分子生物学实验教案,大纲,目录[范文]

时间:2019-05-15 03:10:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《分子生物学实验教案,大纲,目录[范文]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《分子生物学实验教案,大纲,目录[范文]》。

第一篇:分子生物学实验教案,大纲,目录[范文]

分子生物学实验室实验目录

实验1 质粒DNA的提取、酶切与电泳

实验2 大肠杆菌感受态细胞的制备与质粒DNA分子转化 实验3 聚合酶链式反应扩增DNA片段 实验4 植物基因组DNA提取及电泳 实验5 植物RNA提取及电泳 实验6 RT-PCR技术

实验7 外源基因在原核细胞中的表达及分析 实验8 DNA重组体的构建与筛选

《分子生物学实验》教学大纲

英文名称: Molecular Biology Experiments 学分:1 学时:32 教学对象:生物工程专业、生物科学专业、生物技术专业

教学目的:在开设的理论课程的基础上,结合实验课程的教学,使学生能较全面系统的掌握分子生物学的基本操作,拓宽专业知识面,加深对专业知识的理解,强化动手能力。

基本要求:了解分子生物学的实验操作原理,掌握有关实验仪器的使用方法。实验内容:

实验1.质粒DNA的提取、酶切与电泳(8 学时)基本要求: 通过学习碱变性抽提法对大肠杆菌中的质粒的抽提,掌握质粒DNA 的小量制备方法,了解碱裂解法制备质粒DNA 的原理。进一步了解限制性内切酶的特性及酶切反应过程,掌握DNA 的酶切技术。

重点: 掌握质粒DNA 的小量制备方法,了解碱裂解法制备质粒DNA 的原理。进一步了解限制性内切酶的特性,掌握DNA 的酶切技术。难点: 掌握质粒DNA 的小量制备方法及DNA 的酶切技术。

实验2.大肠杆菌感受态细胞的制备与质粒DNA分子转化(4 学时)基本要求: 了解细菌基因组DNA 的提取的目的,原理,掌握细菌基因组DNA 的提取的实 验步骤及操作方法 重点: 掌握细菌基因组DNA 的提取的实验步骤及操作方法 难点: 掌握细菌基因组DNA 的提取的实验步骤及操作方法 实验3.聚合酶链式反应扩增DNA片段(4 学时)

基本要求: 了解大肠杆菌感受态细胞的制备原理及转化反应的目的,应用范围及操作过程,掌握重组DNA 质粒转化大肠杆菌的操作技术。重点: 掌握大肠杆菌感受态细胞的制备及转化的操作技术 难点: 大肠杆菌感受态细胞的制备及转化

实验4.植物基因组DNA提取及电泳(8 学时)基本要求: 熟悉聚合酶链反应(PCR)的基本原理、实验基本条件;了解 PCR 反应条件的优化和注意事项和应用范围 掌握聚合酶链反应(PCR)的实验技术:了解核酸琼脂糖凝胶电泳的原理及操作步骤,掌握琼脂糖凝胶电泳的实验方法。重点: 掌握掌握琼脂糖凝胶电泳的实验方法。难点: 聚合酶链反应(PCR)的实验技术,琼脂糖凝胶电泳的实验方法。实验5.植物RNA提取及电泳(4 学时)基本要求: 学习从植物组织中提取总RNA的方法,了解RT-PCR的基本原理和实验方法。重点: 掌握从植物组织中提取总RNA的方法,了解RT-PCR的基本原理和实验方法的基本步骤及实验结果的判定 难点: 凝胶电泳的实验步骤及实验结果的判定 实验6 RT-PCR技术 基本要求:

1、学习基因特异性引物的设计。

2、学习和掌握RT-PCR的原理和方法。

3、学习和掌握用半定量RT-PCR对基因表达水平进行相对定量的原理和方法。重点:如何选择需要检测的目的基因 难点: 目的基因特异性引物的设计。

2 基因表达差异的分析。

实验7 外源基因在大肠杆菌中的诱导表达和降解物阻遏作用 基本要求:

1.了解外源基因在原核细胞中表达的基础理论。2.掌握乳糖操纵子的调节机制和操作方法。重点: 掌握外源基因在原核细胞中表达方法 难点: 乳糖操纵子的调节机制和操作方法 实验8 DNA重组体的构建与筛选目 基本要求: 重点:

已转化的感受态细胞涂板培养,观察 难点: 阳性克隆目的基因DNA分子的鉴定学习和掌握细菌转化与目的基因DNA分子增殖及其鉴定的原理和方法。

实验1大肠杆菌感受态细胞的制备与DNA质粒转化

实验目的

掌握重组DNA 质粒转化至大肠杆菌宿主的操作技术。

实验原理

带有外源DNA 的重组质粒,在体外构建后,导入宿主细胞,随着细胞的大量复制、繁殖,才能够有机会获得纯的重组质粒DNA,该过程称之为转化过程。受体细胞经过一些特殊方法(如:CaCl2,RuCl 等化学试剂法)的处理后,细胞膜的通透性发生变化,能容许外源DNA 的载体分子通过。

大肠杆菌形态图

实验步骤 感受态细胞的制备: 1)挑菌37℃培养。

2)将过夜培养的细菌转接培养2-3 小时。

3)将菌液置冰上10 分钟,4℃离心8000rpm 30 秒。4)用氯化钙溶液悬浮菌体,冰浴,离心弃去上清。5)氯化钙溶液悬浮菌体。2 转化:

1)取出感受态细胞,试剂A,无菌双蒸水和待转化的质粒DNA,均置冰盒内。2)取离心管管一支,将质粒、试剂A、无菌水,感受态细胞混匀冰浴20 分钟。3)在管内加入400ul LB 液体培养基,振荡培养10-40 分钟。4)涂布培养。

实验2 质粒DNA 限制性内切酶实验

实验目的

通过DNA 限制性内切酶实验掌握内切酶技术。

实验原理

不同酶切反应都需要不同的酶切缓冲液。多数生物技术公司的产品目录中均 有关于何种限制性内切酶适合何种缓冲液的资料可供查阅。绝大多数酶的反应温 度是在37℃。酶切反应时间有30 分钟、60 分钟,以至2 小时以上甚至过夜。本次实验要进行的是对重组质粒pET-22b 进行EcoRI 酶切,重组质粒上有两个 EcoRI 识别位点。

内切酶酶切DNA 示意图 内切酶酶切DNA 立体示意图 琼脂糖凝胶电泳图

实验步骤 在离心管管中以编号次序加入以下相应试剂:(1)ddH20 45μl 6(2)10×Buffer 2μl(3)BSA 小牛血清 25μl(4)质粒DNA 10μl(5)EcoRⅠ 1μl 总体积 20μl 2 37℃水浴15 小时后,终止酶切反应。3 取单酶切反应液10μl 和上样缓冲液2μl,混 匀,标准分子量DNA 5μl,待作电泳上样液。4 08%的琼脂糖凝胶电泳。紫外灯下观察酶切琼脂糖凝胶电泳图。

实验3 基因组DNA的PCR扩增

实验目的

学习PCR 反应的基本原理与实验技术。

实验原理

多聚酶链式反应的原理类似于DNA 的天然复制过程。在待扩增的DNA 片段两 测和与其两测互补的两个寡核苷酸引物,经变性、退火和延伸后,DNA 可扩增一 倍。

PCR 反应的原理 琼脂糖凝胶电泳图

实验步骤 在02ml 离心管管内配制50μL 反应体系:(1)ddH2O 38μL(2)10×buffer 5μL(3)dNTP 1μL(4)Taq 酶 1μL(5)引物P1 1μL(6)引物2 1μL(7)模板DNA 3μL 2 按下列程序进行扩增:

(1)94℃预变性5 分钟;(2)94℃变性50 秒;(3)55℃退火50 秒;(4)72℃延伸10 秒;(5)重复步骤②-④30 次;(6)72℃彻底延伸10 分钟。3 琼脂糖凝胶电泳分析PCR 结果。

实验4 植物基因组DNA提取

实验目的

掌握植物总DNA的抽提方法和基本原理。学习根据不同的植物和实验要求设计和改良植物总DNA抽提方法。

实验原理

通常采用机械研磨的方法破碎植物的组织和细胞,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。在液氮中研磨,材料易于破碎,并减少研磨过程中各种酶类的作用。

十二烷基肌酸钠(sarkosyl)、十六烷基三甲基溴化铵(hexadyltrimethyl ammomum bromide,简称为CTAB)、十二烷基硫酸钠(sodium dodecyl sulfate,简称SDS)等离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。再加入苯酚和氯仿等有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA、RNA)水溶性很强,经离心后 8 即可从抽提液中除去细胞碎片和大部分蛋白质。上清液中加入无水乙醇使DNA沉淀,沉淀DNA溶于TE溶液中,即得植物总DNA溶液。

仪器、材料、试剂

(一)仪器 1.高速离心机 2.烘箱

3.冰箱 4.水浴锅 5.高压灭菌锅

(二)材料

1.十六烷基三甲基溴化铵(CTAB)2.三羟甲基氨基甲烷(Tris)3.乙二胺四乙酸(EDTA)4.氯化钠 5.2-巯基乙醇 6.无水乙醇 7.氯仿 8.异戊醇

(三)试剂

1.CTAB抽提缓冲溶液: 250ml

配制方法:称取CTAB 4g,放入200 ml的烧杯,加入5 ml的无水乙醇,再加入100 ml的三蒸水,加热溶解,再依次假如56 ml的5moll NaCl、20 ml 的1 moll Tris-HCl 20ml(PH8.0)、8ml 的0.5 mol/l EDTA定容至250 ml摇匀后,转到准备好的输液瓶中,贴上标签,高压灭菌后,降至室温, 冷却后加入2ml的1% 2-巯基乙醇(400ul),4℃保存。

