也会改变,甚至不是双曲线,您想试试?

(二)、思路分析

如果按尺规作图的思路,和已知两圆相切要分为同时外切、内切、一内一外。几何画板号称动态几何,其构造的思路会复杂吗?我们先来看其中一种情况:已知两圆和圆C2上任一点D,求作一圆和两已知圆都外切。看看下图,是如何确定圆心C的?分析作图步骤:

(三)、操作步骤

1、构造两已知圆的半径 画一条水平直线AB,在直线上画三点C、D、E;隐藏点A、B。→画线段(D,C)(D,E),并把线段DC和线段DE的标签分别改为R、r(想一想为什么在直线上画点,而不直接画线段)

两点就是已知圆的圆心)

3、构造已知圆 画圆(H,线段R)画圆(I,线段r)

2、构造圆心 画一条水平直线FG,隐藏点F、G→在直线上画点H、I(这

4、构造辅助圆 画直线(I,J),其中J为圆I上任一点J→画圆(J,线段R)→画圆J和直线IJ的交点为L。

5、构造所求圆 作线段(H,L)→作线段HL的中垂线→作直线IJ和中垂线的交点K→作圆(K,J)

6、作轨迹(K,J)

7、作J点的动画

8、隐藏辅助线,修饰课件。

(四)、拓展研究

通过移动点C、E、H、I,改变两已知圆的大小和位置,我们惊喜的发现,这种构造方法,竟是一箭三雕-同外切;同内切;一外一内,尽在其中

四、拓展研究

通过移动点C、E、H、I,改变两已知圆的大小和位置,我们惊喜的发现,这种构造方法,竟是一箭三雕-同外切;同内切;一外一内,尽在其中。

第二篇:几何画板的应用举例

几何画板的应用举例

上传: 刘荣锋 更新时间:2012-12-2 13:16:10

【引用】几何画板的应用举例

对于单位圆在三角函数教学中的应用,各位老师可谓仁者见仁,智者见智,在利用单位圆时,如果能让三角函数线动起来,那就更加直观易懂,学生更容易理解接受。这里我介绍利用《几何画板》展示单位圆的两个应用,供大家参考。1.解三角函数不等式

利用单位圆中的三角函数线解解三角函数不等式,不少老师已经提到,这里不再赘述,只把我用《几何画板》作的一个小动画传上来供大家参考,做法也很简单,就不在介绍。

2.作正弦函数图象

利用三角函数线作正弦函数图象也是教材中提出的方法,如果能让三角函数线动起来,那将会更加直观易懂。

作法:

第一步: 打开画板,建立直角坐标系(菜单栏里的“图表”→“定义坐标系”),在空白处右击鼠 标,在弹出的对话框中点“隐藏网格”;

第二步:在空白处右击鼠标,在弹出的对话框中点“绘制点”,绘制两个点A(-2,0),B(-1,0),按顺序选中A、B,在菜单栏里“构造”→“以圆心和圆周上的点绘圆”,构造一个单位圆。拖动单位点调整单位长度;

第三步:在单位圆上取一点D,按顺序选中A、D,在菜单栏里“构造”→“射线”,构造一条射线,过点D构造x轴的垂线交x轴于E,隐藏垂线,再构造线段DE,并在菜单里“显示”把线段DE改成蓝色、粗线。

第四步:顺序选中点B、E和圆,在“构造”里点“圆上的弧”,及时选菜单里“度量”→“弧长”,并及时点菜单里“变换”→“标记距离”。

第五步:选中原点,“变换”→“平移”,在在弹出的对话框中把下边的“固定角度”改为0,则原点平移到F’;

第六步: 顺次选中E、F’点,“变换”→“标记向量”,选中线段DE和点D,“变换”→“平移”,将线段DE平移到F’D’,;连结DD’,并把线段改为虚线;

第七步: 选中D’点,点菜单栏里“显示”→“追踪点”;

第八步: 选中点D,点“编辑”→“操作类按钮”→“动画”,确定。OK!点一下“运动点”,欣赏一下你的大作吧。

几何画板在“函数y=Asin(ωx+φ)的图象”教学中的应用

上传: 刘荣锋 更新时间:2012-12-2 19:42:26

《几何画板》在“函数y=Asin(ωx+φ)的图象”教学中的应用

摘要:“三角函数”是中学数学中最基本、最重要的概念,它的概念和思维方法渗透在高中数学的各个部分;函数的两种表达方式——解析式和图象之间常常需要对照。为了解决数形结合的问题,在有关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。

关键词:几何画板 函数 图象 三角

对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家A.H.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。”因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革——用计算机辅助教学,改善人们的认知环境——越来越受到重视。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。《几何画板》给高中数学教学带来了极多方便,作为一名高中数学教师就此谈在“函数y=Asin(ωx+φ)的图象”教学中的应用。

一、用《几何画板》动态、直观地推演出最基本的正弦函数Y=sinx的图像

要研究三角函数的性质,首先我们必须从他的图像入手。然而为了解决数形结合的问题,在有关三角函数的传统教学中多以教师手工绘图,但手工绘图没有动态感;应用几何画板动态、直观的显示正弦函数Y=sinx的图像怎么得来及变化情况.这样学生通过动态变化的图象自主的接受和理解,讲的再好还不如亲眼所见.

