第一篇:《三角形全等的判定SSS》课堂教学实录及评析
贵港市覃塘区第三初级中学覃丽群/执教
贵港市覃塘区教研室李献国/评析
【关键词】数学课堂实录评析
【文献编码】doi:10.3969/j.issn.0450-9889(B).2011.04.003 【设计理念】学习是一个探究与发现的过程,是一个认识、实践、提高的过程。在教学中通过组织引导学生探索三角形全等的条件,让学生们在交往中学,在观察中学,在比较中学,努力实行知与行、学与用、识与能的高度统一,培养学生善于“做数学”的能力。
教学目标 1.知识目标:(1)掌握“边边边”公理;(2)能应用“边边边”公理判定两个三角形全等。2.能力目标:(1)培养学生动手操作、观察、分析、归纳获得数学结论的能力;(2)培养学生推理论证能力。
3.情感态度价值观目标:通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心。
教学重点:寻找判定三角形全等的条件。
教学难点:三角形全等条件的探索和推理论证方法。
教学方法:“悟学式”教学法。
教学准备:多媒体课件、三角板、圆规、木棒、硬纸、剪刀等。
教学过程
一、课堂启发(感动。感动是学习的动力)
师:大家知道数学来源于生活,用数学知识又可以解决许多生活中的问题,下面让我们先来看一个与生活有关的数学问题。
(幻灯片演示)皮皮公司接到一批三角形支架的加工任务,客户的要求是所有的三角形支架必须与样本完全一样。质检部门为了使产品顺利过关,提出了明确的要求:要逐一比对所有的三角形支架与样本是否完全一样。技术科的毛毛提出了质疑:为了提高效率,是不是可以找到一个更优化的方法呢?
师:问题中的“完全一样”在数学中是指什么?
生:全等。
师:“逐一比对”是怎样比呢?
生:用重合法,分别比较三角形的三条边和三个角是否重合。
师:也就是验证几个条件?
生:6个。
师:是不是一定要满足这6个条件才能判定两个三角形全等呢?在这里毛毛提出的更优化的方法,实质上是给我们提出了一个什么样的数学问题呢?
生:也就是说,如何判定两个三角形全等需要的条件最少。
师:很好!这节课就让我们一起来研究三角形全等的判定方法。
【点评】新课伊始,覃老师用简洁的语言提出数学来源于生活又服务于生活,进而引出生活中应用全等三角形的例子,通过引例既复习了全等三角形的定义,又自然地过渡到确定两个三角形全等至少需要哪些条件的问题上来,学得自然新鲜,学生由此“感动”而产生了学习新知的欲望。
二、预习思考(感觉。感觉是学习的入门)1.展示课题。
2.分组探索三角形全等的条件(一个条件、两个条件、三个条件逐一探讨)。3.分组交流“前置作业中的预习问题”。
【点评】本节课善于利用“一张纸”,将要探究的问题设计在前置作业中让学生课前去思考。通过设计预习思考题,让学生对本节课的知识及探究思路有了一个初步的“感觉”。通过预习,学生带着问题和疑惑进入课堂,确保课堂教学达到高质有效的效果。
三、问题讨论(感知。感知是学习的基础)
师:当两个三角形满足一个条件,这个条件可能是什么?
生:可能是一条边对应相等,或是一个角对应相等。
师:每种情况下的三角形一定全等吗?
生:不一定,大家看,我用木棒拼成的这两个三角形,它们有一条边对应相等,但这两个三角形却不全等。
生:这副三角板,它们都有一个角等于90度,但这两个三角形不全等。
师:通过这些反例,我们很容易得到一个什么样的结论呢?
生:有一个角或一条边对应相等的两个三角形不一定全等。
师:还可以怎么说?
生:只满足一个条件的两个三角形不一定全等。
师:很好!(课件展示小结)那么当两个三角形满足两个条件时,这两个条件又有可能是什么呢?
生:共三种情形:(1)两边对应相等;(2)两角对应相等;(3)-边一角对应相等。
师:概括得很完整!那么哪个小组的同学来说说对于每种情况下的三角形又是否一定全等呢?
