第一篇:几何画板在初中数学教学中应用
几何画板在初中数学教学中应用
数学是一门严谨的科学,它具有严密的逻辑性和演绎性.“现代信息技术的广泛运用正在对数学课程内容、数学教学、数学学习等产生深刻的影响.教学中要重视利用信息技术来呈现、以往课堂教学难以呈现的内容.”在传统的教学中由于缺少某些必要的教具和动画演示,许多概念和性质对应的图形无法准确生动表示,学生只能在老师的解释和粗略的草图下进行理解,背离了数学来源于生活,又高于生活的本质,致使学生普遍认为数学抽象难学.另外,一些繁难的计算也浪费了大量时间,使课堂效率降低.为改变这些弊病,老师的教学方式和手段就必须改变.在多媒体基本普及的今天,信息技术的力量使上述问题的解决成为可能的和可行的.“有条件的地区,教学中要尽可能地使用函数计算器、计算机以及有关软件,这种现代教育手段和技术将有效地改变教学方式,提高教学的效益。”(课程标准)
在众多的信息技术中,《几何画板》软件不仅具有强大的作图、计算及动画功能,而且具有即时性与交互性,在课堂教学中适当使用《几何画板》软件辅助教学可提高教与学的质量.
经过学习和不断实践,尝试使用几何画板教学,收到了良好的教学效果。下面结合实际谈谈利用几何画板软件设计初中数学课的几点做法。
1.创设问题情境,使学生自主探究
数学是从问题开始的。每一节数学课都离不开问题,那么是教师
一道一道的讲解呢?还是由学生自己探究呢?我想这应该不是当代教师的问题。关键是问题情境的创设对学生有没有吸引力。例如:在讲解函数的最值问题时,用画板提出了这样的问题:在圆的内接矩形中,边长比是多少的矩形面积最大?(请用画板软件探索结果)
学生们很快就投入到操作和实践中,通过移动圆上的动点,比较边长的关系,不久便得出了结论:圆的内接正方形即边长比为1的矩形面积最大。教师接着又问,究竟是为什么圆的内接正方形是圆的内接矩形中面积最大的呢?学生们你一言,我一语互相讨论起来,进而在教师的引导下,利用二次函数求最值的方法,得出了证明„„ 学生在课上,经历了探索——猜想——证明,这三个数学学习的必须阶段,使得知识成为条件化的知识,加深了印象并提高了学习数学的兴趣。
2.数形结合,发展学生空间想象能力
众所周知,数形结合是一种很重要的数学思想,数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微”。“数形结合”是学习数学的重要方法,用图形解释抽象的数学现象形象、直观。因此多数教师都非常重视数形结合的教学,上课时尽量地画好图形,力求使图形展现出其变化的趋势。但是无论怎么画,怎么用一个又一个的幻灯片给学生展示,也只能给出一个“死图”,而利用画板平台教学,则可以绘制一幅幅有形有色会运动的“活”图,真正实现数形结合,增大课堂容量,达到良好的教学效果。
3.创造一个动态的、可视的教学情景,能使抽象问题形象化、直观化,激发学生的学习热情和积极性
函数是数学的重要内容,二次函数是初中教学中的一个难点。尤其是图像和各系数的关系这一内容,学生理解起来有很大困难。可以利用画板画出二次函数的图像,再适时地改变各系数的值,让学生观察图象的变化,从而可以很轻松地掌握这一规律。学生在初中首次接触到函数及其图象时难以真正理解函数定义中两个变量的对应关系及一次函数的图象是条直线,而二次函数的图象是抛物线.这时可打开几何画板用画点工具先在x轴上任意作一个点a,以点a的横坐标x为自变量,计算出对应的函数值y,然后以x,y作为点的横、纵坐标绘制点b(x,y),然后 利用动画演示追踪b点的轨迹,就可得到一次函数和二次函数的图象,同时可将b点的坐标绘制成表格.这时结合动画和表格引导学生观察表格中数据的变化讲解函数自变量和应变量的关系时,学生就能更容易理解函数的定义了,将抽象的数学思维转化为形象的图形演示,还可以使教师省去画表格的时间,提高课堂容量. 4.体现数学美,激发学生学习数学的兴趣
“数学是一种冷而严肃的美”可是它的美究竟体现在什么地方呢?教师也很难说清楚,学生更是云里雾里。在初中阶段,和谐的几何图形、优美的函数曲线都无形中为我们提供了美的素材,在以往为了让学生感受,教师花费很大的精力、体力去搜集图片,资料,在黑板上无休止地画图甚至还着色。如今,利用画板几下就可以绘出
金光闪闪的五角星、旋转变换的正方形组合等等一系列能体现数学美丽一面的图形。用它们来引入正题,学生会很快进入角色,带着问题、兴趣、期待来准备听课,效果可想而知。
例如:在讲解三角形内角和定理应用时,我首先在屏幕上迅速制作了一个有颜色变化的三角形,同学们很快就被吸引,教师跟着提出问题。三角形的三个角的度数和是多少呢?学生们七嘴八舌,议论纷纷,当教师用画板的度量功能和计算功能得出它的三个角的和为180度时,学生们惊讶不已。立刻就有同学着手证明,在总结出一般解法之后,教师进一步提出问题,四边形、五边形、六边形、七边形„„内角和的读数和是多少呢?一节课在积极热烈的气氛中进行着。
以上是教学中应用《几何画版》进行初中数学教学设计的几点做法和想法。《几何画板》作为一种新的认知工具,其独特优势是任何传统的教学手段和模型所无法替代的,而且有良好的教学效果,在实践中,教师们通过自已的努力一定会创造出更加实用和更加符合学生认知规律的方案,为学生的学习更好地服务!