二、探索函数图象y=Asin x与y=sin x图象之间的关系。在同一坐标系里画出y=1/2sinx、y=sinx、y=2sinx三个不同的函数图象(如下图),然而点A、B、C分别在y=1/2sinx、y=sinx、y=2sinx三个图象上,用《几何画板》的“度量”度量出点A、B、C的纵坐标.拖动点P看A、B、C三点纵坐标的变化,除相交处外,它们始终保持1/2:1:2的关系。这里体现的《几何画板》作图的精确性,使得更有说服力。这样让学生更能了解上面三个函数的联系与不同。

再作出下图,可以拖动点P改变A的值观察Y=Asinx的图像的变化情况。

用《几何画板》画出精确,而且可以随意变化演示给学生看的图象,起到比传统教学难以比拟的教学效果。

三、探索函数图象y=sinωx与y=sin x图象之间的关系

在同一坐标系里画出y=sin

x、y=sinx、y=sin2x三个不同的函数图象(如下图)观察它们的周期T变化,以及另外两个函数图象与y=sinx的图象的联系.再用《几何画板》画出下面图象,可以随意输入一个ω的值,将快速、自动、准确地画出相应的函数图象,让学生观察它们的周期T的变化,总结出Y=sinωx的性质。

四、探索函数图象y=sin(x+φ)与y=sin x图象之间的关系

适当的拖动点φ,让学生观察函数图象的变化。观察函数图象变化,让学生总结图象变化规律:图象上各点沿x轴平移(φ>0)或向右平移φ<0)φ个单位。

五、探索函数图象y=Asin(ωx+φ)与y=sin x图象之间的关系。

从函数y=sin x图象到y=Asin(ωx+φ)的图象有多种不同的变换顺序,变换方法与上同。通过改变A、ω和φ的值,让学生观察函数图象变化,引导学生总结出:①A改变的是图象的振幅;②ω改变的是图象的周期;③φ改变的是图象的左右平移。

利用几何画板,可以比较便捷地绘制出各种函数图象,又能根据自己的教学意图,随心所欲地修改解析式的参数,并且能让图象真正“动”起来通过实践观察,发现解析式各个参数的变化对函数图象的影响及相互之间的联系,给学生的学习创设一个体验和理解数学的过程,使学生直观感受到数形结合是探寻数学规律的绝佳方法。同时还可以用它来演示、验证学生的发现和猜测,加深学生对数学概念和性质的理解,激起学生对数学知识和数学规律学习和探索的欲望,提高他们学习的主动性和积极性,使学生获得积极的情感体验,并使之上升为理性认识,达到了新课程下研究性学习的目的,最终提高了教与学的双重效率。

几何画板的应用实例之二:研究二次函数

《几何画板》是一款优秀的教学软件,具有动态直观、数形结合、变化无穷的特点,为我们提供了一个理想的做数学的环境。充分运用好画板的功能,可使学生从“听”数学转变到“做”数学,以研究者的方式,参与包括发现、探索在内的获得知识的全过程,对开发学生的智力,提高思维能力很有帮助。本文以二次函数的两种基本形式y=a(x-h)2+k和y=ax2+bx+c为例,探讨《几何画板》在二次函数教学中的应用。

一、利用《几何画板》,构造函数图像

由于解析式中字母系数的不同,函数的图像也不尽相同。因此,要在画板中构造出能够调节字母系数变化的元素,在图像的动态变化中,发现蕴含其中的普遍规律。首先,打开画板,单击“图表”→“定义坐标系”建立一个平面直角坐标系,在画板左侧工具栏选择点工具,在x轴的适当位置构造三个点A、B、C,再回到画板工具栏,选中“选择箭头工具”,同时选中A、B、C三点和x轴,单击“作图”→“垂线”,再选中工具栏“直尺工具”中的线段工具,分别在这三条直线上构造到垂足的垂线段,选中这三条垂线(不选刚构造的垂线段),单击“显示”→“隐藏垂线”。把垂线段的另一个端点分别命名为D、E、F,再选中D、E、F三点,单击“度量”→“纵坐标”,就在画板内显示出这三点的纵坐标,单击工具栏“文本工具”,双击度量出的D点纵坐标,改名为a,D、E两点的纵坐标改名为h、k。可以看到,改变一点的位置,相对应的纵坐标值随之改变,这样就构造出了字母系数和它的调节元素。然后,就该构造以a、h、k为字母系数的函数图象了。在x轴上任作一点J,度量其横坐标xj,单击“度量”→“计算”调出“新建计算”,单击度量出的“a”,导入计算框内,进一步计算出a(xj-h)2+k的值,按顺序选中xj和a(xj-h)2+k的值,单击“图表”→“绘制(x,y)”即在坐标系内绘出一点,再同时选中点J,单击“作图”→“轨迹”就绘出了函数图象,最后选中不想显示的元素将其隐藏。同样可以绘出y=ax2+bx+c的图像。综合利用“度量”“作图”“绘制(x,y)”还可以作出抛物线的对称轴、顶点及图像与y轴的交点等。