小组(1):我们组发现每种情况下的三角形都不一定全等。如:„„(学生举例)
师:说得真棒!其他小组还有不同看法吗?
小组(2):举例„„这些例子同样说明两个三角形满足两个条件时也不一定全等。
师:还有谁有不同想法呢?
师:通过以上各种不同的例子,我们又得到一个什么样的结论呢?
生:满足两个条件的两个三角形不一定全等。
师:(课件展示)两个条件也不行,那我们只能再增加一个条件了。接下来让我们来研究满足三个条件的情形。那么两个三角形满足三个条件又有哪些情形呢?
生:三边对应相等或三个角对应相等。
师:还有谁有不同补充吗?
生:两角及其一边对应相等或两边及其一角对应相等。
师:说得不错!也就是说两个三角形满足三个条件共有几种情况呢?
生(齐):4种。
师:(课件展示)下面让我们先来研究第一种:三边对应相等的情形。我们已经学过,给出三边,看是否能组成三角形必须满足什么关系呢?
生:两边之和必须大于第三边。
师:好!下面请同学们用准备好的木棒拼一拼,看是否能组成三角形?如果能,把你拼出的三角形与其他同学的比一比,看谁拼的三角形与你的三角形的三边对应相等?
(随意请出一名学生)
生1:大家看,谁拼的三角形三边与我的三边一样呢?
(生2展示自己所拼的三角形)
师:大家比比看,你们发现了什么?
生(齐):这两个三角形全等。
师:(再随意找一名学生)将你拼的三角形举起来让大家看一看,谁拼的三角形的三边又和这位同学的一样呢?请拿上来比比看。(生3到讲台展示成果)
师:通过观察,比较,所得结论与刚才是否一样呢?
生(齐):一样。
师:也就是说,三边对应相等的两个三角形全等(课件展示)。这个结论对于任意的三角形是否仍然成立呢?如任意△ABC(课件展示),又怎样作另一个三角形,使它的三边与△ABC的三边对应相等?请同学们参考课本讨论交流,说说自己的想法。
点评:覃老师通过直观的教具——长度不一的木棒,引导学生动手操作、交流讨论,展示成果,既培养了学生的说理论证能力,又培养了学生的动手操作、探索、观察、分析、归纳获得数学结论的能力。在课堂中,覃老师只作适当的引导与点评,将问题都交给学生讨论与交流,做到了真正把课堂还给学生,体现了“教以生为本”“学以悟为根”的“悟学”理念。
四、教材分析(感悟。感悟是学习的升华)
(学生按课本画图,讨论交流画法)
师:哪个同学来说说怎样作呢?
生1:边说作图步骤边画图。画好后提出:大家听明白了吗?
生(多数):明白了。
生2:我有个疑问:为什么要先作射线呢?直接画线段不行吗? 生1:我觉得先作射线再截取线段相等会比直接作线段误差更小。当然直接画线段也行,但不是很好。
生2:我还有个疑问:第三个顶点为什么这样确定吗?
生1:(有点茫然了)我也没想过,谁能解决这个问题呢?
(生大多数摇头)
生1:让老师来帮我们解决这个问题吧。
(教师分析讲解作图步骤和根据)
师:明白了吗?下面请同学们按照这三个步骤画一个三角形,使它的三边等于小组中的三角形的三边,画好后将其剪下,再与原三角形比一比。(课前每个小组都准备有一个三角形)
(学生画图并将画好的三角形剪下,比较,观察)
师:(请一名学生展示结果)经过观察比较,你发现了什么?
生:发现所画的三角形与原三角形是全等的。
师:其他同学的结论是否一样呢?
生(齐):一样。
师:因此,我们知道:“三边对应相等的两个三角形全等”这个结论对于任意的三角形也是成立的。我们把这个结论叫做三角形的判定定理1。根据这个定理我们可以知道,只要一个三角形的三边确定了,这个三角形的形状和大小也随之确定了,我们把这个性质叫做三角形的稳定性。三角形的稳定性在生活中有许多应用,谁能来举个例子呢?