充分利用媒体来优化数学课堂教学,改变一堂课的设计理念。只要我们教师充分了解学生,一心为学生的学习服务,就一定能把现在的数学课堂改造成学生学习的乐园。
第二篇:《几何画板》在初中数学教学中的应用实例
《几何画板》在初中数学教学中的应用实例
摘要:《几何画板》是实现“数形结合”思想的一个有效的辅助教学工具,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有效解决提供便利。以大信息量的储备来满足学生的需求,使学生根据自身的需要进行查阅,进行学习。只有把“几何画板”融入到几何学科的教学中去,才能使原本抽象的知识形象化,生活化。
关键词:几何画板 初中数学教学 应用
一、引言
《几何画板》是实现“数形结合”思想的一个有效的辅助教学工具,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有效解决提供便利。利用“几何画板”绘图辅助数学教学,有着传统尺规所无法比拟的优越性。它严谨的作图程序、强大的作图和计算功能,能有效地树立学生严谨、科学的作图观;有利于数与形的完美结合;有利于学生建构数学知识;有利于教师提高数学教学质量。《几何画板》显示画面的快捷、容量大、可储存,因此它可以提高单位时间的利用率,为知识信息量的增大提供了空间,数学学习必须因材施教。以大信息量的储备来满足学生的需求,使学生根据自身的需要进行查阅,进行学习。只有把《几何画板》融入到几何学科的教学中去,才能使原本抽象的知识形象化,生活化。
二、《几何画板》的主要功能
1.提供了画点(任意点、中点、交点)、画圆(圆、圆弧)、画线(直线、射线、线段、平行线、角平分线、垂线)功能。通过该平台可以准确制作各种图形,初中几何中的尺规作图全部可以实现,并可追踪轨迹,设置动画功能。
2.提供了旋转、平移、缩放、反射等图形变换功能。
3.提供了强大的度量功能(长度、角度、面积、半径、斜率、比例、坐标等)和计算功能(代数运算、常用十余种函数计算等),能动态演示数据变化,并可根据需要制表。
4.提供了图表功能,可建立直角坐标系、极坐标系,方便作出直线、二次曲线,绘制点,直接绘制函数图象。
5.提供了一般软件所具备的编辑功能,并能为所绘图形添加颜色,最新版对文字编辑可选择字体、字型、字号等常规的功能外,新增加了常用符号及数学公式编辑功能。插入对象功能支持“OLE”对象,如BMP位图、PowerPoint幻灯片、声音(.wav)、电影(.avt)、Excel表格,Word文档,甚至可以通过打“包”直接调用应用程序,可以进行超级链接(如Internet网),并可利用剪贴板将绘制图形转换到其它Windows应用程序中,以达到交换信息的目的。
三、教学中应用实例
例1:在《轴对称》这一节中,ClC'通过按纽进行操作,使学生更直观的感受轴对称的概念与性质。
BB'A'例2:对“一次函数y=kx+b(k≠0)的性质”的学习,如果学生不清楚y=kx+b(k≠0)在k>0或k<0时表示了什么样子的图像,不知道b的取值对函数图像的作用和影响,那么根据图像
A还原翻折对应点连线
例1图
确定k、b的取值范围,学生解起来就会觉得棘手。其性质进行探索时,我们只要在几何画板中,设定两个参数K与b,通过改变K与b的值就可以获得无数多个一次函数图象,k与b的值一发生变化,图象也以随之而变化,这个是传统教学所无法比较的。变动k与b的值,如当b=0时一次函数的图象(正比例函数y=kx)是一条经过原点的直线,当k>0时,它的图象经过第一、三象限;当k<0时,它的图象经过第二、四象限„„。在老师的演示下,一次函数的图象大量呈现在学生面前,学生自已动手作图与观察比较老师作图,一次函数的图及性质也可以轻松得以理解。
例3:验证勾股定理。
(1)任意作直角三角形,分别从三条边出发向外作正方形。(2)通过度量得出每个正方形的面积,计算S1+S2的值,与S3比较。
(3)得出结论a2+b2=c2。
(4)拖动任意一点,改变图形大小,观察能否得出上述结论。
S1 = 9.00
S2 = 36.00S3 = 45.00S1 + S2 = 45.00S2acbS3S1S1的大小S2的大小
例3图
例4图 例4:在讨论二次函数y=ax2+bx+c(a≠0)或y=a(x+h)2+k(a≠0)中,二次函数图象与常量a、b、c、h、k之间的关系时。可作以下设计:
1.在演示画面中,实时显示抛物线的顶点坐标、与y轴的交点坐标和对称轴。
2.拖动有向线段a,改变a的取值。观察抛物线开口方向及大小。
3.归纳:当a>0时,开口向上,开口大小随a的增大而变小;当a<0时,开口向下,开口大小随a的减小而变小;当a=0时,二次函数退化成为一次函数y=kx+b。(说明:一次函数不是特殊的二次函数)4.拖动有向线段c,改变c的取值。观察可发现抛物线随c的值变大、变小而升高或降低。并可观察抛物线与y轴交点的纵坐标和c的取值相等,从而得到抛物线y=ax2+bx+c与y轴交于点(0,c)。
5.拖动有向线段h、k,改变h、k的取值。观察得抛物线随h、k的变化而左右平移或上下平移。顶点坐标是(h、k),也就是(-b/2a,(4ac-b2)/4a)。从而归纳出抛物线的顶点坐标与对称轴和h、k的关系,并将实验观察所得结论,进行推理论证。
例4图
例5:如图所示,根据相交弦定理,我们知道PA•PB=PC•PD,那么,如果P点在☉o外,PA•PB=PC•PD这个结论还成立吗?特别地如果P点在过A、B、C、D中某一点的切线上时,结论又怎样?”。
此问题的探索大致可以按下述四个步骤进行:
1、测量PA、PB、PC、PD的值,并计算PA•PB,PC•PD;
2、用鼠标将P点从圆内拖到圆外;
3、观察PA•PB,PC•PD的值的变化情况,仔细查看当P点在圆外变动时变化了的PA•PB,PC•PD的值是否相等。
4、得到结论。
对于切线位置,可以过某一点(如C点)作圆的一条切线(CM),在该切线上任取一点H(H点最好不与C点重合),然而,用选择工具选择P点按住Shift键后再选H点,使两点都被选中,用鼠标选择【编辑】下的【操作类按钮】下的【移动】命令,为从P点移动到H点设置一个运动按钮,当双击按钮时,P会从它的当前位置移动到H点,并使P、H两点重合。通过观察PA•PB,PC•PD的值,可确立两者的值的关系,得到结论。
AODPBCAOCDBPAODCBPH例5图
四、运用《几何画板》的几点认识
1.《几何画板》在课堂教学中的运用产生了良好效应。它的启动,改变了常规教学的陈旧模式,使课堂教学更加形象和生动。实践中,学生从心理上所反映出来的是惊喜和兴奋,进而有一种强烈求知欲,它可以充分调动学生的学习积极性,同时也营造了一种学习活动的良好氛围。从知识学习的达成度看收效甚佳。
2.使用《几何画板》进行数学教学,通过具体的感性的信息呈现,能给学生留下更为深刻的印象,使学生不是把数学作为单纯的知识去理解它,而是能够更有实感的去把握它。这样,既能激发学生的情感、培养学生的兴趣,又能大大提高课堂效率,把教师群体的智慧和经验转化为一种可重复使用的教学资源,开展更富创造性的教学工作。
3.在具体的教学中教师不能流于形式,玩玩花样,做做表演,要真正解决实际问题,既要节省时间,又要方便,还要提高效率。利用《几何画板》是为了对一些学生不易掌握或不好理解的教学内容进行模拟实验,探索,让学生更直观更深刻更容易地理解和掌握所学知识,因此我们在利用它教学时,必须要在比用传统教学手段授课易让学生接受、省时省力基础上才用它。
第三篇:几何画板在数学教学中的应用
几何画板在数学教学中的应用
正安县杨兴中学:秦月
【摘要】在信息技术突飞猛进的今天,传统的教学方式已不能适应现代教育教学的要求。尤其是在数学教学这样一个比较抽象的学科教学中显得尤为突出,那么如何利用现代信息技术为现在的数学教学服务呢!几何画板是当今数学教师运用最为广泛的软件之一,本文将从以下几个方面作介绍几何画板在数学教学中的应用:几何画板在一次函数教学中的应用、在轴对称图形教学中的应用、在勾股定理教学中的应用、在求解实际问题中的简单应用。希望能起到抛砖引玉的作用。
【关键词】几何画板 函数 参数 动点
在传统的数学教学中,教师靠的主要是一张嘴、一支粉笔、一块黑板进行教学。直到今天,尤其是在我们落后乡村学校,由于各种各样的原因,这种教学方式依然主宰当前的数学课堂,显然这种方式已经不能适应当前的教育发展大趋势,如何改变这种现况,那就得借助现代信息技术,找一个适合数学教学的平台。纵观现在常用的软件,几何画板具有操作简单、功能强大的特点,是广大数学教师进行现代化数学教学理想工具。在现代的数学教学中已发挥着越来越重要的作用。