二、利用构造出的函数图象,研究抛物线的性质

在y=a(x-h)2+k的图像中,拖动点D改变a的值,可以直观地看到抛物线的开口大小也随之改变,a的绝对值越大,抛物线开口越小,反之,则开口越大;当a>0时,开口向上,当a<0时,开口向下;改变h或k的值,图像左右或上下移动。因此抛物线y=a(x-h)2+k可看做y=ax2经过上下和左右平移后得到的结果,进而理解平移后抛物线的解析式和平移数值的关系。

在y=ax2+bx+c的图像中,改变a的值,不仅抛物线的开口大小和开口方向变化,而且对称轴和顶点坐标都有变化,这和y=a(x-h)2+k图像中a的变化仅改变抛物线的开口大小和开口方向不同;改变b的值,抛物线的开口大小和开口方向不变,与y轴的交点坐标也不变,对称轴和顶点坐标均有变化;改变c的值抛物线只是上下移动;并且不论改变哪一个字母的值,图像与y轴交点的纵坐标都和c的值相等。

这样,通过对字母系数变化和与之关联的图像变化的形象认识,学生可以直观地把握字母系数和图像变化间的联系,进而引导学生思考引起这种变化的内在原因,掌握二次函数图像的变化规律。

总之,《几何画板》能准确、动态地表达数学问题,它所提供的多种方法可以帮助教师进行形象直观的教学,也可以让学生在教师做好的图形上进行数学探讨,能极大地增强学生的学习兴趣。但由于构造图形需准确把握图形的性质及图形中各元素间的内在联系,故不适合学生进行独立的构图探索。

几何画板在教学中的应用之四:几何画板的应用实例-----椭圆的构造方法

评论:0  浏览:269   RSS:0 文章类型:摘录 发表于:2011/9/19 20:51:23 几何画板应用实例之一:椭圆的构造方法

在教学中本人发现利用几何画板可以有很多方法来构造椭圆的图象,于是把几种画法整理如下:

椭圆的第一定义:平面内到两个定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹。椭圆的构造方法一:

(1)以O为圆心,2a为半径作圆,在圆上任取一点P,在圆内任取一点A;(2)连接PO、PA,作PA的中垂线与PO交于点M,连接MA;

(3)将点M定义为“追踪点”,选中点P,让点P在圆上任意转动可得到点M的轨迹为以O,A为焦点长轴长为2a的椭圆。

理由:图中的MP=MA,所以OM+MA=OM+MP=OP=圆的半径,符合椭圆的第一定义。椭圆的第二定义:设动点M(x, y)与定点F(c, 0)的距离和它到定直线 : x= 的距离的比是常数(a>c>0),则点M的轨迹是椭圆。点F是椭圆的一个焦点,直线 是椭圆中对应于焦点F的准线。常数e=(0

(1)取点F和直线L,(点F不在L上)。过点F作一条直线,在直线上取一点P;

(2)以F为圆心以FP为半径作圆,度量FP的长度,取参数e=0.8(可改为其他小于1的正数),计算FP/e;

(3)过P点作直线L的垂线,交L于M点,以M为圆心,以FP/e为半径做圆,交垂线于N点,过N作L的平行线,交圆F于A,B两点;(4)追踪A,B两点,让P在直线PF上任意移动可得椭圆方程。

理由:不管P点在何位置,总可以保证A,B点到F点距离与他们到直线L的距离之比为0.8,所以构造方法二依据的是椭圆的第二定义。椭圆的构造方法三:

1.以坐标原点O为圆心,分别以a、b(a>b>0)为半径画两个圆;2.在大圆上取一点A,连接OA与小圆交于点B;

3.过点A作AN垂直于Ox轴,垂足为N;作BM垂直于AN,垂足为M; 4.分别选中点M和点A,用“作图”菜单中的“轨迹”功能,画出椭圆。理由:|ON|=acosφ, |NM|=bsinφ, 根据椭圆的参数方程知,点M的轨迹是一个椭圆。

椭圆的构造方法四:

(1)任取一线段a,在Y轴上任取一点B,以B为圆心,以a为半径作圆交X轴于A点,则AB为长度为a的线段;

(2)在线段AB上任取一点C(不为AB中点),追踪C点,让B点在Y轴上任意移动,C点轨迹即为半个椭圆,把线段AB关于Y轴反射一下,则可得另外半个椭圆。

理由:C点的横坐标为BCcosθ,C点纵坐标为CAsinθ,由于BC≠CA,所以C点轨迹满足椭圆参数方程。椭圆的构造方法五:(1)定义坐标系;

(2)以原点为圆心,任意长度为半径作圆;(3)在圆上任取一点A,并度量其横纵坐标xA,yA。(4)计算yA/3(分母可改为其他不等于1的正数);