2.氯仿:异戊醇=24:1(配制方法如实验二)3.TE缓冲液: PH8.0(配制方法如实验二)

实验步骤

(一)DNA的提取

1.2%CTAB抽提缓冲液在65℃水浴中预热; 2.取少量叶片置于试管中,用小杵磨至粉状; 3.加入700ul的2%CTAB抽提缓冲液,轻轻搅动摇匀;

4.置于65℃的水浴槽或恒温箱中,每隔10 min轻轻摇动,40 min后取出;

5.冷却2 min后,加入氯仿-异戊醇(24:1)至满管,振荡2~3 min,使两者混合均匀; 6.10000 rpm离心10 min,与此同时,将600 μl的异丙醇加入另一新的灭菌离心管中; 7.10000 rpm离心1 min后,移液器轻轻地吸取上清夜,转入含有异丙醇的离心管内,将离心管慢慢上下摇动30s,使异丙醇与水层充分混合至能见到DNA絮状物; 8.10000 rpm离心1 min后,立即倒掉液体,注意勿将白色DNA沉淀倒出 9.加入800 μl 75%的乙醇,将DNA洗涤 30 min;

10.10000 rpm离心30s后,立即倒掉液体,干燥DNA(自然风干或用风筒吹干); 11.加入50 μl 0.5 × TE缓冲液,使DNA溶解; 12.置于-20℃保存、备用。

注意事项

1.叶片磨得越细越好。2.注意移液器的正确使用。

3.由于植物细胞中含有大量的DNA酶,因此,除在抽提液中加入EDTA抑制酶的活性外,第一步的操作应迅速,以免组织解冻,导致细胞裂解,释放出DNA酶,使DNA降解。

实验5植物总RNA的提取及RT-PCR

一、实验目的

1.学习从植物组织中提取总RNA的方法 2.了解RT-PCR的基本原理和实验方法

二、实验原理

1.RNA提取的原理

RNA是一类极易降解的分子,要得到完整的RNA,必须最大限度地抑制提取过程中内源性及外源性核糖核酸酶对RNA的降解。高浓度强变性剂异硫氰酸胍可溶解蛋白质,破坏细胞结构,使核蛋白与核酸分离,失活RNA酶,所以RNA从细胞中释放出来时不被降解。细胞裂解后,除了RNA,还有DNA、蛋白质和细胞碎片,通过酚、氯仿等有机溶剂处理得到纯化、均一的总RNA。

2.RT-PCR的原理

提取组织或细胞中的总RNA,以其中的mRNA作为模板,采用Oligo(dT)作引物利用逆转录酶反转录成cDNA。再以cDNA为模板进行PCR扩增,获得目的基因或检测基因表达。RT-PCR使RNA检测的灵敏性提高了几个数量级,使一些极为微量RNA样品分析成为可能。该技术主要用于分析基因的转录产物、获取目的基因和合成cDNA探针等。

三、仪器、药品与试剂配方

(一)仪器及器皿

1. 低温离心机; 2.琼脂糖凝胶电泳系统; 3. 高压灭菌锅;

4.PCR仪;

5. 研钵;

6.一次性手套等;

7.离心管;

8.培养皿;

9.烧杯及试剂瓶等。(二)药品

1.焦碳酸二乙酯(DEPC)

2.异硫氰酸胍(GT)

3.醋酸钠(NaAc)4.苯酚

5.异丙醇

6.氯仿 7.乙醇

8.β-巯基乙醇

9.琼脂糖

10.MLV反转录试剂盒

11.Taq DNA聚合酶

12.引物(三)试剂配制

1. 0.1% DEPC水

灭菌 2.4 mol/L异硫氰酸胍

3.2 mol/L NaAc(pH 4.8)灭菌 4.3 mol/L NaAc(pH 4.8)灭菌 5.4 mol/L LiCl 灭菌

6.1×TE缓冲液:10 mM Tris-HCl(pH8.0),1 mM EDTA(pH8.0), 灭菌。

四、实验步骤

(一)总RNA的提取

(1)研钵冷却后,倒入2/3液氮,加入0.2 g植物材料,充分研磨后转入一个含有300 l的4M GT的1.5 ml的聚丙烯管中,摇匀。

(2)加入30 l 2 M NaAc(pH4.9-5.2)摇匀,加入300 l酸酚(水饱和酚pH<5.0),摇匀,加入100 l三氯甲烷,摇匀。

(3)12000 rpm 4℃离心20 min,吸取上清,加入等体积异丙醇,于冰上放置15 min。(4)12000 rpm 4℃离心10 min,将沉淀悬浮于含100 l 4M氯化锂的1.5 ml EP管中,于-20℃放置1小时或更长时间。

(5)12000 rpm 4℃离心10-15 min,将沉淀溶于0.4 ml DEPC水中,加入1/2体积氯仿和1/2体积酸酚,摇匀,进行抽提,12000 rpm 4℃离心5 min;上清加入等体积氯仿,摇匀,进行抽提,12000 rpm 4℃离心5 min。

(6)上清液加入1/10体积的3 M乙酸钠和两倍体积的无水乙醇于-20℃放置1小时或更长时间。

(7)12000 rpm 4℃离心15 min,超净台吹干,沉淀溶于10 l b灭菌的DEPC水中。(8)RNA贮于-80℃。

(二)RNA反转录产生cDNA 在DEPC处理过的离心管中冰上按下表加入:

模板RNA 2 µl Olig(dT)18 1 µl DEPC 水 2 µl 混匀,70℃水浴中放置2 min,立即放置到冰上2 min。然后在冰上依次加入:

RNasin 0.5 µl M-MLV 1 µl 5×buffer 2 µl 10 mM dNTP 1.5 µl 42℃,水浴中反应90 min。72℃,10 min,终止反应。加入15 µl的DEPC灭菌水,使总体积达到25 µl。(三)PCR 1.在灭菌的PCR管中加入以下成分,形成PCR反应体系 10 X buffer

2.5 µl 11 dNTP(2.5 mmol)2 µl RT-PCR产物 5 µl Taq酶 0.5 µl 上游引物(10 µmol/l)0.5 µl 下游引物(10 µmol/l)0.5 µl 灭菌ddH2O加到25 µl 2.按照下列条件进行PCR反应 94℃ 5 min 94℃ 30 s 55℃ 30 s 72℃ 1 min 30个循环

72℃ 7 min 4℃

(四)电泳检测

将加EB的1 %变性琼脂糖凝胶放入水平电泳槽中,加1×TE电泳缓冲液,覆盖凝胶约1 mm。将RNA及DNA样品加到凝胶点样孔中,85 V条件下电泳30 min,在紫外灯下观察结果。

五、注意事项

1.在研磨过程中,利用液氮时刻使组织保持冰冻状态。

2.RNA酶是一类生物活性非常稳定的酶类,除了细胞内源RNA酶外,外界环境中均存在RNA酶,所以操作时应戴手套。

3.使用DEPC时,应在通风橱中戴手套操作。4.RNA提取用品准备:

1)普通的玻璃器皿:180℃烘干8小时(玻璃),研钵,小勺,试剂瓶若干个。2)一次性使用的塑料制品:枪头、EP管等先用DEPC水处理然后高压灭菌,烘干。3)电泳槽:去污剂洗干净,水冲洗,3%H2O,0.1%DEPC水彻底冲洗。4)用烘烤过的药勺称取试剂。

5)用DEPC水配制试剂:0.1%DEPC水:37℃至少处理12小时,高压灭菌15min。6)含有Tris一类的缓冲液,不可用DEPC处理。

实验6 半定量RT-PCR检测基因的表达差异

授课题目:半定量RT-PCR检测基因的表达差异(设计、创新)(9学时)授课对象:生科系大三学生 授课教师: 教学目标及基本要求:

1、培养学生的创新意识和创新能力。

2、在任课教师的指导下,查阅资料,选题,开题,实施实验,最后以小论文的形式总结实验。

3、学习基因特异性引物的设计。

4、学习和掌握RT-PCR的原理和方法。

5、学习和掌握用半定量RT-PCR对基因表达水平进行相对定量的原理和方法。

6、采用开放性实验教学。教学内容提要及时间分配:

1、实验讲解: 查阅资料及选题 10分钟 拟定实验提纲 2分钟 准备实验 2分钟 实施实验 10分钟

以组织或细胞总RNA中的mRNA为模板,在逆转录酶的作用下,以Oligo(dT)或特异的下游引物合成与mRNA互补的cDNA片段。

所有合成cDNA的方法都要用依赖于RNA的DNA聚合酶(反转录酶)来催化反应。目前商品化反转录酶有从禽类成髓细胞瘤病毒纯化到的禽类成髓细胞病毒(AMV)逆转录酶和从表达克隆化的Moloney鼠白血病病毒反转录酶基因的大肠杆菌中分离到的鼠白血病病毒(MLV)反转录酶。AMV反转录酶和MLV反转录酶都必须有引物来起始DNA的合成。cDNA合成最常用的引物是与真核细胞mRNA分子3'端poly(A)结合的12-18核苷酸长的oligo(dT)。

基因表达调控研究及其它研究中,常需要对基因表达的水平进行定量比较,因此在RT-PCR技术的基础上又发展了定量PCR。这种方法需要选择一个合适的内对照。由于PCR是一指数扩增过程,逆转录及扩增效率的很小差异就会导致扩增产物量的较大差异,以致定量不准确。影响逆转录的因素有核苷酸序列的差异、ploy(A)尾的长度、PCR引物与poly(A)尾之间的距离等。影响PCR扩增效率的因素有模板、引物、dNTP、MgCl2、DNA聚合酶以及循环次数等,这些参数较易控制,另外还有引物结合效率的问题,不同的引物具有不同的结合效率,它们可相差105倍,因此,进行定量PCR时要选用同一引物。