几何画板又不同于其他绘图工具,它能动态地保持给定的几何关系,便于学生自行动手在变化的图形中发现其不变的几何规律,从而打破传统纯理论数学教学的局面,成为提倡数学实验,培养学生创新能力的新新工具。把它和数学教学进行有机地整合,能为数学课堂教学营造一种动态的有规律的数学教学新环境。
一、在一次函数教学中的应用
在几何画板中,可以新建参数(即变量),然后在函数中进行引用并绘制函数图像,通过改变参数的值来观察函数图像的变化,这在传统教学中无法办到。
如在讲解一次函数y=kx+b的图像一节中,如何向学生说明函数图像与参数“K”、“b”的相互关系一直是传统教学中的重点和难点,学生难以理解,教师也难以用语言文字表达清楚;在作图时,要取不同的“k”、“b”的值,然后列表在黑板上画出多个不同的函数图像,再进行观察比较。整个过程十分繁琐,且费时费力。教师和学生的主要精力放在了重复的计算和作图上,而不是通过观察、比较、讨论而得出结论上。整个过程显得不够直观,重点不突出,学生理解起来也很难。然而在几何画板中,只需改变参数“K”、“b”的值,函数图像便可一目了然。如图:
通过不断改变参数“k”、“b”的值,从而得到不同的函数图像,引导学生观察一次函数图像变化的规律。
①当k>0时,函数值随x的增大而增大;②当k<0时,函数值随x的增大而减小;③当b>0时,函数图像相对于b=0时向上移动;④当b<0时,函数图像相对于b=0时向下移动;⑤当|k|越大时,函数图像变化越快,图像越陡峭;⑥当|k|越小时,函数图像变化越慢,图像越平滑;
经过我们改变一次函数的参数“K”、“b”的值,函数的图像会随之发生变化,这样学生就很容易理解函数图像变化的规律,从而使学生从更深层次理解一次函数的本质。
二、在轴对称图形教学中的应用
几何画板提供了四种“变换”工具,包括平移、旋转、缩放和反射变换。在图形变换的过程中,图形的某些性质始终保持一定的不变性,几何画板能很好地反应出这些特点。
在讲解轴对称图形的教学中,可充分利用几何画板中提供的图形变换功能进行讲解。首先,画一个任意三角形△ABC,然后在适当的位置画一条线段MN,并把双击它即可将其标识为镜面,这时就可以作△ABC关于对称轴MN的轴对称图形。
△ABC和△A′B′C′关于MN轴对称。任意拖动△ABC的顶点、边、对称轴,虽然图形的位置、形状和大小在发生变化,但两个图形始终关于对称轴MN对称。同时可以观察到△ABC与△A′B′C′沿MN对折后完全重合。
三、在勾股定理教学中的应用
几何画板能动态地保持平面图形中给定的几何关系,利用这一特点便于在变化的图形中发现恒定不变的几何规律。如平行、垂直,中点,角平分线等等都能在图形的变化中保持下来,不会因图形的改变而改变,这也许是几何画板中最富有魅力的地方。在平面几何的教学中如果能很好地发挥几何画板中的这些特性,就能为数学教学增辉添色。如在勾股定理的教学中,直角三角形的三边之间有着必然的联系。要弄清楚它们之间的关系,借助于几何画板,则一目了然。
在几何画板里,先画一个直角△ABC,∠C=900。从图右方的度量值可以发现,AB和AC、BC的长度已经知道,观察AB2与AC2+BC2的关系:
如果拖动顶点A(从a图到b图),我们通过改变直角三角形边的长度,从中观察边的平方的关系,发现这样一个定理:在直角三角形中,始终有斜边的平方等于两条直角边的平方和。
再如,在讲解“赵爽弦图”时,传统的教学方法只能教师在黑板上演算过程,而用几何画板更容易发现其中的不变的规律。
首先,在几何画板中构造一个正方形,然后将经过一个顶点作直线,再通过另一相邻的顶点作这条直线的垂线,得到一个交点。用同样的方法,可得出另外几个关键点,再将这几条垂线隐藏,连接对应的点,即可得到下面这个图形。分别度量AB、AF、FB的长度,最后用不同的方法来计算这个正方形的面积:⑴、直接利用正方形的面积公式;⑵、正方形的面积等于其中四个直角三角形和中间的那个小正方形的面积之和;⑶、直接使用几何画板提供的量度面积命令。这三种方法都可得出这个正方形的面积,注意观察得到的结果都是一样的。
再改变正方形的大小及其组成的直角三角形和小正方形的比例,再来观察这三种计算方法得到的结果是否一致,如下图:
四、在求解实际问题中的应用