(5)绘制点B(xA,yA/3),并追踪点B,让点A在圆上任意移动,可得B点的轨迹为椭圆。

理由:可以由圆的方程中把y换成3y,使得圆上的每一点横坐标不变,纵坐标变为原来的1/3,把圆“压扁”从而得到椭圆;从方程的角度看,使得x2和y2的系数不一样,从而得到椭圆的方程。

几何画板在教学中的应用之三:应用几何画板的小技巧

评论:0  浏览:477  RSS:0  文章类型:摘录 发表于:2011/9/19 20:45:20

应用几何画板的小技巧

1、如何用几何画板给相交两圆公共部分涂颜色

①.按照图片中“第一步”,依次选中各个点或圆,然后点“构造→圆上的弧” ②.按照图片中“第二步”,依次选中各个点或圆,然后点“构造→圆上的弧” ③.选中构造得到的两段弧,点“构造→弧内部→弓形内部”

④.选中两个弓形内部,点“显示→颜色”,把他们的颜色调到相同的就行了 ⑤.如果这时他们中间有一条裂缝的话,那就连接两个圆的交点,并把得到的线段的颜色调到与弓形内部颜色相同

⑥.如果这时线的颜色比内部颜色深的话,右键内部,点“属性→透明度→100%” ⑦.OK啦。

2、如何导入外部图片

制作课件时,往往需要导入《几何画板》以外的美丽图片,来提高课件的质量。下面介绍两种导入外部图片的方法。①插入的方法

“编辑”菜单中“插入对象”命令 —>选中“BMP图象”类型—> 自动启动《画图》程序—>利用《画图》程序“编辑”菜单中的“粘贴自”命令,读入所需图片文件,最后利用“文件”菜单中的“退出并返回„„”命令,回到《几何画板》编辑窗口。②粘贴的方法

把所需的图片复制到Windows的“剪贴板”上,再利用《几何画板》中的“粘贴”命令直接导入一幅图片到课件中。这种方法看来比较简单,但制作课件中若用到多个图片时,此方法的优势就显现不出来了。

注:若要使导入的图片参与动画运动,可以先选中一点,然后利用上述方法导入图片。这样导入的图片就被固定在指定点的位置,该点运行轨迹就是此图片的运动路径。

3.如何输入数学符号或数学公式 ①导入法

象导入外部图片一样,将Word或WPS中的数学公式或符号,导入到《几何画板》课件中。

②“编辑数学格式文本”法 其实《几何画板》中提供了输入常用数学公式或符号命令,只是初学者不大会用。这里以一个具体的例子来说明这些命令的使用方法。

例如:标识5的算术平方根(根式)

按下[Num Lock]键不放开,再双击A点的标签,弹出“编辑数学格式文本”对话框;在“数学格式”栏中输入{V:5},确定即可。

注:单独使用的“文本”工具,创建的“注释”类型文本,不能进行数学格式编辑。只有对象标签或度量的文本才可以进行“数学格式编辑”。

4、如何查看别人是如何制作课件的?

看到某些精彩的课件时自然就会想知道别人是如何制作的,可是往往其中的关系错综复杂,看得一头雾水。怎么办呢?其实很简单──

(1)几何画板打开一个文件时,在“文件打开”对话框右下角有一个“包括工作”选项,把它打上勾。

(2)打开文件后,选择“显示”菜单中的“ 显示所有隐藏”命令,就可以把所有隐藏的对象显示出来。

(3)连续按“Ctrl+Z”键,直到所有的对象都不见了。

(4)连续按“Ctrl+R”键,您便可以看别人的课件是如何一步步做的了

5、如何动态弹出一段文字?

有时候,我们希望执行某些操作之后,出现一段说明文字,加以说明。两种方法可实现:方法一:将所要出现的文字事先用“隐藏/显示”按钮作好,不使用之前先隐藏起来,要使用的时候再双击显示按钮把它显示出来;方法二:给出三个点A,B,C其中C点位于A、B之间(注意:A、B不要在水平位置),把要显示的文字事先用WORD等编辑工具编辑好,例如,我们事先在WORD中设计好“几何画板:二十一世纪的动态几何”这几个字,将它复制,然后选中C点和B点,将它粘贴在这两点上;设置两个移动按钮,C点到A点的移动按钮和C点到B点的移动按钮,双击C点到B点的移动按钮,可以使文?quot;隐藏"起来,双击C点到A点的移动按钮,可以使文字出现。(注:文字大小可通过改变A点和B点的位置而调整)

第三篇:几何画板在数学教学中的应用

几何画板在数学教学中的应用

正安县杨兴中学:秦月

【摘要】在信息技术突飞猛进的今天,传统的教学方式已不能适应现代教育教学的要求。尤其是在数学教学这样一个比较抽象的学科教学中显得尤为突出,那么如何利用现代信息技术为现在的数学教学服务呢!几何画板是当今数学教师运用最为广泛的软件之一,本文将从以下几个方面作介绍几何画板在数学教学中的应用:几何画板在一次函数教学中的应用、在轴对称图形教学中的应用、在勾股定理教学中的应用、在求解实际问题中的简单应用。希望能起到抛砖引玉的作用。