实验报告的写作 2分钟

2、实验试剂与器材 2分钟

3、总结 2分钟 教学重点及难点:

1、如何选择需要检测的目的基因。

2、目的基因特异性引物的设计。

3、基因表达差异的分析。教学方法:

采用启发式教学,结合理论,对实验步骤进行分析并给于适当示范。教学手段(挂图、幻灯、多媒体„等): 板书,PPT。

使用的教材及参考资料:

1、《现代生物学实验》,熊大胜 主编,中南大学出版社,2005

2、《分子生物学实验指导》,魏群 主编,高等教育出版社,2006

3、《分子克隆实验指南》(第三版)J.萨姆布鲁克 等著 金冬雁、黎孟枫等译 科学出版社 1999 思考题:

半定量RT-PCR对基因表达水平进行相对定量的原理和方法

本单元教学总结(教学的主要经验、效果、存在的问题、改进措施等)

1、结合理论内容讲述实验内容,采用开放性实验教学,效果较好。

2、采用开放性实验教学。

实验7 外源基因在大肠杆菌中的诱导表达和降解物阻遏作用

实验目的

1.了解外源基因在原核细胞中表达的基础理论。2.掌握乳糖操纵子的调节机制和操作方法。实验原理

1.外源基因在原核细胞中的表达

蛋白质通常是研究的最终目标,因此蛋白质的表达在基因工程中占有非常重要的地位。常用的表达系统有原核细胞和真核细胞。原核细胞表达系统主要使用大肠杆菌,真核细胞表达系统主要有酵母细胞、哺乳动物细胞和昆虫细胞。这些表达系统各有优缺点,应根据实验目的和实验室条件加以选择。本实验主要介绍以大肠杆菌为代表的原核细胞表达系统。(1)大肠杆菌表达系统的特点:

生物学特性和遗传背景清楚,易于操作;

已开发较多的克隆载体可供选择;

容易获得大量的外源蛋白(外源蛋白可占细菌总蛋白50%左右)。(2)蛋白质在原核细胞中的表达特点:

原核细胞有其固有的RNA聚合酶,识别原核基因的启动子。因此,在用原核细胞表达目的基因(无论是真核基因还是原核基因)时,一般应使用原核启动子。

原核基因的mRNA含有SD序列,启动蛋白质的合成。而在真核基因上则缺乏该序列。因此,一些商品化原核表达载体上设计有SD序列,以方便真核基因的表达。

原核细胞没有mRNA转录后加工的能力。因此,在原核细胞中表达真核基因时,应使用cDNA 14 为目的基因。

原核细胞缺乏真核细胞对蛋白质进行翻译后加工的能力。如表达产物的功能和蛋白质的糖基化、高级结构的正确折叠有关,必须慎重使用原核表达系统。

外源基因在大肠杆菌中高效表达时,表达产物往往在胞浆聚集,形成均一密度的包涵体。包涵体的形成有利于保护表达产物不被胞内的蛋白酶降解,而且可以通过包涵体和胞内其他蛋白质密度不同来纯化包涵体蛋白。但包涵体蛋白不具有该蛋白的所有生物学活性,往往需要通过变性复性的方法恢复活性,有时只能回复部分活性。(3)蛋白质在原核细胞表达的调控

启动子是转录水平调控的主要因素。根据启动子起始mRNA合成效率的不同,可分为强、弱启动子,但是启动子的强弱是相对于不同基因而言的。有些启动子的活性可以通过物理或化学的方法诱导调控。在基因工程中,原核表达系统通常采用可调控的强启动子。常用的原核启动子有:由异丙基-D-硫代半乳糖苷(IPTG)诱导的lac启动子,由3-吲哚乙酸(IAA)诱导的trp启动子,由温度诱导的PL和PR启动子等。噬菌体 T7 RNA聚合酶启动子是一个很强的启动子,近年来在原核表达中得到广泛应用。

SD序列是原核表达中翻译水平的重要调控因素。SD序列和16S RNA3′端的互补程度、SD序列和目的基因间的距离在很大程度上影响蛋白的合成量。(4)蛋白质在原核细胞中的表达形式

外源基因在原核细胞中可以以非融合蛋白、融合蛋白和分泌型表达等不同形式进行表达。具体要根据表达产物使用的目的和操作方法进行选择。

非融合蛋白使用的外源基因必须具有从起始密码子到终止密码子的完整读框。非融合蛋白的一级结构和天然蛋白质相同,是一些体内应用基因工程产品的必要条件。但是非融合蛋白在原核细胞内不稳定,易被降解,而且不易纯化。

融合蛋白指的是在表达产物的N端或C端具有非目的蛋白的氨基酸残基。融合蛋白使用的外源基因,必须注意其读框和载体上原核读框相符和。融合蛋白在大肠杆菌内较稳定,不易被降解。而且,作为融合蛋白一部分的原核多肽往往是用于纯化,或是作为检测该融合蛋白的“标签(tag)”。如本实验中采用金属螯合亲和层析技术纯化带6个His标签的融合蛋白。

分泌型表达指的是在细胞浆内合成的多肽进入内膜和外膜的周间质。进行分泌型表达时,要将一段原核或真核的信号肽序列连接在待表达基因的上游。常用的信号肽有ompT、phoA、pelB等,在表达的蛋白进入细胞周间质时,信号肽被蛋白酶水解,产生游离的表达产物。因此,分泌型表达可以保护外源蛋白不被细胞内的蛋白酶降解,增加表达产物的稳定性,同时,表达蛋白的生物活性较好,易于纯化,但是,表达量往往比较低。2.乳糖操纵子的调节机制

操纵子是原核细胞基因表达的协调单位。通常由两个以上功能相关的结构基因以及一些调节序列(如启动子序列、操纵序列等)组成。乳糖操纵子由三个结构基因Z、Y、A和操纵序列、启动子、CAP结合位点等调节序列组成。

乳糖操纵子的调节包括乳糖(或IPTG)的诱导效应和葡萄糖的降解物阻遏效应。(1)乳糖操纵子的诱导表达

当没有乳糖存在时,调节基因lacI表达,转录的mRNA翻译成阻遏蛋白。阻遏蛋白与操纵序列lacO结合,阻碍了结合在旁边启动子的RNA聚合酶向前移动,使目的基因(本实验中目的基因为绿色荧光蛋白基因)不能转录,也就不能翻译出目的蛋白。也就是说,当没有乳糖存在时,乳糖操纵子处于阻碍状态。

当有乳糖存在时,乳糖转化为异乳糖,异乳糖作为诱导物与阻遏蛋白结合,使阻遏蛋白的构象发生改变,而不能结合到操纵序列上,RNA聚合酶可以从启动子向3′端移动,于是,结构基因可以转录出mRNA,然后翻译出蛋白质。也就是说,当有乳糖存在时,乳糖操纵子被诱导(如图3)。

乳糖操纵子的诱导物是异乳糖。IPTG是异乳糖的结构类似物。由于IPTG不会被分解,它的诱导作用是持久的。

(2)乳糖操纵子的降解物阻遏

当细菌在含有葡萄糖和乳糖的培养基中生长时,通常优先利用葡萄糖,而不利用乳糖。只有当葡萄糖耗尽后,细菌才能充分利用乳糖,这种现象称葡萄糖效应,其实质是由葡萄糖降解物引起的阻遏作用,所以又称降解物阻遏(catabolic repression)。

降解物阻遏的机理:代谢物基因激活蛋白(Catabolite gene Activation Protein,CAP),又称cAMP受体蛋白(cAMP Receptor Protein,CRP),属于一种激活蛋白,对乳糖操纵子进行正调节。CAP分子内同时具有DNA结合区和cAMP结合区。当CAP与cAMP结合后,就可结合到CAP结合位点上,促进转录。葡萄糖降解物能抑制腺苷酸环化酶的活性,并活化磷酸二酯酶的活性,从而降低cAMP的浓度,抑制转录。(3)阻遏蛋白负调节与CAP正调节的协调

当阻遏蛋白封闭转录时,CAP对该系统不能发挥作用;而没有CAP存在时,即使没有阻遏蛋白与操纵序列结合,操纵子仍无转录活性。只有在CAP存在且没有阻遏蛋白与操纵序列结合时,或者说只有高乳糖低葡萄糖时,操纵子发挥最大转录活性。这种协调与细菌对碳源的优先利用相一致。

本实验使用的表达载体p32aGFPuv上含有乳糖操纵子的调节序列,目的基因表达的是带6XHis(组氨酸标签)的重组绿色荧光蛋白。在IPTG的诱导下,融合蛋白表达可增强105倍,并且可用金属鳌合亲和层析分离纯化,最终获得纯的重组绿色荧光蛋白。

试剂与器材

(一)试剂

1.LB 液体培养基 2L 2.10mg/mL氨苄青霉素溶液 10mL(全班共用)3.100 mmol/L IPTG溶液 10mL(全班共用)4.20%葡萄糖溶液 10mL(全班共用)

5.超声平衡缓冲液:50mmol/L Tris-HCl,500mmol/L NaCl pH7.0 500mL

(二)器材

超净工作台、恒温振荡器、台式高速离心机、高速冷冻离心机、低温摇床、高压破碎仪或超声破碎仪等。

(三)菌株

工程菌BL21(DE3)pET-32a和工程菌BL21(DE3)p32aGFPuv。【操作方法】

1.分别挑取工程菌BL21(DE3)pET-32a和BL21(DE3)p32aGFPuv的单菌落接种到5mLLB液体培养基(含氨苄,终浓度为100μg/mL,以下同)。