利用几何画板不但可以给几何问题以准确生动的表达,成为教师教学上的得力“助手”,还可为教师和学生提供几何探索和发现的一个良好环境,动态是几何画板最主要的特点,也正是基于这一点,许多用一般方法不易解决的问题,用它解决起来就要容易得多,现在举例说明。
如图,已知二次函数y=ax2+bx+3的图像经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C。
(1)求顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边行CDAN是平行四边行;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,如果存在,请求出点P的坐标;如果不存在,请说明理由。
分析:这道目,第(1)、(2)问都比较容易解决,第(3)问就是关于动点的,比较抽象,然而运用几何画板后,情况就变得很明显了,给解题帮助很大。
解:(1)因为二次函数经过点A、B、N,且三个点的坐标都已知,可解得二次函数的解析式为y=-x2+2x+3,可解得: C(0,3);M(1,4)。
(2)在几何画板中连接CN、AN、AD,如图: 由于已经知道C、M两点的坐标,直线y=kx+d又经过C、M两个点,可得直线的解析式为y=x+3。D点是直线与X轴的交点,可得D点的坐标为(-3,0),又因为A点的坐标为(-1,0),所以AD=2。再看C、N两点,其坐标都已知,且纵坐标都为3,可得CN与X轴平行,那么自然就与AD平行了。再由C、N两点的坐标可得CN=2,因此AD=CN;在四边形CDAN中两边AD、CN平行且相等,所以它是一个平行四边形。
(3)这个问题比较抽象,因为点P是动点。我们现在借助几何画板对这种情况进行分析。因为A、B两点是二次函数与X轴的交点,自然关于函数的对称轴对称,两点到对称轴上任意一点的距离相等。故以对称轴上的点为圆心作圆,经过其中一个交点,必定经过另外一个点,因此考虑一个点就行了。
先在二次函数的对称轴上任找一点P,连接AP,再以P为圆心,AP为半径作圆,不断的拖动P点,看看这个圆是否能与直线CD相切。如下图:
从上图中可以看出:图a中P点比较靠近X轴,所作圆与直线CD没有交点;图b中,P点离X轴较远,所作圆与直线CD相交,有两个交点。试想:图a中的P点向上移动的到达图b所在的位置过程中,中间肯定有一个点让圆与直线CD相切,如图c所示。
那么应该怎样求P点的坐标呢!看右图:
过P点作直线CD的垂线,垂足为K,要想使圆P与直线CD相切,实际上PK这时是圆P的半径。即PK=PA时,圆P与直线CD相切。
在△DEM中三个点的坐标都知道,可得DE=EM,因此△DEM是一个等腰直角三角形。同样△PMK也是等腰直角三角形,有:
2KP2=MP2 又因为:AP2=AE2+PE2,MP=ME-PE,KP=AP;其中:AE=2;PE=1;ME=4。
可解得:PE=264,P点的坐标为(1,264)。
解到这里,此题看似已完,但如果你够细心,把P点再上下拖动,会发现在X轴的下方还在一个点能使点圆P与直线CD相切,如下图:
相同的方法,可解得:PE=(264)。由于P点在X轴的下方,所以P点的坐标为(1,-(264))。
因此满足这样的点P在对称轴上有两个点: 即P1(1,264);P2(1,-(264))。
从本题中不难看出,运用几何画板给我们在解决动点问题中提供了很大的帮助,在纸上或黑板上不容易发现的问题,在几何画板上只要轻轻拖动鼠标就很容易发现,从而有效的避免了漏解情况的发生。
几何画板在数学教学中应用远远不止这些,如画直观图,在黑板上画是很费时的,但在几何画板中可用鼠标一点完成。因此,只要我们熟练掌握几何画板功能,多实践,不断与数学教学相结合,相信就能使它在数学教学中发挥的作用。
【参考文献】
[1] 田延斌.《《几何画板》教学实例》.[2] 张淑俊.《《几何画板》在数学教学中的妙用》.
第四篇:几何画板在初中几何教学中的几点应用
浅谈几何画板在初中数学教学中的几点应用
泰兴市南沙初中 刘岩碧
摘 要:几何画板是现代信息技术与课程整合的一项杰出创作.应用几何画板可以提高几何教学的直观性和准确性,弥补了传统教学方式在直观感、立体感和动态感等方面的不足,让学生更深刻体会到几何“动”的一面.从而达到改进部分章节的教学方法和教学手段的目的,更好地提高课堂效率的作用.