【关键词】几何画板 函数 参数 动点

在传统的数学教学中,教师靠的主要是一张嘴、一支粉笔、一块黑板进行教学。直到今天,尤其是在我们落后乡村学校,由于各种各样的原因,这种教学方式依然主宰当前的数学课堂,显然这种方式已经不能适应当前的教育发展大趋势,如何改变这种现况,那就得借助现代信息技术,找一个适合数学教学的平台。纵观现在常用的软件,几何画板具有操作简单、功能强大的特点,是广大数学教师进行现代化数学教学理想工具。在现代的数学教学中已发挥着越来越重要的作用。

几何画板又不同于其他绘图工具,它能动态地保持给定的几何关系,便于学生自行动手在变化的图形中发现其不变的几何规律,从而打破传统纯理论数学教学的局面,成为提倡数学实验,培养学生创新能力的新新工具。把它和数学教学进行有机地整合,能为数学课堂教学营造一种动态的有规律的数学教学新环境。

一、在一次函数教学中的应用

在几何画板中,可以新建参数(即变量),然后在函数中进行引用并绘制函数图像,通过改变参数的值来观察函数图像的变化,这在传统教学中无法办到。

如在讲解一次函数y=kx+b的图像一节中,如何向学生说明函数图像与参数“K”、“b”的相互关系一直是传统教学中的重点和难点,学生难以理解,教师也难以用语言文字表达清楚;在作图时,要取不同的“k”、“b”的值,然后列表在黑板上画出多个不同的函数图像,再进行观察比较。整个过程十分繁琐,且费时费力。教师和学生的主要精力放在了重复的计算和作图上,而不是通过观察、比较、讨论而得出结论上。整个过程显得不够直观,重点不突出,学生理解起来也很难。然而在几何画板中,只需改变参数“K”、“b”的值,函数图像便可一目了然。如图:

通过不断改变参数“k”、“b”的值,从而得到不同的函数图像,引导学生观察一次函数图像变化的规律。

①当k>0时,函数值随x的增大而增大;②当k<0时,函数值随x的增大而减小;③当b>0时,函数图像相对于b=0时向上移动;④当b<0时,函数图像相对于b=0时向下移动;⑤当|k|越大时,函数图像变化越快,图像越陡峭;⑥当|k|越小时,函数图像变化越慢,图像越平滑;

经过我们改变一次函数的参数“K”、“b”的值,函数的图像会随之发生变化,这样学生就很容易理解函数图像变化的规律,从而使学生从更深层次理解一次函数的本质。

二、在轴对称图形教学中的应用

几何画板提供了四种“变换”工具,包括平移、旋转、缩放和反射变换。在图形变换的过程中,图形的某些性质始终保持一定的不变性,几何画板能很好地反应出这些特点。

在讲解轴对称图形的教学中,可充分利用几何画板中提供的图形变换功能进行讲解。首先,画一个任意三角形△ABC,然后在适当的位置画一条线段MN,并把双击它即可将其标识为镜面,这时就可以作△ABC关于对称轴MN的轴对称图形。

△ABC和△A′B′C′关于MN轴对称。任意拖动△ABC的顶点、边、对称轴,虽然图形的位置、形状和大小在发生变化,但两个图形始终关于对称轴MN对称。同时可以观察到△ABC与△A′B′C′沿MN对折后完全重合。

三、在勾股定理教学中的应用

几何画板能动态地保持平面图形中给定的几何关系,利用这一特点便于在变化的图形中发现恒定不变的几何规律。如平行、垂直,中点,角平分线等等都能在图形的变化中保持下来,不会因图形的改变而改变,这也许是几何画板中最富有魅力的地方。在平面几何的教学中如果能很好地发挥几何画板中的这些特性,就能为数学教学增辉添色。如在勾股定理的教学中,直角三角形的三边之间有着必然的联系。要弄清楚它们之间的关系,借助于几何画板,则一目了然。

在几何画板里,先画一个直角△ABC,∠C=900。从图右方的度量值可以发现,AB和AC、BC的长度已经知道,观察AB2与AC2+BC2的关系:

如果拖动顶点A(从a图到b图),我们通过改变直角三角形边的长度,从中观察边的平方的关系,发现这样一个定理:在直角三角形中,始终有斜边的平方等于两条直角边的平方和。

再如,在讲解“赵爽弦图”时,传统的教学方法只能教师在黑板上演算过程,而用几何画板更容易发现其中的不变的规律。

首先,在几何画板中构造一个正方形,然后将经过一个顶点作直线,再通过另一相邻的顶点作这条直线的垂线,得到一个交点。用同样的方法,可得出另外几个关键点,再将这几条垂线隐藏,连接对应的点,即可得到下面这个图形。分别度量AB、AF、FB的长度,最后用不同的方法来计算这个正方形的面积:⑴、直接利用正方形的面积公式;⑵、正方形的面积等于其中四个直角三角形和中间的那个小正方形的面积之和;⑶、直接使用几何画板提供的量度面积命令。这三种方法都可得出这个正方形的面积,注意观察得到的结果都是一样的。