2.于37℃、250r/min培养过夜(12h-14h)至对数生长期。

3.取三支灭菌试管,各加入5mL LB液体培养基(含氨苄),分别编号为1#,2#,3#,另外取装于500mL三角瓶中的150mL LB液体培养基(含氨苄),编号6#,全部按1:50的比例接种。1# 接种100μL BL21(DE3)pET-32a,2# 接种100μL BL21(DE3)p32aGFPuv,3# 接种100μL BL21(DE3)p32aGFPuv,6# 接种3mL BL21(DE3)p32aGFPuv。4.于37℃、250r/min培养约2h-3h。

5.诱导处理:1#、2#不需处理;3#加入20%葡萄糖100μL至终浓度为0.4%,加入5μL 100mmol/L IPTG至终浓度为0.1mmol/L;6#加入100mmol/L IPTG约150 μL至终浓度为0.1mmol/L。6.于21-25℃、250r/min培养约10h-12h或过夜。

7.收菌(注意采集标本并编号):①从6#三角瓶培养的150mL菌液中取出5mL置于一支试管中(编号为4#)。②分别从1#,2#,3#培养物各取100μL于EP管用于SDS-PAGE。③将1#,2#,3#,4#试管中的菌液分别收集到4个1.5mLEP离心管中,编上相应编号。1#,2#,3#离心弃上清;4#上清收集到另一个EP管,编号为5#。④6#三角瓶中剩余菌液用 50mL离心管于5000r/min,4℃,离心10min,弃上清收集菌体。

8.于紫外灯下观察1#-5#管收集的菌体或上清液,观察哪支管有荧光(荧光强弱),记录观察到的现象,并拍照。

9.6#收集的全部菌体用50mL超声平衡缓冲液重悬(50mmol/L Tris-HCl,500mmol/L NaCl pH7.0)。

10.超声波破菌或高压破菌,然后用50mL离心管于8000r/min,4℃,离心40min,取上清(弃沉淀)。上清可保存于-20℃冰箱,作下一步亲和层析实验用。

超声操作:冰浴下进行,功率为400W,工作4s,间隙4s,为一次,99次为一周期。共处理六周期。

高压破碎操作:压力约为150MPa。注意根据裂解液浑浊程度控制流速,1drops/1~4seconds。【注意事项与提示】

1.本实验的目的是比较重组DNA在大肠杆菌中表达时是否受IPTG和葡萄糖存在的影响,所以1#、2#管的细菌在25-28℃培养时不加IPTG和葡萄糖,3#管除加IPTG外还加入葡萄糖,糖的浓度要大于0.2%以上(本实验采用0.4%)。4#三角瓶细菌仅加IPTG 也仅指这次实验所用的重组DNA菌体而言。有的重组DNA菌体在其表达时除需加IPTG外仍需加入少量的葡萄糖为碳源作诱导。在转管培养及收菌时要注意各管编号要相应对好,不能混乱。

2.不同的重组DNA在不同的宿主菌中蛋白的表达量往往受到IPTG浓度和温度的影响,最好采用不同温度或不同浓度的IPTG来诱导,观察哪种温度或哪种浓度条件下其蛋白表达量最大。在科研中一般都要求这样做。

3.由于本实验所表达的目的蛋白带有绿色荧光蛋白,其在大肠杆菌中有很强的荧光。离心后收集的菌体在紫外线的照射下都可见黄绿色荧光,所以把1#、2#、3#、4#沉淀菌体放在紫外灯下观察其是否有荧光及其荧光的强弱,就可判断其是否有表达及其所表达的强度。【实验安排】

1.第一天晚上9时左右活化种子菌。

2.第二天上午配制培养基及灭菌,下午至晚上做放大接菌和诱导。3.第三天上午收菌、观察、拍照、破碎菌体、离心收集蛋白。

实验8 DNA重组体的构建与筛选目

授课题目:目的基因的克隆与鉴定(12学时)授课对象:生科系大三学生 授课教师: 教学目标及基本要求:

1、学习和掌握细菌转化与目的基因DNA分子增殖及其鉴定的原理和方法。

2、采用开放性实验教学。教学内容提要及时间分配:

11、实验原理讲解: 8分钟 转化是指质粒或重组质粒被导入受体细胞,得了外源DNA的细胞称为转化子 感受态细胞 基因克隆 阳性克隆的鉴定

2、实验试剂与器材 2分钟

3、实验步骤讲解: 10分钟 用碱裂解法提取质粒DNA  PCR产物的检测与回收

质粒DNA与目的基因DNA分子的连接 获得转化的感受态细胞

已转化的感受态细胞涂板培养,观察并鉴定 阳性克隆目的基因DNA分子的鉴定

4、总结。2分钟 教学重点及难点:

1、已转化的感受态细胞涂板培养,观察

2、阳性克隆目的基因DNA分子的鉴定 教学方法:

采用启发式教学,结合理论,对实验步骤进行分析并给于适当示范。教学手段(挂图、幻灯、多媒体„等): 板书,PPT。

使用的教材及参考资料:

1、《现代生物学实验》,熊大胜 主编,中南大学出版社,2005

2、《分子生物学实验指导》,魏群 主编,高等教育出版社,2006

3、《分子克隆实验指南》(第三版)J.萨姆布鲁克 等著 金冬雁、黎孟枫等译,科学出版社 1999 思考题:

1、转化效率的计算。

2、阳性克隆鉴定的方法有哪些?

本单元教学总结(教学的主要经验、效果、存在的问题、改进措施等)

1、结合理论内容讲述实验内容,采用开放性实验教学,效果较好。

2、强调实验基本操作规范,让学生养成良好的实验习惯,具有扎实的实验技能。

第二篇:分子生物学实验讲义

实验 质粒DNA的碱裂解法提取与纯化

一、实验原理

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。

二、实验试剂

1、溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl(pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min,贮存于4℃。

2、溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。

3、溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。

4、TE:10mM Tris-HCl(pH 8.0),1mM EDTA(pH 8.0)。1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,加ddH2O至100ml。15 lbf/in2高压湿热灭菌20min,4℃保存备用。

5、苯酚/氯仿/异戊醇(25:24:1)

6、乙醇(无水乙醇、70%乙醇)7、5×TBE:Tris 碱54g,硼酸27.5g,EDTA-Na2·2H2O 4.65g,加ddH2O 至1000ml。15 lbf/in2高压湿热灭菌20min,4℃保存备用。

8、溴化乙锭(EB):10mg/ml

9、RNase A(RNA酶A):不含DNA酶(DNase-free)RNase A的10mg/ml,TE配制,沸水加热15min,分装后贮存于-20℃。

10、6×loading buffer(上样缓冲液):0.25%溴酚蓝,0.25%二甲苯青FF,40%(W/V)蔗糖水溶液。11、1% 琼脂糖凝胶:称取1g琼脂糖于三角烧瓶中,加100ml 0.5×TBE,微波炉加热至完全溶化,冷却至60℃左右,加EB母液(10mg/ml)至终浓度0.5μg/ml(注意:EB为强诱变剂,操作时带手套),轻轻摇匀。缓缓倒入架有梳子的电泳胶板中,勿使有气泡,静置冷却30min以上,轻轻拔出梳子,放入电泳槽中(电泳缓冲液0.5×TBE),即可上样。

三、实验操作

1、挑取LB固体培养基上生长的单菌落,接种于2.0ml LB(含相应抗生素)液体培养基中,37℃、250g振荡培养过夜(约12-14hr)。

2、取1.0ml培养物入微量离心管中,室温离心8000g×1min,弃上清,将离心管倒置,使液体尽可能流尽。

3、将细菌沉淀重悬于100μl预冷的溶液Ⅰ中,剧烈振荡,使菌体分散混匀。

4、加200μl新鲜配制的溶液Ⅱ,颠倒数次混匀(不要剧烈振荡),并将离心管放置于冰上2-3min,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。

5、加入150μl预冷的溶液Ⅲ,将管温和颠倒数次混匀,见白色絮状沉淀,可在冰上放置3-5min。溶液Ⅲ为中和溶液,此时质粒DNA复性,染色体和蛋白质不可逆变性,形成不可溶复合物,同时K+使SDS-蛋白复合物沉淀,4℃离心8000g × 10min, 小心移出上清于一新微量离心管中。

6、加入450μl的苯酚/氯仿/异戊醇,振荡混匀,4℃离心8000g × 10min。

7、小心移出上清于一新微量离心管中,加入2.0倍体积(1ml)预冷的无水乙醇,混匀,室温放置5min,4℃离心12000g×10min,弃上清。

8、加入1ml预冷的70%乙醇洗涤沉淀1次,4℃离心8000g×7min,弃上清,将沉淀在室温下晾干或吹干(不能过于干燥,造成溶解困难)。

9、沉淀溶于20μl TE(含RNase A 20μg/ml),-20℃保存备用。

四、质粒DNA的电泳检测

观察琼脂凝胶中DNA的最简单方法是利用荧光染料溴化乙锭进行染色。该物质含有一个可以嵌入DNA的堆积碱基之间的一个平面基团,这个基团的固定位置及其与碱基的密切接近,导致染料与DNA结合并呈现荧光,其荧光产率比游离染料溶液有所增加。DNA吸收254nm处的紫外辐射并传递给染料,而被结合的染料本身则在302nm和366nm有光吸收。这两种情况下,被吸收的能量可在可见光谱红橙区的590nm处重新发射出来。因此,当凝胶中含有游离溴化乙锭时即可以检测到少量的DNA。

取制备的质粒DNA 1-2μl,加适当loading buffer混匀上样,采用 1-5V/cm的电压,使DNA分子从负极向正极移动至合适位置,取出凝胶置紫外灯下检测,摄片。

五、注意事项

本裂解法小量制备质粒 DNA重复性好,一般无麻烦。若所提取质粒 DNA不能被限制性内切酶切割,可通过酚/氯仿再次抽提,以清除杂质来解决问题。

六、习题:

1、什么是质粒?质粒有什么主要用途?