关键字:几何画板;初中几何;特色运用
新课改下的初中几何的教学正在发生革命性的变化.过去的几何教学一直过分强调演绎推理,却忽视了几何的“图形”特征.新课改的最大亮点,便是恢复了几何的“图形”特征,削弱证明在初中几何中那种“神圣不可动摇”的地位,使初中几何重新焕发生机.借用学生的话说是:几何“活”了,几何也可以“动”了.课程的改革势必引起教学方法的改革.可不是吗?现在的初中几何的讲台再也不是“粉笔加尺规”就可以上的了,教学理念的变化加上现代教育技术的普遍应用已经给教学手段,特别是几何教学也带来了新的变化和改进.
“信息技术与课程的整合”是我国面向21世纪基础教育教学改革的新视点.借助多媒体的动画效果,更有利于向学生展示几何图形的“动”的一面.计算机辅助教学进人课堂,可使抽象的概念具体化、形象化,尤其是计算机能进行动态的演示,弥补了传统教学方式在直观感、立体感和动态感等方面的不足,利用这个特点可处理其他教学手段难以处理的问题,并能引起学生的兴趣,增强他们的直观印象,为教师化解教学难点、突破教学重点、提高课堂效率和教学效果提供了一种现代化的教学手段.几何画板也正是在这样的背景下被研发出来的.现在我们很欣喜地看到这项工具正在给我们的数学教学带来更多的革命性的变化.
下面就本人所从事的初中数学的教学,谈谈几何画板在对教材中某些知识点处理上的独到之处.
[案例一]:
《等腰三角形》是初中几何的一个重点内容,这部分有很多定理.教材在处理方法上引入了较多的动手操作和直观感知,通过折纸、观察、归纳等方法很直观地得出等腰三角形的有关性质和识别.但是由于学生在制作等腰三角形的模型时,存在一定的误差,导致结论不是很准确.而且学生所制作的模型带有一定的局限性,无法更好地解释这种结论的一般性.应用几何画板就可以模拟这些折叠、翻转的动画效果,而且可以达到很准确的效果.然后还可以通过拖动等腰三角形的顶点任意改变它的形状和大小,直观地说明结论的正确性,从而也便于论证结论的一般性.
具体过程如下:
(1)等腰△ABC纸片中,AB=AC,(图1-1)将AB与AC重合在一起折叠,(图1-2)观察→两部分会完全重合→等腰三角形是轴对称图形,折痕AD是对称轴,B与C重合,BD与CD重合→∠B=∠C,即等边对等角.(图1-3)通过引导学生对折痕AD的分析,也就能很容易得出“三线合一”的性质.用这种直接的方式得出结论,就可以避免烦琐的推理过程,而且也让学生更容易记住结论.
(2)在画△ABC,使∠B=∠C,D为BC中点,连结AD,(图1-4)沿AD为折痕对折,观察→两部分会完全重合→AB与AC会完全重合,△ABC是等腰三角形,即等角对等边.(图1-5)
(3)拖动等腰△ABC的顶点A,改变三角形的形状,得到不同形状的符合条件的三角形,然后重复上述的步骤(1)和步骤(2),也得到同样的结论.让学生掌握以上结论的一般性,(图1-6,图1-7).
[案例二]:
讲三角形内角和定理,以前都是用剪纸、拼接和度量的方法让学生直观感受,但由于实际操作起来都有误差,很难达到理想的效果.现在利用“几何画板”随意画一个三角形(图2-1),度量出它的三个内角并求和(图2-2——图2-5),然后拖动三角形的顶点任意改变三角形的形状和大小(图2-6的钝角三角形和图2-7直角三角形),发现:无论怎么变,三个内角的和总是180度.这无疑大大地激起学生进一步探究“为什么”的欲望.
[案例三]:
在学习三角形的三条角平分线(三条中线、三条高或高的延长线、三边的垂直平分线)相交于一点时,传统教学方式都是让学生作图、观察、得出结论,但每个学生在作图中总会出现种种误差,导致三条线没有相交于一点,即使交于一点了,也会心存疑惑:是否是个别现象?使得学生很难领会数学内容的本质.但利用信息技术就不同了,我们可以在几何画板里只要画出一个三角形(图3-1),用菜单命令画出相应的三条角平分线(图3-2),就能观察到三线交于一点的事实(图3-3),然后任意拖动三角形的顶点,改变三角形的形状和大小,发现三线交于一点的事实总是不会改变的(图3-4).特别是像高这样有特征情况的线,还可以通过拖动得出交点的三个不同位置.(图3-5,图3-6,图3-7)
[案例四]:
在学习《探索勾股定理》时,利用“几何画板”作一个动态变化的直角三角形,通过滚动的数值度量各边长度的平方值,(图4-1让点A沿AC方向运动),并通过观察,引导学生发现任何一个直角三角形的两直角边的平方和等于斜边的平方,(图4-2,图4-3,图4-4)从而加深了对勾股定理的认识、理解和应用.