生1:在木门上加一根木条构成三角形可以将木门确定下来。
生2:自行车的三角形支架。
生3:许多庄稼棚里的蔬菜大棚用的三角形支架。
师:说得很好!大家都很善于观察生活!三角形的稳定性在生活中还有很多应用,请同学们一起来欣赏(课件演示)。
(学生欣赏)
师:这么好的一个定理怎样用它来证明两个三角形全等呢?下面让我们先来看一个例题,至于三个条件中的其他情况我们下节课再研究。
师:展示例题(略),要证两个三角形
全等,需要几个条件呢?这几个条件是什么呢?
(个别学生回答)师:你怎样得到这三个条件呢?
生:题目已经直接给出一对边,而有 一对边又刚好是公共边,由中点的条件 又可以得到一对边对应相等,这样具有 三对边对应相等,就可以证明这两个三 角形全等了。
师:说得很好!下面我们一起来看一 看证明过程(课件演示证明过程)。
点评:对于定理的得来,覃老师并不 是强塞给学生,而是让学生经历了从“特 殊”到“一般”的一个探讨过程,先是用手 中现有的木棒拼图,再拓展到任意三角 形,通过学生自学课本画图,剪图,比较,最后让学生感悟出定理,归纳定理。由于 教师能大胆放手,所以在学生自学领悟 的过程中,学生敢于提出“质疑”,这也是 本节课的一个亮点。学生的质疑为解决 本节课的难点作了一个很好的铺垫。数 学课就应这样,敢于放手,相信学生,才 能让学生真正地去“感悟”数学知识,体 会学数学的乐趣。
五、课堂练习:(略)
总评:本节课教学设计的最大亮点 是符合数学学科的特点,体现数学的精 神实质,符合学生的认知规律和心理特 征,有利于激发学生的学习兴趣;在呈现 数学知识的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问 题、构建数学模型、寻求结果、解决问题 的过程。在进行课堂教学设计时,面向全 体学生,因材施教,针对不同知识基础和 能力的学生,设计出符合不同层次学生 在同一课堂上都能得到提高的教学方 案,以千差万别的方式练就千差万别的 学生。使得“人人都能获得良好的数学教 育,不同的人在数学上得到不同的发 展”。
整个教学过程,较好地体现了“教以 生为本,学以悟为根”“教为了不教,学为 了活学”等“悟学”理念。
“悟学”理念中的“学习方略”在本节 课中也有明显的体现。如从一个条件,到 两个条件、三个条件的探究,教师都是通 过引导学生举例,小组合作动手拼图,剪 图,然后进行比较说理,最后归纳结论,真正做到了培养学生“善于观察”、“善于 思考”、“善于决策”、“善于实践”、“善于 总结”的能力。
第二篇:三角形全等判定(sss)说课稿
《全等三角形的判定》说课稿
各位老师:
大家好!我说课的内容是人教版义务教育标准实验教科书八年级数学第十一章第二节《全等三角形的判定1》,下面我从教材分析、教学目的的确定、教法学法的选择、教学过程的设计等几个方面对本节课进行分析说明。一 教材分析:
《全等三角形的判定1》是八年级上册的内容,本节是三角形全等判定的第一课,主要讲的是如何利用“边边边”的条件证明两个三角形全等。本节课的内容是在学习了全等三角形的概念、全等三角形的性质后展开的,是证明两个三角形全等的重要方法之一。全等三角形是两个三角形最简单、最常见的关系,它不仅是学习后面知识的基础,而且也是证明线段相等、角相等的重要依据,学生只有很好的掌握了全等三角形的判定方法,并且能灵活地运用它,才能为以后学习《四边形》、《圆》等知识打下良好的基础。学生已学过线段、角、相交线、平行线以及三角形的有关知识,并且七年级两册教科书中又安排了一些说理的内容,这些都为本节学习全等三角形的判定做好了准备。学生只要对“边边边”的判定条件掌握好了,并能运用它进行推理论证,那么再学习其它的判定条件就不困难了。二 教学目标:
根据教材地位和学生实际,依据教学大纲,本着向学生传授知识,发展思维能力,同时向学生进行思想教育为目的,我将本节课的教学目标划分为三个层次:①知识目标 ②能力目标 ③思想目标。
⒈知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等。
⒉能力目标:经历探索三角形全等条件的过程,体会如何探索研究问题,让学生初步体会分类思想,提高分析问题和解决问题的能力。
⒊思想目标:通过画图比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。三 教学重点、难点:
教学重点:用“边边边”证明两个三角形全等。教学难点:探究三角形全等的条件。四 教法、学法分析:
(1)教法分析
针对八年级学生活泼好动、好奇心和求知欲都非常强,但观察、分析、认识问题能力较弱的特点,我在本节课的教学过程中采用了如下的教学方法:
在探究三角形全等条件的新课阶段以启发谈话法为主,通过提出问题,引导学生探讨问题和解决问题,始终让学生参与整个问题的“发生”和“解决”过程,让学生即掌握了新的知识,又培养了学生探索问题的能力,激发学生的求知欲。另外,在这个阶段还运用了电教手段进行直观演示,增强教学的直观性,使学生获得感性认识,这样做也容易使学生集中注意力,激发学生的学习兴趣。
在三角形全等条件的应用阶段采用讲练结合法,对于例题的学习,通过教师引导,学生观察思考,寻求解决问题的方法.在解题中使学生展开思维。通过对例题的学习,教师给出了规范的证题过程,然后让学生做类似练习,写出证明过程,教师评析,纠正不规范的地方。
(2)学法分析
在整个的教学过程中我还强调自主活动,注重、合作交流,让学生的学习在探究的过程中进行,使他们在自主探究的过程中理解和掌握三角形全等的条件,提高学生探究、发现问题的能力,同时注意精选习题,做多种形式的练习,在教学中力争把学生思维展开,注重培养学生的思维能力。
六、教学过程
关于本节课的教学过程我设计的如下六个环节
1、复习引入
2、新课讲解
3、题例训练
4、反馈练习
5、归纳小结
6、布置作业。
1、复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。
2、讲授新课 全等三角形的判定条件的探究 首先提出问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。接着再提出问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。接下来提出问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式以及应注意的问题。
3、题例训练 例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题,在讲解例2时首先要给学生指出证题的思路“要证明△ABD≌△ACD可以看这两个三
角形的三条边是否对应相等,而由已知条件可知AB=AC,图中又有公共边AD=AD,关键是第三对边BD、CD是否相等,由D是BC中点可知BD=CD,从而找全三个条件。”然后教师给出规范的证明格式。并且通过此题给学生总结证明三角形全等的书写步骤。所以,通过例2要使学生理解证明的基本过程,掌握证明三角形全等的书写步骤,例3是习题的拓展与提高,主要是利用三角形全等来证明角相等,通过此题要使学生认识到全等三角形性质的运用。在讲解此题时我是这样给学生分析思路的,“要证明∠A=∠C,首先要看这两个角在那两三角形中,由图中可知这两个角在△ABD和△CDB中,只要证它们全等就可以了,而已知中已给出两组边相等,图中还有一组公共边,从而可得证明这两个三角形全等的条件。”然后让学生口述此题的证明过程,教师给出规范的证明过程。
4、反馈练习:
为了检测学生对本节课的内容掌握情况,我又设计了反馈练习,学生独立完成,教师评析,对其中出现的问题及时纠正。
5、课堂小结 从三个角度总结:
(1)本节课所讲的内容。(2)如何用判定条件证明三角形全等。(3)证明时应注意的问题。
6、布置作业及复习思考题
布置作业是用来巩固本节课所讲的内容,检验本节课的教学效果,同时本着面向全体学生因材施教的原则,布置一道思考题,使学有余力的同学得到锻炼,能力得到提高。
这是我对本节课的总的设计过程,具体过程将体现在我的课堂教学中。
第三篇:三角形全等判定sss教学反思
《三角形全等的判定sss》教学反思
本节课是人教版八年级数学第十二章第二节的内容,主要探索三角形全等的条件及利用“边边边”解决简单的实际问题,而我所讲授的是第一课时---三角形全等的判定方法一(SSS),它是后面几种判定方法的基础,也是本章的重点及难点.教材看似简单,仔细研究后才发现,对八年级学生来说有些困难,处理不好是难以成功的,况且对学生以后学习几何起着关键作用,因此在上这一课时,我精心设计,从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作,大胆猜想,实践操作,相互交流验证,很好地解决了问题,顺利的完成了本节课的任务,具体表现在以下几个方面:
首先,以“配玻璃”引入新课,激起学生的求知欲,让学生感觉到知识来源于生活,从而设计一个探究问题:怎么画一个和已知全等的三角形?你认为至少需哪些条件?激起学生的求知欲,充分让学生自由交流讨论、大胆猜想,在课堂上引导学生发现问题并通过动手操作、交流讨论来解决问题.其次,重点关注“已知一边、两边”包括的情形,以及不能形成的原因,让学生自行找出(或教师引导),通过学生实践,形成认知.然后,利用尺规画一个和已知三角形全等的三角形,引导学生试着画图,展开探究活动,让学生亲身体验,从实践中获得“SSS”条件,培养学生探索、发现、概括规律的能力.本节课在难点的突破、激发学生的兴趣、动手操作和学生板演习题上取得了一定的成功,但是遗憾的是在时间上没能较好的掌握,以致没能布置课后作业,所以在以后的教学中,值得思考的地方是(1)提前让学生准备好学具(如纸、剪刀、圆规等),分组时,优差互补,让人人学有所得.(2)教学时应多关注学生,在学习新知识后,虽然大部分学生掌握了,但少数后进生仍然不理解.总之,在数学课堂教学中,教师需时刻注意给学生提供自己思考的机会,体现学生的主体地位,充分发挥学生的主观能动作用,尽量为学生提供“做中学”的平台,让学生在做的过程中借助自己已有的知识和方法主动探索新知识,扩大自己的知识结构,发展能力,从而使课堂教学真正为学生发展服务,这正是我今后努力的方向.
第四篇:全等三角形的判定(SSS)说课稿
全等三角形的判定(SSS)第一课时
(一)本节内容在全书和章节的地位
本节内容选自人教版初中数学八年级上册第十一章,本课是探索三角形全等条件的第一课时,是在学习了全等三角形的概念,全等三角形的性质后展开的。对于全等三角形的研究,实际是平面几何对封闭的两个图形关系研究的第一步,它是两个三角形间最简单、最常见的关系,它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。因此,本节课的知识具有承前启后的作用,占有相当重要的地位。
(二)三维教学目标
1.知识与能力目标
因为是第一课时,本节课主要给学生讲解全等三角形的“SSS”判定公理,同时理解三角形的稳定性,能用三角形全等解决一些现实问题,熟悉掌握“SSS”|的判定方法,能够自主探索,动手操作,在过程中体会到自主学习索取知识的乐趣,从而启发学生学习数学的方式,为下节课打下基础。
2.过程与方法目标
通过分解三角形的各个边和角,两个三角形做对比,用问题分解法求解,探索全等三角形的全等条件,经历认知探知过程,体会挖掘知识的过程。
通过两个三角形边与角的对比发现全等三角形的判定条件“SSS”,锻炼学生分析问题,解决问题的能力。
3.情感态度与价值观
培养学生勇于探索、团结协作的精神,积累数学活动的经验。
(三)重点与难点
1.教学难点
认识三角形全等的发现过程以及边边边的辨析。能够对运用三角形判定公理“SSS”解决三角形全等问题,对三角形其他定理的拓展与思考,了解三角形的稳定性。
2.教学重点
利用性质和判定,关键是学会准确地找出两个全等三角形中的对应边与对应角。准确理解“SSS”三角形判定的公理,规范书写全等三角形的证明;
第五篇:《全等三角形的判定(SSS)》说课稿
《全等三角形的判定(SSS)》说课稿
大家好!我说课的内容是新人教版八年级上册第十二章第二节《全等三角形的判定》,下面我从教材分析、教学目标、重点难点、教法学法、教学过程等几个方面对本节课进行分析说明。
一、教材分析:
《全等三角形的判定》是八年级上册的内容,本节是三角形全等判定的第一课,主要讲的是如何利用“边边边”的条件证明两个三角形全等。
本节课的内容是在学习了全等三角形的概念、全等三角形的性质后展开的,是证明两个三角形全等的重要方法之一。它不仅是学习后面知识的基础,而且也是证明线段相等、角相等的重要依据,学生只有很好的掌握了全等三角形的判定方法,并且能灵活地运用它,才能为以后学习《四边形》、《圆》等知识打下良好的基础。
二、教学目标: 【知识与技能】
掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全 等,会作一个角等于已知角。【过程与方法】