2、分子生物学实验中用的质粒是由野生型改建而来的,它必须具备哪三个基本要素?

3、制备的质粒DNA在琼脂糖凝胶上通常以三种形式条带存在,它们分别是什么?

实验 琼脂糖凝胶电泳实验

一、实验目的

(1)学习琼脂糖凝胶电泳的基本原理;

(2)掌握使用水平式电泳仪的方法;

二、实验原理

琼脂糖凝胶电泳是基因工程实验室中分离鉴定核酸的常规方法。核酸是两性电解质,其等电点为pH2-2.5,在常规的电泳缓冲液中(pH约8.5),核酸分子带负电荷,在电场中向正极移动。核酸分子在琼脂糖凝胶中泳动时,具有电荷效应和分子筛效应,但主要为分子筛效应。因此,核酸分子的迁移率由下列几种因素决定:

(1)DNA的分子大小。线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中移动,因而迁移得越慢。

(2)DNA分子的构象。当DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关,还和它本身构象有关。相同分子量的线状、开环和超螺旋质粒DNA在琼脂糖凝胶中移动的速度是不一样的,超螺旋DNA移动得最快,而开环状DNA移动最慢。如在电泳鉴定质粒纯度时发现凝胶上有数条DNA带难以确定是质粒DNA不同构象引起还是因为含有其他DNA引起时,可从琼脂糖凝胶上将DNA带逐个回收,用同一种限制性内切酶分别水解,然后电泳,如在凝胶上出现相同的DNA图谱,则为同一种DNA。

(3)电源电压。在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb 的DNA 片段的分辨率达到最大,所加电压不得超过5v/cm。

(4)离子强度影响。电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动;在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。

溴化乙啶(Ethidium bromide, EB)(1)能插入DNA分子中形成复合物,在波长为254nm紫外光照射下EB能发射荧光,而且荧光的强度正比于核酸的含量,如将已知浓度的标准样品作电泳对照,就可估算出待测样品的浓度。由于溴化乙啶有致癌的嫌疑,所以现在也开发出了安全的染料,如Sybergreen。

常规的水平式琼脂糖凝胶电泳适合于DNA和RNA的分离鉴定;但经甲醛进行变性处理的琼脂糖电泳更适用于RNA的分离鉴定和Northern 杂交,因为变性后的RNA是单链,其泳动速度与相同大小的DNA分子量一样,因而可以进行RNA分子大小的测定,而且染色后条带更为锐利,也更牢固结合于硝酸纤维素膜上,与放射性或非放射性标记的探针发生高效杂交。

三、试剂与器材

(一)材料

电泳仪、水平电泳槽、样品梳子、琼脂糖等

(二)试剂 1、50*TAE(1000mL):242g Tris, 57.1mL 冰醋酸,18.6g EDTA。

2、EB溶液:100mL水中加入1g溴化乙啶,磁力搅拌数小时以确保其完全溶解,分装,室温避光保存。

3、DNA加样缓冲液:0.25%溴酚蓝,0.25%二甲苯青,50%甘油(w/v)。

4、DNA分子量标准

四、操作方法

常规的水平式琼脂糖电泳:

制备琼脂糖凝胶:按照被分离DNA分子的大小,决定凝胶中琼脂糖的百分含量;一般情况下,可参考下表:

琼脂糖的含量(%)分离线状DNA分子的有效范围(Kb)

0.3 60-5

0.6 20-1

0.7 10-0.8

0.9 7-0.5

1.2 6-0.4

1.5 4-0.2

2.0 3-0.1

1、制备琼脂糖凝胶:称取琼脂糖,加入1x电泳缓冲液,待水合数分钟后,置微波炉中将琼脂糖融化均匀。在加热过程中要不时摇动,使附于瓶壁上的琼脂糖颗粒进入溶液;加热时应盖上封口膜,以减少水份蒸发。

2、胶板的制备:将胶槽置于制胶板上,插上样品梳子,注意观察梳子齿下缘应与胶槽底面保持1mm左右的间隙,待胶溶液冷却至50℃左右时,加入最终浓度为0.5微克/毫升的EB(也可不把EB加入凝胶中,而是电泳后再用0.5μg/ml的EB溶液浸泡染色15分钟),摇匀,轻轻倒入电泳制胶板上,除掉气泡;待凝胶冷却凝固后,垂直轻拔梳子;将凝胶放入电泳槽内,加入1x电泳缓冲液,使电泳缓冲液液面刚高出琼脂糖凝胶面;

3、加样:点样板或薄膜上混合DNA样品和上样缓冲液,上样缓冲液的最终稀释倍数应不小于1X。用10 μL微量移液器分别将样品加入胶板的样品小槽内,每加完一个样品,应更换一个加样头,以防污染,加样时勿碰坏样品孔周围的凝胶面。(注意:加样前要先记下加样的顺序和点样量)。

4、电泳:加样后的凝胶板立即通电进行电泳,DNA的迁移速度与电压成正比,最高电压不超过5V/cm。当琼脂糖浓度低于0.5%,电泳温度不能太高。样品由负极(黑色)向正极(红色)方向移动。电压升高,琼脂糖凝胶的有效分离范围降低。当溴酚蓝移动到距离胶板中央时,停止电泳。

5、观察和拍照:电泳完毕,取出凝胶。在波长为254nm的紫外灯下观察染色后(2)的或已加有EB的电泳胶板。DNA存在处显示出肉眼可辨的桔红色荧光条带。于凝胶成像系统中拍照并保存之。

五、注意事项

1、EB是强诱变剂并有中等毒性,易挥发,配制和使用时都应戴手套,并且不要把EB洒到桌面或地面上。凡是沾污了EB的容器或物品必须经专门处理后才能清洗或丢弃。简单处理方法为:加入大量的水进行稀释(达到0.5mg/mL以下),然后加入0.2倍体积新鲜配制的5%次磷酸(由50%次磷酸配制而成)和0.12倍体积新鲜配制的0.5mol/L 的亚硝酸钠,混匀,放置1天后,加入过量的1mol/L碳酸氢钠。如此处理后的EB的诱变活性可降至原来的1/200左右。

2、由于EB会嵌入到堆积的碱基对之间并拉长线状和带缺口的环状DNA,使DNA迁移率降低。因此,如果要准确地测定DNA的分子量,应该采用跑完电泳后再用0.5μg/ml的EB溶液浸泡染色的方法。

六、实验报告要求与思考题

1、附上电泳结果的图片并进行正确的标注(如下图)

M:1Kb DNA ladder;1:质粒DNA

2、琼脂糖凝胶电泳中DNA分子迁移率受哪些因素的影响?

3、如果样品电泳后很久都没有跑出点样孔,你认为有哪几方面的原因?

4、为什么分子生物学实施时要担心EB?

5、琼脂糖凝胶电泳时胶中DNA是靠什么发出荧光的?为什么?

电泳流程图:

实验 PCR扩增eGFP基因

一、PCR技术的基本原理

PCR类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:

①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;

②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;

③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。(Plateau)。到达平台期所需循环次数取决于样品中模板的拷贝。

PCR 技术应用广泛,不可能有这样一套条件满足所有的实验,但本实验所介绍的方法可适应于大多数DNA 扩增反应,即使有的不适应,至少也确定了一个共同的起点,在此基础上可以作多种变化。不过下列因素在实验应用时应予以特别注意,以求取得满意结果。

1、模板:单、双链DNA 和RNA都可以作为PCR样品,若起始材料是RNA,须先通过逆转录得取第一条cDNA。虽然PCR 可以仅用极微量的样品,但为了保证反应的特异性,一般宜用ng 量级的克隆DNA,ug 级的染色体DNA,待扩增样品质量要求较低,但不能混合有任何蛋白酶、核酸酶,Taq DNA聚合酶的抑制剂以及能结合DNA 的蛋白质。

2、引物:引物是决定PCR 结果的关键,下列原则有助于引物的合理设计。(1)尽可能选择碱基随机分布,GC 含量类似于被扩增片段的引物,尽量避免具有多聚嘌呤、多聚嘧啶或其它异常序列的引物。(2)避免具有明显二级结构(尤其是在引物3'—末端)的序列。

3、防止引物间的互补,特别要注意避免具有3'末端重叠的序列。

4、引物的长度约为20个碱基,较长引物较好,但成本增加,短引物则特异性降低。

5、引物浓度不宜偏高,过高易形成二聚体解链;然后冷却至37—55℃,使引物与模板退

二、实验试剂

(一)仪器与器皿

PRC 扩增仪,琼脂糖凝胶电泳设备,微量取样器,一次性eppendorf管,凝胶成像仪

(二)试剂与材料

1、琼脂糖凝胶电泳试剂

1)电泳缓冲液:Tris—乙酸0.04mol/L PH8.0 0.002mol/L EDTA

2)加样缓冲液:0.25%溴酚兰40% w/v蔗糖

3)溴化乙锭溶液:0.05mg/ml溴化乙锭/水

4)琼脂糖

2、TaqDNA 多聚酶3、5´反应缓冲液:

125mmol/L Tris-HCl pH8.2;10mmol/L MgCl2;0.5mg/ml gelatin;125mmol/L(NH4)2SO4; Formamide 25%

4、混合dNTP 液(dATP dGTP dTTP dCTP各2.5 mmol/L)

5、DNA 模板

6、引物 1(10μmol/L)

7、引物 2(10μmol/L)

8、无菌水

三、实验步骤

1、按顺序在200μl 指形管中加入以下试剂与样品:(因购入的试剂批次不同,加样时有所差别,以预实验结果为准。

1)ddH2O 37μl

2)10*Buffer 5μl(含有MgCL2)

3)dNTP 2μl

4)引物1(上游)2μl

5)引物2(下游)2μl

6)模板 1μl(pEGFP质粒)

7)TaqDNA聚合酶1μl(2.5U)总体积共50μl

2、在PCR 扩增仪上按以下反应条件编入程序:(以下为参考值,因扩增的DNA片段不同,各类PCR 扩增仪程序设定各不相同,编程过程视扩增的DNA 片段的要求及仪器而定参数。)

1)预变性 94℃ 3 分种

2)循环条件(30 次)

变性 94℃ 30 秒

复性 55℃ 30 秒

延伸 72℃ 1分

3)延长延伸 72℃ 7 分钟

编完反应程序,置反应管于PCR扩增仪的反应孔中,开动机器,扩增循环反应开始。

3、PCR 扩增完毕,配1.5%琼脂糖凝胶,电泳观察结果。

4、凝胶成像仪或紫外灯下观察实验结果,是否已扩增到实验设计的DNA片段

四、习题

1、PCR反应液中主要成分是哪些?在PCR反应过程中各起什么作用?