再改变正方形的大小及其组成的直角三角形和小正方形的比例,再来观察这三种计算方法得到的结果是否一致,如下图:

四、在求解实际问题中的应用

利用几何画板不但可以给几何问题以准确生动的表达,成为教师教学上的得力“助手”,还可为教师和学生提供几何探索和发现的一个良好环境,动态是几何画板最主要的特点,也正是基于这一点,许多用一般方法不易解决的问题,用它解决起来就要容易得多,现在举例说明。

如图,已知二次函数y=ax2+bx+3的图像经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C。

(1)求顶点M及点C的坐标;

(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边行CDAN是平行四边行;

(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,如果存在,请求出点P的坐标;如果不存在,请说明理由。

分析:这道目,第(1)、(2)问都比较容易解决,第(3)问就是关于动点的,比较抽象,然而运用几何画板后,情况就变得很明显了,给解题帮助很大。

解:(1)因为二次函数经过点A、B、N,且三个点的坐标都已知,可解得二次函数的解析式为y=-x2+2x+3,可解得: C(0,3);M(1,4)。

(2)在几何画板中连接CN、AN、AD,如图: 由于已经知道C、M两点的坐标,直线y=kx+d又经过C、M两个点,可得直线的解析式为y=x+3。D点是直线与X轴的交点,可得D点的坐标为(-3,0),又因为A点的坐标为(-1,0),所以AD=2。再看C、N两点,其坐标都已知,且纵坐标都为3,可得CN与X轴平行,那么自然就与AD平行了。再由C、N两点的坐标可得CN=2,因此AD=CN;在四边形CDAN中两边AD、CN平行且相等,所以它是一个平行四边形。

(3)这个问题比较抽象,因为点P是动点。我们现在借助几何画板对这种情况进行分析。因为A、B两点是二次函数与X轴的交点,自然关于函数的对称轴对称,两点到对称轴上任意一点的距离相等。故以对称轴上的点为圆心作圆,经过其中一个交点,必定经过另外一个点,因此考虑一个点就行了。

先在二次函数的对称轴上任找一点P,连接AP,再以P为圆心,AP为半径作圆,不断的拖动P点,看看这个圆是否能与直线CD相切。如下图:

从上图中可以看出:图a中P点比较靠近X轴,所作圆与直线CD没有交点;图b中,P点离X轴较远,所作圆与直线CD相交,有两个交点。试想:图a中的P点向上移动的到达图b所在的位置过程中,中间肯定有一个点让圆与直线CD相切,如图c所示。

那么应该怎样求P点的坐标呢!看右图:

过P点作直线CD的垂线,垂足为K,要想使圆P与直线CD相切,实际上PK这时是圆P的半径。即PK=PA时,圆P与直线CD相切。

在△DEM中三个点的坐标都知道,可得DE=EM,因此△DEM是一个等腰直角三角形。同样△PMK也是等腰直角三角形,有:

2KP2=MP2 又因为:AP2=AE2+PE2,MP=ME-PE,KP=AP;其中:AE=2;PE=1;ME=4。

可解得:PE=264,P点的坐标为(1,264)。

解到这里,此题看似已完,但如果你够细心,把P点再上下拖动,会发现在X轴的下方还在一个点能使点圆P与直线CD相切,如下图:

相同的方法,可解得:PE=(264)。由于P点在X轴的下方,所以P点的坐标为(1,-(264))。

因此满足这样的点P在对称轴上有两个点: 即P1(1,264);P2(1,-(264))。

从本题中不难看出,运用几何画板给我们在解决动点问题中提供了很大的帮助,在纸上或黑板上不容易发现的问题,在几何画板上只要轻轻拖动鼠标就很容易发现,从而有效的避免了漏解情况的发生。

几何画板在数学教学中应用远远不止这些,如画直观图,在黑板上画是很费时的,但在几何画板中可用鼠标一点完成。因此,只要我们熟练掌握几何画板功能,多实践,不断与数学教学相结合,相信就能使它在数学教学中发挥的作用。

【参考文献】

[1] 田延斌.《《几何画板》教学实例》.[2] 张淑俊.《《几何画板》在数学教学中的妙用》.

第四篇:几何画板在现代教学中的应用

几何画板在现代教学中的应用

几何画板5.06是几何画板的最新版本,备受数学老师青睐。众多数学老师表示几何画板不仅能够帮助他们制作出生动的几何课件,更加有助于学生理解教学内容,并在长期的教学中提高学生的数学理解能力。本教程将向大家介绍几何在现代教学中的应用。

几何画板在教学中的应用示例

一、几何画板在低年级的应用

低年级的学生很容易被几何画板生动的特性所吸引,从而可以非常迅速地掌握这些基础技巧。几何画板可以帮助学生们在案例中快速地学习和培养数形转换的能力,从而更深刻的了解分数计算、数据统计和代数学。