使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程。【情感、态度与价值观】
通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探索的良好品质以及发现问题的能力。
三、教学重难点:
教学重点:“边边边”条件。
教学难点:探索三角形全等的条件。
四、教法、学法分析:(1)教法分析
„„边边边‟‟是一个公理,因此在探究三角形全等条件的新课阶段以启发谈话法为主,通过提出问题,引导学生探讨问题和解决问题,始终让学生参与整个问题的“发生”和“解决”过程,让学生真正的去实践探索,从而掌握知识培养学生探索问题的能力,激发学生的求知欲。
(2)学法分析
在整个的教学过程中注重学生自主活动,合作交流,让学生的学习在探究的过程中进行,使他们在自主探究的过程中理解和掌握三角形全等的条件,同时注意精选习题,做多种形式的练习,在教学中力争把学生思维展开,注重培养学生的思维能力。
五、教学过程
关于本节课的教学过程我设计了如下六个环节:
1、复习引入
2、新课讲解
3、例题训练
4、反馈练习
5、课堂小结
6、布置作业。
(一)复习引入
让学生回忆上一节所讲的全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等。反之,这六个元素分别相等,这样的两个三角形一定全等。
【回忆旧知识,为探索三角形的全等条件做准备】
(二).讲授新课(首先提出问题)
1、两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?
组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,汇总归纳,对学生的良好表现进行鼓励。【使学生产生浓厚的兴趣,激发他们的探究欲望】
然后引导学生按条件画三角形(只满足六个条件中的一个或两个),通过画一画,剪一剪,比一比的方式得出结论:两个三角形若满足六个条件中的一个或两个条件是不能保证两个三角形一定全等的。
(接着提出问题)
2、两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?
由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三角相等和三条边相等时,两个三角形是否全等?当三组角对应相等时两个三角形全等么?学生会很容易举出例子说明两个三角形不一定全等。(插视频)
3、那么,当三边对应相等时两个三角形全等么?
对于此问题我是这样引导学生探究的,先任意画一个△ABC,再画△A‟B‟C‟,使A‟B‟=AB,B‟C‟=BC,C‟A‟=CA(在画图中,教师可以先让学生试着画图,再让学生发现存在的问题,最后给出正确的画法)把画好的三角形剪下,进行对比,比较它们全等吗?(幻灯片)
通过比较得出结论:三边分别相等的两个三角形全等。强调简写方法:“边边边”或 “SSS”
【学生通过动手操作,自主探索、交流,获得新知,增强了动手能力,同时也渗透了分类的思想】
(三)例题训练:
讲解例1时首先要给学生指出证题的思路“要证明△ABD≌△ACD可以看这两个三角形的三条边是否对应相等,而由已知条件可知AB=AC,图中又有公共边AD=AD,关键是第三对边BD、CD是否相等,由D是BC中点可知BD=CD,从而找全三个条件。然后教师给出规范的证明格式。并且通过此题给学生总结证明三角形全等的书写步骤。
例2是做一个角等于已知角,先引导学生交流画法,教师参与学生的活动,并适时给与指导,不断地调动学生的学习积极性。鼓励学生交流解决问题的方法。
明确做一个角等于已知角的依据是利用SSS构造全等三角形。
(四)反馈练习:
为了检测学生对本节课的内容掌握情况,我设计了反馈练习,学生独立完成,教师评析,对其中出现的问题及时纠正。
(五)课堂小结:
回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
进一步明确:三边分别相等的两个三角形全等。
(六)布置作业
布置作业是用来巩固本节课所讲的内容,检验本节课的教学效果.这是我对本节课的总的设计过程,具体过程将体现在我的课堂教学中。