2、为什么在PCR反应过程中,使用三个不同的温度变化?

3、用PCR扩增目的基因,要想得到特异性产物需注意哪些事项?

实验 从动物组织(猪肝)中提取DNA

一、实验内容

采用SDS裂解和蛋白酶K消化法从猪肝中提取DNA,并进行琼脂糖凝胶电泳分析。目的

(1)掌握SDS裂解法从猪肝中的原理和方法;(2)巩固DNA的琼脂糖凝胶电泳分析实验。

二、实验原理

DNA是一切生物细胞的重要组成成分,主要存在于细胞核中。通过研磨和SDS作用破碎细胞;苯酚和氯仿可使蛋白质变性,用其混合液(酚:氯仿:异戊醇)重复抽提,使蛋白质变性,然后离心除去变性蛋白质;RNase降解RNA,从而得到纯净的DNA分子。

三、实验材料

新鲜猪肝

TES 缓冲液 : pH8.0 Tris-HCl 10 mmoL/L , EDTA 1mmoL/ L , SDS 0.1 mmoL/ L

四、实验步骤

1、剪取约0.5g肝脏组织,放入到研钵中磨碎;

2、向研钵中再加入1 ml TES轻轻研磨,将TES与破碎的组织混匀;

3、吸取535 µl组织匀浆液于2 ml EP管中,再加入60 µl SDS(10%),5.0 µl蛋白酶K,充分混匀后,于56°C保温1 h,每30分钟轻摇1次;

4、放置到室温,加入等体积饱和酚(600µl),颠倒混匀,11000 rpm,离心10 min,吸取400 µl水相,并转移至一个新的1.5 ml离心管中;

5、加入2倍体积(1000 µl)的无水乙醇和1/10倍体积(40 µl)3 M 醋酸钠沉淀DNA,12000 rpm离心10 min,弃乙醇;

6、加入适量TE溶解DNA和RNAse A(具体依DNA的多少而定),并利用0.7%的琼 脂溏进行电泳分析。

五、注意事项

1、在将猪肝剪碎前要将猪肝清洗干净,除去脂肪及系膜成分。

2、抽提每一步用力要柔和,防止机械剪切力对DNA的损伤。

3、取上层清液时,注意不要吸起中间的蛋白质层。

4、乙醇漂洗去乙醇时,不要荡起DNA。

5、离心后,不要晃动离心管,拿管要稳。

6、在乙醇沉淀后,经离心要观察留在EP管中的小白点,其主要成分就是DNA,在以后的实验中都要细心观察,防止因将小白点丢失。

六、习题

1、为了获得高质量的肝脏DNA,在实验过程中应注意什么。

2、结合本人操作体会,总结在提取过程中如何避免大分子DNA的降解。

3、核酸提取中,去除蛋白质的方法有哪些? 实验 限制性内切酶切割DNA

一、实验目的

1. 通过对DNA的酶切,学会设计构建体外重组DNA分子; 2. 根据目的基因合理选择载体与限制性内切酶; 3. 掌握DNA的酶切技术。

二、实验原理

限制性内切酶是从细菌中分离出来的一种能在特异位点切割DNA分子的核酸内切酶,目前已从多种细菌中分离出超过400种,识别各自不同的核苷酸顺序,这一顺序大多为具有一对称中心的回文序列,如从大肠杆菌中分离的 EcoR I识别„GAATTC„ 切割后产生„CTTAAG„、„G 和

AATTC„的末端,„CTTAAG„该末端由于有一段小的能互补配对的单链突出,故称为粘性末端。切割后的末端为3’-OH和5’-磷酸基团,即„G-OH和„CTTAA-P。

有的限制性酶识别四碱基对的顺序,如 San3A识别„GATC „;有的识别六

碱基对,如上述的ECOR I。识别四碱基对的内切酶由于识别顺序在DNA出现的频率更高(四碱基酶为44=256,六碱基酶为46=4096),因而可将DNA切割成更小的片段,而识别八碱基对的Not I„GCGGCCGC„、„CGCCGGCG„ 则识别和切割位点更少(48=65536),但碱基并不以均等的概率出现,因而切割后产生的片段变化范围很大。

限制性内切酶作用的温度一般为37℃,反应体系中以Mg2为唯一的辅助因子,且要求pH缓冲在7.5左右。

商品酶都保存在50%的甘油溶液中,-20℃贮存,活性通常较高,5u/μl(每单位即最适条件下1小时内完全酶解1μg DNA的酶量)。

三、实验材料

待酶切的DNA样品

四、实验仪器、器皿及试剂

1、仪器:可调微量加样器、恒温水浴箱、电泳仪、电泳槽、紫外检测灯

2、器皿:Eppendorf管、Tip、试管架

3、试剂:标准DNA(Marker)

EcoRI限制性内切酶

10×buffer:50mmol/l NaCl

10mmol/l Tris-HCl(pH7.5)

10mmol/l MgCl2

lmmol/l

DTT(二硫苏糖醇)

五、实验步骤

1、将DNA样品8.5μl(质粒pEGFP, 1μg)

2、加入1μl 10×buffer,酶解buffer由厂家提供。

3、加入1u(0.5μl)的限制性内切酶EcoRI(限制性酶很昂贵,从-20℃取出要置于冰上,吸取要新的Tip头,以免污染杂质,吸完后尽快放回冰箱)。

4、混匀反应液后,稍离心使液体聚集,置37℃温育1小时。

5、进行电泳检查酶切结果,100V 25分钟。

6、紫外灯下观察消化效果。

六、注意事项

1、分子生物学实验大多为微量操作,DNA样品与限制性内切酶的用量都极少,必须严格注意吸样量的准确性以保证酶切效果最佳。现介绍三种微量取样方法:

(1)吸样时,将Tip尖刚刚接触到液面时,轻轻吸取。此法可吸取0.2~0.5μl的样品,注意不要将Tip尖全部插入溶液,这样Tip壁上会沾上很多的样品,导致吸样不准。

(2)用1cm长的塑料毛细管代替Tip吸样,此法也可吸取0.2~0.5μl的样量。

(3)目前也有细长Tip出售,专门用于吸取微量样品。

2、限制性内切酶价格比较贵,因此要注意不使其污染而导致浪费。这就要求每次吸酶时要用新的无菌Tip。另一个造成限制性内切酶浪费的因素就是限制性内切酶的失活。因此,要注意加样次序,即各项试剂加好后,最后才加酶,并要在冰上操作,且操作要尽可能快,以使限制性内切酶拿出冰箱的时间尽可能短。

若用同一酶消化很多样品时,可先计算出所需酶量(可稍多计一点),取出此量的酶与1×缓冲液混合,然后再分装至各个反应管内。这样可节约用酶且缩短操作过程、减少污染机会。

3、开启Eppendorf管时,手不要接触到管盖内面,以防杂酶污染。

4、样品在37℃与65℃保温时,要注意将Eppendorf管盖严,以防水进入管内造成实验失败。

5、无实验必要应尽量避免长时间酶消化样品。因长时间消化,限制酶溶液中可能存在的杂酶会影响试验结果。

七、习题

1、限制性核酸内切酶天然存在于什么生物体内?

2、什么是细菌的限制-修饰系统?限制-修饰系统对细菌有什么用途?

3、限制性内切酶有几类?这几类限制性内切酶各有什么特点?可作为工具酶的限制性内切酶是哪一类?为什么?

4、限制性内切酶的识别序列有什么特点?称为什么序列?

5、酶通常在什么温度中保存?为什么酶在该温度下保存不会结冻?酶最后工作的时候其甘油浓度必须低于多少? 6、1个单位(1 U)的限制性内切酶代表什么意思?