二、几何画板在代数学中的应用

有些数学问题,虽然可以通过代数演算得到答案,但是还是会觉得不够直观,给人知其然而不知其所以然的感觉。这时,我们可以借助几何画板,画出数学图形,从几何的角度审视原题,帮助学生更直观地理解原题中的数学本质。

三、几何画板在几何学中的应用

利用几何画板可以画出非常精确的图形,必要时还可以将图像“放大”,获得更精细的图像,帮助学生发现解答中的疏忽或错误,并引导学生进一步思考错解 的原因。学生还可以通过直接操纵几何图形的构造、变换、测量和动画进行深入的概念理解并提高学习信心,还可以有效地促进学生之间的学习交流及他们的推理和 证明的能力。

四、几何画板在高等数学中应用 几何画板不仅为数学实验提供可操作的模型,而且为数学猜想提供验证的工具。如学生们可以使用几何画板绘制以几何图形为代表的复杂图形、为微积分等创 建动态模型。除了强大的函数绘图功能,了解几何画板那高级教程的学生还可以使用自定义工具、基因座、自定义转换、数字和几何迭代等功能来构建或编辑数学模 型。

综上所述,可见在现代教学中几何画板的应用还是比较广泛,是全国初高中人教版教材指定软件。几何画板5.06版本在之前的版本基础上进行了大量的改进,可以为广大用户带来更加高效便捷的使用体验。

第五篇:浅谈几何画板在教学中的应用

浅谈《几何画板》在数学教学中的应用

常宁市职业中专 谭新芽

对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家A.H.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。”因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革──用计算机辅助教学,改善人们的认知环境──越来越受到重视。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。那么,《几何画板》在高中数学教学中有哪些应用呢?作为一名高中数学教师笔者就此谈几点体会:

一、《几何画板》在高中代数教学中的应用

函数”是中学数学中最基本、最重要的概念,它的概念和思维方法渗透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻划,这又决定了它是对学生进行素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。”函数的两种表达方式──解析式和图象──之间常常需要对照(如研究函数的单调性、讨论方程或不等式的解的情况、比较指数函数和对数函数图象之间的关系等)。为了解决数形结合的问题,在有关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。

具体说来,可以用《几何画板》根据函数的解析式快速作出函数的图象,并且可以在同一个坐标系中作出多个函数的图象,如在同一个直角坐标系中作出函数y2x和y12的图象,比较图象的形状和位置,归纳指数函数的性质;还可以作出含有若干参数的函数图象,当参数变化时函数图象也相应地变化,如在讲函数y=Asin(ωx+φ)的图象时,传统教学只能将A、ω、φ代入有限个值,观察各种情况时的函数图象之间的关系;利用《几何画板》则可以以线段b、T的长度和A点到x轴的距离为参数作图(如图1),当拖动两条线段的某一端点(即改变两条线段的长度)时分别改变三角函数的首相和周期,拖动点A则改变其振幅,这样在教学时既快速灵活,又不失一般性。

《几何画板》在高中代数的其他方面也有很多用途。例如,借助于图形对不等式的一些性质、定理和解法进行直观分析──由“半径不小于半弦”证明不等式“a+b≥2(a、b∈R+)等;再比如,讲解数列的极限的概念时,作出数列an=10-n的图形(即作出一个由离散点组成的函数图象),观察曲线的变化趋势,并利用《几何画板》的制表功能以“项数、这一项的值、这一项与0的绝对值”列表,帮助学生直观地理解这一较难的概念。

二、《几何画板》在立体几何教学中的应用

立体几何是在学生已有的平面图形知识的基础上讨论空间图形的性质;它所用的研究方法是以公理为基础,直接依据图形的点、线、面的关系来研究图形的性质。从平面图形到空间图形,从平面观念过渡到立体观念,无疑是认识上的一次飞跃。初学立体几何时,大多数学生不具备丰富的空间想象的能力及较强的平面与空间图形的转化能力,主要原因在于人们是依靠对二维平面图形的直观来感知和想象三维空间图形的,而二维平面图形不可能成为三维空间图形的真实写照,平面上绘出的立体图形受其视角的影响,难于综观全局,其空间形式具有很大的抽象性。如两条互相垂直的直线不一定画成交角为直角的两条直线;正方体的各面不能都画成正方形等。这样一来,学生不得不根据歪曲真象的图形去想象真实情况,这便给学生认识立体几何图形增加了困难。而应用《几何画板》将图形动起来,就可以使图形中各元素之间的位置关系和度量关系惟妙惟肖,使学生x 2 从各个不同的角度去观察图形。这样,不仅可以帮助学生理解和接受立体几何知识,还可以让学生的想象力和创造力得到充分发挥。