学无定法,教同样也无定法.我们应该在平时的教学中不断地钻研教材,力求以最简洁,最高效的方法进行有效地教学.新课改在对课程改革的同时也带动了教学方法和教学手段的不断创新.因此,我们应该抓住这样的时机,除了关注课程和课堂教学改革的同时,也寻求一些更能提高课堂效率的教学手段的更新.将多媒体辅助教学的方法真正落到实处,不仅做到辅助教学,还要真正做到能促进教学.
第五篇:超级画板在初中几何教学中的应用
超级画板在初中几何教学中的应用
[摘 要] 超级画板辅助教学主要体现在优越的图形工具中,可用其代替部分传统教具,而它的动画功能可以让静止的图形动起来,体现直观的效果,也易于去验证猜想和探究,帮助学生直接理解动态过程,使学生养成以动态的观点思考静态图形的学习方法.[关键词] 超级画板;课堂教学;平面几何;直观;动态
前言
在知识爆炸的今天,信息技术的飞速发展广泛而深刻地影响着社会每一个领域的发展.在教育中,信息技术辅助教学也变得尤为重要.超级画板是一款优秀的数学教学软件,相比传统的数学教学,它具有诸多优势,如智能画笔作图、动态测量、图形变化等功能,能有效辅助教师进行课堂教学.在传统的平面几何教学中,常常是用粉笔借助直尺、圆规、量角器等教学测量工具在黑板上作图.我国现在提倡用信息技术辅助教学,以提高教学效率,而超级画板就能有效、方便地进行平面作图.(一)基本特色
超级画板画图最基本的就是用鼠标以点带线画图,点与点间默认以直线段连接,这能使教师轻松完成普通的多边形作图.而对于特殊图形,超级画板提供了一系列具有特殊性质的图形,如正多边形、等腰梯形、已知原点和半径的圆等,避免了特殊图形传统作图的诸多不便.如用笔画等腰梯形得用直尺辅助三角板进行平移,要先画出两条平行线,再用刻度尺准确地截取出两条线段作为等腰梯形的上下底,但是超级画板作图只需简单的两步:任取三点,依次选中这三点并点击“等腰梯形”,便可完成标准等腰梯形的作图.此外,传统作图在画含有特定角的多边形时需要量角器的辅助才能实现,而在画板中只需通过线绕点旋转的功能就能轻松完成.(二)图形易于“修改”
传统的作图大部分是画于黑板和纸上,这两种载体都有一个共同的弊端:不易于修改,特别是绘制较为复杂的图形和辅助线时,有诸多不便.超级画板除了可以删除不必要的点和线之外,还能隐藏一些暂时无用的点和线,待需要时再显示.这样的切换在教师的合理运用下可以一步步引导学生思考和探究,避免教师用传统方法改动图形时浪费时间导致学生思路中断的问题.超级画板可以在不改变图形结构的条件下利用放大和缩小的功能对原图形进行调节,避免因图形大小不适而需重新作图的问题.此外,它还能通过对线段进行不同层次的加粗和着色、对角进行标注等来突出题目条件,便于学生思考.(三)代替部分传统教具
教具是教师辅助教学的用具,教师根据需要使用教具,能够激发学生的学习兴趣,突出教学重难点,发展学生创新思维力,有效提高教学质量和效率.但是传统的数学教具常是由纸等材料直接制作的,这类教具不利于保存,通常为一次性用品.这种教具制作过程有时很复杂,且浪费精力和资源,超级画板能通过动画的制作模拟教具来代替部分传统教具.如图形关于对称轴的翻折过程,如图1所示;中心对称图形的旋转过程,如图2所示.超级画板除了能代替此类教具,还能代替其他教具,如数学绘图板,它比传统的绘图板便于携带,作图更精准,功能更强大,如图3所示.(四)易于探究、猜想
含变量的问题一般都比较抽象,学生难以想象出由自变量变化而引发的应变量的变化.虽然教师能画出变化过程中关键部分的图形,但不能展示出它的整个过程.超级画板中的变量尺能帮助教师展示出由自变量变化引起的图形变化过程,这样的全程展示可以让学生发现与所求问题最符合的情况,进而得出合理的猜想,从而解决问题.此外,超级画板能制作关于变量的探究模型,如变量尺和半径圆相结合,作出两个由变量尺控制半径的圆,组成圆与圆之间关系的探究模型,如图4~6所示.说明
(一)直观教学手段
直观教学手段是指根据教学需要对图形进行艺术加工,主要形式有:(1)用不同颜色、不同方式对图形进行标注涂色;(2)图形的隐藏和显示;(3)图形的动画效果.这些手段用传统的粉笔和黑板是不容易实现的,如果是借用超级画板,就大大降低了对图形进行加工的难度.下面借助以下案例介绍超级画板在直观教学中的应用.(二)具体实例
1.三角形的内角和验证