实验 质粒的转化

一、实验目的

掌握热激法或电转化法转化大肠杆菌感受态细胞及转化子的鉴定方法。实验材料:质粒DNA;大肠杆菌感受态细胞。

二、实验原理

质粒的转化是指将质粒或以它为载体构建的重组子导入细菌的过程。将连接产物转化到感受态细胞中,实现重组克隆的增殖,便于后续分子操作。可以采用多种方法筛选和鉴定目的克隆。

(1)热激法:大肠杆菌在0℃ CaCl2低渗溶液中,菌细胞膨胀成球形,转化混合物中的DNA形成抗DNase的羟基-钙磷酸复合物粘附于细胞表面,经42℃短时间热冲击处理,促进细胞吸收DNA复合物,在丰富培养基上生长数小时后,球状细胞复原并分裂增殖。在被转化的细胞中,重组子基因得到表达,在选择性培养基平板上可挑选所需的转化子。

(2)电转化法:外加于细胞膜上的电场造成细胞膜的不稳定,形成电穿孔,不仅有利于离子和水进入细菌细胞,也有利于孔DNA等大分子进入。同时DNA在电场中形成的极性对于它运输进细胞也是非常重要的。

三、实验步骤

1、制备选择性培养基平板:在融化的250ml LB固体培养基中(冷却止55摄氏度以下)加入Amp至终浓度50μg/ml,混匀后倒入灭菌培养皿中;

2、取出1管制备好的感受态细胞,放在冰上融化;

3、每100μl感受态细胞加入约20ng质粒DNA,轻轻混匀,在冰上放置30分钟;

4、热击:将离心管放置42℃水浴,热击90秒,注意:勿摇动离心管;

5、冰镇:快速将离心管转移至冰浴,放置1-2分钟;

6、复苏:每管加400 μl LB培养基,在37℃摇床温和摇动温育45分钟,使细菌复苏;

7、布皿:取适当体积均匀涂布于含有、抗生素(Amp)的LB平板;

8、培养:倒置培养皿,于37℃培养12-16小时即可观察到白色的菌落,即为转化子。

四、结果与分析

计算转化效率

菌落数/DNA质量(μg)*稀释倍数

五、习题

1、制备感受态细胞的关键是什么?

2、如果DNA转化后,没有得到转化子或者转化子很少,分析原因。

3、如何提高转化效率?

第三篇:分子生物学实验方案

实验一 分子生物学实验安全注意事项及分子生物学实验室所需要的仪器设备的使用(2学时)实验二 分子材料的采集、保存和植物/动物基因组DNA 的分离(8学时)实验三 DNA/RNA 的琼脂糖凝胶检测(4学时)实验三 聚合酶链式反应(PCR)(3学时)

实验四 PCR产物的琼脂糖凝胶检测与聚丙烯酰胺凝胶电泳检测(6学时)实验五 分子生物学软件的使用(4学时)

实验六 生物信息学(3学时)生物信息获取与利用 实验考试

实验三:琼脂糖凝胶电泳检测DNA

【目的要求】

学习并掌握DNA琼脂糖凝胶电泳基本原理和操作,了解如何通过电泳判断DNA纯度、含量和分子量。

【实验原理】

凝胶电泳是分离、纯化和鉴定DNA的常用方法。因为DNA分子是两性解离分子,在pH高于其等电点(约3.5)的中性或碱性溶液中带负电荷,在电场中向正极方向泳动。DNA凝胶电泳的介质主要有两种:琼脂糖凝胶和聚丙烯酰胺凝胶。聚丙烯凝胶的孔径较小,适合于分离5-500bp的小片段DNA;而琼脂糖凝胶的孔径较大,可以分离100bp-60kb的较大片段DNA。不同浓度的琼脂糖凝胶适合于分离不同大小的DNA片段(表7-1)。

琼脂糖是从海藻中提取出来的一种线状高聚物,当熔化后再凝固时就会形成固体基质,具有多孔的网状结构,孔径大小取决于琼脂糖浓度。DNA在琼脂糖凝胶中泳动时,受到电荷效应和分子筛效应的双重影响。电荷效应由分子所带的电荷量多少来决定,而分子筛效应则与分子大小和构象有关。在一定的电场强度下,DNA分子的泳动速度主要取决于分子量大小和构象。线状双链DNA分子在琼脂糖凝胶介质中的迁移率与其分子量的对数值成反比。分子越大,迁移速度越慢,从而可以将不同大小的DNA分子分开。因此,通过与DNA标准分子量参照物(MW marker)的迁移率对照,可以鉴定DNA分子的大小。DNA分子的构象也可以明显影响其迁移率。在细胞内质粒DNA有3种构象:超螺旋的共价闭环DNA(covalently closed circular DNA,cccDNA),松弛型的开环DNA(open circular DNA,ocDNA)和线性DNA,在琼脂糖凝胶电泳中,其泳动速度依次为:cccDNA >线性DNA >ocDNA,因而未酶切的质粒DNA在电泳中多显示为3条带,泳动速度最快的超螺旋带越亮,说明质粒DNA提取质量越好。

表7-1:不同浓度琼脂糖凝胶对DNA的有效分离范围

琼脂糖浓度(%)线性DNA有效分离范围(kb)0.3 5-60 0.6 1-20 0.7 0.8-10 0.9 0.5-7 1.2 0.4-6 1.5 0.2-4 2.0 0.1-3 DNA的迁移率还与电场强度(即单位长度的电压降)有关,电场强度越大,泳动速度越快。当需要快速观察电泳结果时,可以适当加大电场强度。但是电泳分辨率会随着电场强度的增大而缩小,因为高分子高速流动时摩擦力增加,相对分子质量与移动速度就不一定成正比,因此一般电场强度应不超过5V/cm。特别是当需要较精确测定DNA片段大小、获得理想的分辨率和漂亮的带型时,应该适当降低电场强度,相应的适当延长电泳时间,并选用相对较低的凝胶浓度。

为了显示凝胶中DNA的泳动位置,需要加入染色剂染色。最常用的染色剂是溴化乙锭(ethidium bromide EB)。溴化乙锭可以嵌入核酸双链的配对碱基之间,在紫外线的激发下发出橘红色荧光。一般是在凝胶中直接加入终浓度为0.5μg/ml的溴化乙锭,这样可以在电泳过程中随时利用紫外灯观察核酸的迁移情况。但是EB与DNA的结合会影响DNA的迁移率,因此对于需要较精确测定DNA片段大小、或需根据荧光强度测定DNA含量时,EB染色应在电泳结束后再进行(将凝胶浸入0.5μg/ml的溴乙锭水溶液中10min即可)。注意:EB是强诱变剂,使用EB必须戴一次性手套,不要洒在桌面地面上,被污染的物品必须专门处理后(加少量漂白粉可使EB分解),再彻底清洗或丢弃。

指示剂溴酚蓝和二甲苯青的作用是指示样品在凝胶中的迁移过程,以确定终止电泳时间。在0.6 %、1%、2%琼脂糖凝胶电泳中,溴酚蓝分别约与1kb、600bp、150bp双链线状DNA片段的迁移率大致相同。在1%琼脂糖凝胶中,二甲苯青大致相当于2kb双链线状DNA的位置。【试剂器材】

1.5×TAE:

2.10mg/ml溴化乙锭(EB),避光4℃保存。/ GoldView 常温保存。3.6×上样缓冲液(配方见附录)4.(电泳)琼脂糖

5. DNA、PCR扩增产物

6.DNA标准分子量marker(λDNA/HindIII)7.水平式电泳槽、电泳仪 8.透射式紫外灯 9.胶带

10.微波炉或恒温水浴 11.微量移液器 【操作步骤】

1.称取琼脂糖1g,置三角烧瓶中,加入1×TAE 100 ml,置沸水浴或微波炉中加热,使充分溶解。注意:微波炉煮沸1次可能不能充分溶解,需取出混合后反复加热1-2次,注意此时可能出现爆沸现象,避免蒸汽烫伤。

2.待琼脂糖溶液冷却至60-65℃左右时加入溴化乙锭/5ulGold View,使终浓度为0.5μg/ml,混匀。

3.用胶带把制胶模具的两端边缘封好,置水平位置,选择孔径适宜的加样孔模板(梳子),并垂直安插好。注意梳齿必须与模具底面保持一定距离(约0.5-1mm),防止样品槽破裂,导致样品泄漏。

图3-1:凝胶灌胶过程示意图

4.将冷却至50-60℃左右的琼脂糖溶液缓慢倒入制胶模具中,使凝胶液缓慢展开,直至形成厚度适当(一般为0.3-0.5cm)的胶层。小心去除加样孔周围的气泡。室温静置30-60分钟。(如图3-1)

5.琼脂糖完全凝固后,小心取出梳子,去掉模具两端的胶带,将凝胶放入电泳槽中。6.电泳槽中注入适量0.5×TBE缓冲液,使液面高于凝胶约1mm左右。7.分别取5μl DNA或者2μl PCR产物和约0.5μg DNA分子量marker,加入1/5体积(2ul)的上样缓冲液,混匀。

8.小心缓慢将样品上样于凝胶加样孔中。记录样品加样孔顺序。

9.上样完成后,尽快开始电泳,以防止样品漂流。接通电源,注意正负极是否正确。调节电压在1-5V/cm左右,样品进胶前电压不要太高。电泳开始后不久就可以观察到溴酚蓝从加样孔迁移到凝胶中。

10.根据指示剂迁移的位置,或根据反射紫外灯显示的DNA迁移位置,判断是否需要终止电泳。切断电源后,取出凝胶。

11.将凝胶置于透射紫外灯上,打开紫外灯(注意尽量避免使用254nm短波紫外灯,并戴好防护眼镜或防护罩),观察染色后发出橘红色荧光的DNA条带,拍照记录。

注意观察样品DNA条带是否清晰,有无拖尾现象,条带数量、大小是否正确,判断样品DNA分子大小,与预期大小是否相符,并目测粗略估算样品DNA含量。【注意事项】

(1)凝胶不能有气泡。(2)电泳是从负极到正极。

(3)EB是致癌剂,操作要带手套。【实验安排】

本实验一天内可做完。【作业】

写出实验步骤及注意事项。

相关溶液配制

1,50倍TAE缓冲液的配制(pH8.5)配方:2MTris-HAc、100mM EDTA 配制量:1L 配制方法:

1)称取Tris碱242.3g,置于烧杯中

2)称取EDTA固体29.3g或Na2EDTA-2H2O固体37.2g 3)加入700mLddH2O,溶解完全 4)加入57mLHAc,充分搅拌 5)用HAc调pH至8.5 6)定容至1L,室温保存