像在讲二面角的定义时(如图2),当拖动点A时,点A所在的半平面也随之转动,即改变二面角的大小,图形的直观地变动有利于帮助学生建立空间观念和空间想象力;在讲棱台的概念时,可以演示由棱锥分割成棱台的过程(如图3),更可以让棱锥和棱台都转动起来,使学生在直观掌握棱台的定义,并通过棱台与棱锥的关系由棱锥的性质得出棱台的性质的同时,让学生欣赏到数学的美,激发学生学习数学的兴趣;在讲锥体的体积时,可以演示将三棱柱分割成三个体积相等的三棱锥的过程(如图4),既避免了学生空洞的想象而难以理解,又锻炼了学生用分割几何体的方法解决问题的能力;在用祖恒原理推导球的体积时,运用动画和轨迹功能作图5,当拖动点O时,平行于桌面的平面截球和柱锥所得截面也相应地变动,直观美丽的画面在学生学得知识的同时,给人以美的感受,创建一个轻松、乐学的氛围。

三、《几何画板》在平面解析几何教学中的应用

平面解析几何是用代数方法来研究几何问题的一门数学学科,它研究的主要问题,即它的基本思想和基本方法是:根据已知条件,选择适当的坐标系,借助形和数的对应关系,求出表示平面曲线的方程,把形的问题转化为数来研究;再通过方程,研究平面曲线的性质,把数的研究转化为形来讨论。而曲线中各几何量受各种因素的影响而变化,导致点、线按不同的方式作运动,曲线和方程的对应关系比较抽象,学生不易理解,显而易见,展示几何图形变形与运动的整体过程在解析几何教学中是非常重要的。这样,《几何画板》又以其极强的运算功能和图形图象功能在解析几何的教与学中大显身手。如它能作出各种形式的方程(普通方程、参数方程、极坐标方程)的曲线;能对动态的对象进行“追踪”,并显示该对象的“轨迹”;能通过拖动某一对象(如点、线)观察整个图形的变化来研究两个或两个以上曲线的位置关系。

具体地说,比如在讲平行直线系y=x+b或中心直线系y=kx+2时,如图6所示,分别拖动图(1)中的点A和图(2)中的点B时,可以相应的看到一组斜率为1的平行直线和过定点(0,2)的一组直线(不包括y轴)。再比如在讲椭圆的定义时,可以由“到两定点F1、F2的距离之和为定值的点的轨迹”入手──如图7,令线段AB的长为“定值”,在线段AB上取一点E,分别以F1为圆心、AE的长为半径和以F2为圆心、AE的长为半径作圆,则两圆的交点轨迹即满足要求。先让学生猜测这样的点的轨迹是什么图形,学生各抒己见之后,老师演示图7(1),学生豁然开朗:“原来是椭圆”。这时老师用鼠标拖动点B(即改变线

段AB的长),使得|AB|=|F1F2|,如图7(2),满足条件的点的轨迹变成了一条线段F1F2,学生开始谨慎起来并认真思索,不难得出图7(3)(|AB|<|F1F2|时)的情形。经过这个过程,学生不仅能很深刻地掌握椭圆的概念,也锻炼了其思维的严密性。

综上所述,使用《几何画板》进行数学教学,通过具体的感性的信息呈现,能给学生留下更为深刻的印象,使学生不是把数学作为单纯的知识去理解它,而是能够更有实感的去把握它。这样,既能激发学生的情感、培养学生的兴趣,又能大大提高课堂效率。

下载几何画板在《圆锥曲线》中的应用举例word格式文档
下载几何画板在《圆锥曲线》中的应用举例.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几何画板在教学中的应用5篇

    几何画板在教学中的应用 新都区龙安中学 骆春梅 几年来我在数学学科的”整合”实践中,应用”几何画板”的辅助教学实验获得了一些经验,尤其在培养学生”创新思想”和”实践能......

    尝试几何画板在教学中的应用

    尝试《几何画板》在新课标教学中的运用 江西省万载县万载中学 曾才明 新课标提倡教学内容与信息算技术相结合。我们可以借助现代教学手段进行教学实验,数学的活动不再局限于......

    《几何画板》在高中数学教学中的应用

    《几何画板》 在高中数学教学中的应用 《几何画板》在高中数学教学中的应用对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最......

    《几何画板》在高中数学教学中的应用

    《几何画板》在高中数学教学中的应用 对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着......

    几何画板在初中数学教学中应用

    几何画板在初中数学教学中应用 数学是一门严谨的科学,它具有严密的逻辑性和演绎性.“现代信息技术的广泛运用正在对数学课程内容、数学教学、数学学习等产生深刻的影响.教学中......

    几何画板在算法教学中的应用

    几何画板在算法教学中的应用 摘要摘要:中学数学教学存在一些传统教学手段难以解决的知识难点,如多次计算、重复作图等,这些问题利用算法和程序设计则较易解决。考虑到目前中学......

    几何画板在初中几何教学中的几点应用

    浅谈几何画板在初中数学教学中的几点应用 泰兴市南沙初中 刘岩碧 摘 要:几何画板是现代信息技术与课程整合的一项杰出创作.应用几何画板可以提高几何教学的直观性和准确性,弥补......

    超级画板在初中几何教学中的应用

    超级画板在初中几何教学中的应用 [摘 要] 超级画板辅助教学主要体现在优越的图形工具中,可用其代替部分传统教具,而它的动画功能可以让静止的图形动起来,体现直观的效果,也易于......