三角形内角和的验证主要是运用割补法使其三个内角拼成一个平角,如图7~10所示.上述几种情形展示的均是针对一个三角形的内角和问题,利用超级画板可以进行多种多样的说明,只是思考的角度和方式不同,都有自身的限制条件,在限制条件成立的情况下,可以根据数学软件直观地解决问题.2.其他四边形的性质
对于平行四边形的一系列性质,如对边平行且相等,我们可以对平行四边形的边进行着色,把对边设置为相同颜色,如图11所示;对角线互相平分,把边所在的三角形填充为不同的颜色,把面积相等的三角形进行填充,如图12所示.这两种方法明显比用黑板和粉笔的效率高且表示得清晰.3.解题案例
例1 如图13,△ABD,△AEC都是等边三角形,求证BC=DE.这是三角形全等问题,但是需求证的两条边所在的三角形不是独立存在的,要求?C的两个三角形有交叉部分.想快速完成证明,首先要将两个三角形抽象出来,我们通过不同颜色的填充将所要求证的三角形直观地表示出来,如图14,逐步寻找三角形全等的条件,然后利用已知条件,得到边角边(SAS)证明问题.例2 如图15,B,C,D在同一直线上,△ABC,△ECD为等边三角形,连接AD,EB交于点H.(1)求证:AD=EB ;(2)求∠AHB的度数.两个等边三角形构成了一个其他平面图形,在此基础上构建了两个三角形全等,为了直观明确到两个三角形全等,利用不同颜色来填充,将需要证明的图形区别出来,如图16,从而利用已知条件解决问题.例3 如图17,已知,正方形CEFG的边长为4,四边形ABCD为正方形,且点B,C,E在一条直线上,连接AG,GE,AE,求三角形AGE的面积.本题是考查三角形面积,倘若知道三角形的底和高,就很容易求解三角形的面积,但是此题三角形的高是没有直接给出的,所以借用超级画板的辅助,将问题图形在超级画板上演示,如图18,找到了要求解的三角形面积等于大正方形的一半,见图19.例4 如图20,求证多边形中,∠A+∠B+∠C+∠D+∠E=180°.方法一:观察图知,多边形5个内角的和刚好和三角形内角和相等,为180°,根据三角形外角的性质(三角形的任意一外角等于与它不相邻的两个内角之和),将多边形其中的四个内角之和转换为三角形的两个外角之和,如图
21、图22,①在△AEI中,∠A+∠E=∠DIA,②在△BCJ中,∠B+∠C=∠DJB,如图23,所以∠A+∠B+∠C+∠D+∠E=∠A+∠DJB+∠DIA=180°.方法二:如图24,作辅助线,连接CD,在△ECD中,∠E+∠ECD+∠EDC=180°,如图25,又对顶角相等,所以∠HCD+∠HDC=∠HBA+∠HAB,所以∠A+∠B+∠C+∠D+∠E=∠ECD+∠EDC+∠E=180°.4.图形的动态动画效果
(1)勾股定理的验证
如图26,以Rt△AFC的直角边和斜边为边长的三个正方形,因为正方形是特殊的平行四边形,因而可以将正方形的面积转换为平行四边形来计算,如图
27、图28三个正方形可以视为同底等高的平行四边形,如图29,将大正方形朝原点方向平移,最后两个平行四边形的面积就视为大正方形的面积.(2)正方体展开图
如图30是一个正方体,如图
31、图32用具体的动画展示,帮助学习者完成展开图形的理解.立体图形的三视图是一个学习的难点,借用超级画板辅助立体图形的展开,能帮助学生更好地理解三视图.(三)超级画板的使用策略
1.在学习四边形时,从学生熟悉的三角形入手,降低知识的难度.例如一个平行四边形就可以分为几个三角形,根据三角形的平行线的性质推导平行四边形及特殊的平行四边形的某些特点.2.利用学生身边的问题创设问题情境,降低对新知识的陌生感,引发学生共鸣.3.通过三角形的知识和以前学习过的知识内容,进行新旧知识的衔接过渡,降低学生对新知识的认知难度.数学教学中有些重要内容、方法、思想需要学生经历较长的认识过程,逐步理解和掌握,如数形结合、逻辑推理、模型思想等.因此,教材呈现相应的教学内容与思想时,应根据学生的年龄特征和知识积累,在遵循科学的前提下,采用一目了然、显而易见的教学方法.直观教学在深度、?V度等方面的直观性都有实质的变化,体现出明显的阶段性要求.九年义务教育阶段的学生对数学概念和问题的理解能力普遍较弱,学生的认知能力也各不相同,有个别差异,因此用超级画板的辅助,能使学生在平面几何方面有较清晰的认识和理解.所以教师除了把相应的知识概念及时渗透给学生,培养学生对抽象事物空间想象的能力以外,还要充分利用好超级画板辅助教学,让学生对知识的理解更加牢固,并将知识运用到生活.