2,溴化乙锭(EB)【强致癌物】 配制量:100mL 配制方法:

1)1gEB于专用容器中

2)加入100mLddH2O,搅拌数小时至溶解完全 3)转移至棕色瓶中,避光保存 3,6×上样缓冲液Loading Buffer 配方:30mMEDTA;36%(V/V)丙三醇;0.05%溴酚蓝;pH7.0 配制量:100mL 配置方法:

1)6mL EDTA(500mM,pH8.0)加入50ml ddH2O中 2)5mL 1%溴酚蓝 3)取36mL丙三醇

4)用2N的NaOH调pH=7.0 5)定容至100mL 4,6×甘油上样缓冲液Loading Buffer 配方、配制量:

成分及终浓度 0.15%溴酚蓝

0.15%二甲苯靑EF 5mmol/L EDTA 50%甘油 水

配制10ml溶液各成分用量 1.5ml 1%溴酚蓝

1.5ml 1%二甲苯靑EF

100ul 0.5mol/L EDTA(pH8.0)3ml 3.9ml

5.GoldView(GV)GoldView(GV)是一种可代替溴化乙锭(EB)的新型核酸染料,其灵敏度与EB相当,使用方法与之完全相同,在100ml琼脂糖胶溶液中加入5µl GoldView™即可。在紫外透射光下双链DNA呈现绿色荧光,也可用于染RNA。

由于未发现GoldView™有致癌作用,且灵敏度与EB相当,将有可能逐渐取代EB而得以广泛应用。

概 述

GoldView™是一种可代替溴化乙锭(EB)的新型核酸染料,采用琼脂糖电泳检测DNA时,GoldView™与核酸结合后能产生很强的荧光信号,其灵敏度与EB相当,使用方法与之完全相同。在紫外透射光下双链DNA呈现绿色荧光,而且也可用于染RNA。

通过Ames试验、小鼠骨髓嗜多染红细胞微核试验、小鼠睾丸精母细胞染色体畸变试验,致突变性结果均为阴性;而溴化乙锭(EB)是一种强致癌剂。因此用Goldview™代替EB不失为一种明智的选择。

使用方法

1.将100ml琼脂糖凝胶溶液(浓度一般为0.8%~2%)在微波炉中融化。

2.加入5ul GoldView,轻轻摇匀,避免产生气泡。

3.冷却至不烫手时倒胶,待琼脂糖凝胶完全凝固后上样电泳。

4.电泳完毕在紫外灯下观察。若使用数码相机照相记录,则关闭相机的闪光灯,放在自动档即可;若使用凝胶成像系统照相,通过调节光圈、曝光时间,选择合适的滤光片,可得到成像清晰、背景较低的照片。

注意事项

1.胶厚度不宜超过0.5cm,胶太厚会影响检测的灵敏度。

2.加入GoldView的琼脂糖凝胶反复融化可能会对核酸检测的灵敏度产生一定影响,但不明显。

3.通过凝胶电泳回收DNA片段时,建议使用GoldView染色,在自然光下切割DNA条带,避免紫外线与EB对目的DNA产生的损伤,可明显提高克隆、转化、转录等分子生物学下游操作的效率。

4.虽然未发现GoldView有致癌作用,但对皮肤、眼睛会有一定的刺激,操作时应戴上手套。

第四篇:医学分子生物学与实验

1.简述动物组织蛋白质,DNA ,RNA提取的大致过程及原理。

答:共同的第一步都是取动物组织进行清洗剪碎,然后用高速组织捣碎机破碎。

DNA的提取:

通过匀浆、离心得到细胞核组分,然后用SDS(十二烷基硫酸钠,sodium dodecyl sulfate)裂解核膜,释放出DNA-蛋白质复合物,再加入高浓度NaCl,以增加DNP的溶解度,然后加入氯仿—异戊醇混合液,振荡、乳化,使蛋白质变性,DNP复合物解离,离心后,DNA溶于上层水相,蛋白质沉淀夹在水相和有机相之间得以除去,最后用有机溶剂沉淀出DNA。

RNA的提取:

取组织,剪成小块,在乳钵种研碎,加20mLSDS-缓冲盐溶液(见试剂1.)使成均浆,倒入磨口具塞锥形瓶内,再加同样体积的含水酚液,室温下剧烈振荡10分钟。置冰浴中分层,在0-4℃下,以4000rpmn离心15分钟。吸出上清液,加等体积氯仿-异戊醇,室温下剧烈振荡10分钟,以4000rpm离心5分钟,或在室温下放置10分钟使分层。吸出上清液(若有必要,该操作可反复多次),加2倍体积2%乙酸钾的乙醇溶液,在冰浴中放置1小时使RNA沉淀,此沉淀液可在冰箱内较长期存放。若要得到干燥制品,可将沉淀液以4000rpm离心10分钟,倾去上清液。沉淀用少许75%乙醇、95%乙醇、无水乙醇各洗1次,同上法离心,倾去乙醇后,空气干燥。

蛋白质的提取:

1.组织称重,切小块放入管中。

2.配置含抑制剂的蛋白质抽提试剂(1ml抽提试剂中加入5 μl蛋白酶抑制剂混合液,5 μl PMSF和5ul磷酸酶混合液)。

3.加入预冷的含抑制剂的蛋白质抽提试剂(250mg组织中加入1ml抽提试剂)。

4.用匀浆器每次30秒低速匀浆,每次匀浆间隔冰浴1分钟,至组织完全裂解。

5.裂解液于预冷的离心机中14,000xg离心15分钟。上清液立刻转移入新的离心管中保存待用。

原理:在细胞核内,核酸通常是与某些组织蛋白质结合成复合物,因此在提取和制备DNA或RNA时,首先必须设法将这两类核蛋白分开。在不同浓度的盐溶液中,RNP与DNP的溶解度有很大的差别。在低浓度的NaCl溶液中,DNP的溶解度随着NaCl浓度的增加而逐渐下降,当NaCl 浓度为0.14mol/L时,DNP的溶解度仅为其在纯水中溶解度的1%,而当NaCl浓度继续增加时,DNP的溶解度又渐次增大,当NaCl浓度增至0.5 mol/L时,DNP的溶解度约与其在纯水中的溶解度近似,当NaCl浓度继续增加至1.0 mol/L时,DNP的溶解度约为其在纯水中的溶解度的两倍,且随着盐浓度的上升,其溶解度仍继续呈增大的趋势。但RNP则与之不同,在0.14 mol/L的盐溶液中,DNP溶解度很低,而RNP的溶解度仍相当大,因此,通常采用0.14 mol/L的盐溶液来除去RNP,使DNP仍保持在沉淀中,然后使用浓盐溶液(1.7 mol/L浓度以上的NaCl)来提取DNP。

提取出DNA或RNA-蛋白质复合体(DNP)后,在将其中的蛋白质除去

2.简述基因工程的原理及过程。

答:基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。

所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术。是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。一般步骤:1克隆重组:提取供体生物目的基因,酶解,连接到另一个DNA分子(克隆载体)上形成重组DNA;2转化:将重组子转入受体细胞,并在其中复制保存;3筛选鉴定:已吸收重组子的细胞;4大量培养监测外源性基因是否表达。

3.比较原核生物与真核生物的基因表达调控机制。

答:

原核生物基因表达调控 真核生物基因表达调控

启动因子:σ因子决定RNA聚合酶识别的特异性TF2D决定RNA聚合酶识别的特异性

转录激活:操纵子 调节蛋白顺式作用元件转录因子

主要机制:操纵子模型具有普遍性顺式作用元件具有普遍性

主要为负性调节(阻遏调节)主要为正性调节

特有机制:转录衰减染色体结构变化

共同点: 1.基因表达都有时间特异性和空间特异性2.基因调控的多层次性和复杂性3转录起始部分是基因表达的基本调控点

4.简述 PCR的原理及其应用,引物设计的原则。

答:PCR的原理:以扩增的DNA分子为模板,以1对与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,依半保留机制沿模板链延伸直至完成2条新链合成。通过变性,退火和延伸重复这一过程,即可使目的DNA片段得到扩增。反应体系基本成分有模板DNA,特异引物,耐热性DNA聚合酶,dNTP和含有 Mg²+的缓冲液。

PCR的主要用途:1目的基因的克隆;2.基因的体外突变3.DNA和RNA的微量分析4.DNA序列测定5.基因突变分析

PCRD的衍生技术:1锚定PCR(anchored PCR)2..不对称PCR(asymmetric PCR)3.反向PCR(inverse PCR)4.多重PCR(multiplex PCR)5.逆转录PCR(reverse transcription PCR,RT-PCR)

引物设计的基本原则

①引物长度:15-30bp,常用为20bp左右。②引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C 过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列参照。③引物内部不应出现互补序列。④两个引物之间不应存在互补序列,尤其是避免3 ′端的互补重叠。⑤引物与非特异扩增区的序列的同源性不要超过70%,引物3′末端连续8个碱基在待扩增区以外不能有完全互补序列,否则易导致非特异性扩增。⑥引物3„端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,最佳选择是G和C。⑦引物的5 ′端可以修饰。如附加限制酶位点,引入突变位点,用生物素、荧光物质、地高辛标记,加入其它短序列,包括起始密码子、终止密码子等。

5.简southern blot的原理及其应用。

答:原理: 将待检测的DNA分子用/不用限制性内切酶消化后,通过琼脂糖凝胶电泳进行分离,继而将其变性并按其在凝胶中的位置转移到硝酸纤维素薄膜或尼龙膜上,固定后再与同位素或其它标记物标记的DNA或RNA探针进行反应。如果待检物中含有与探针互补的序列,则二者通过碱基互补的原理进行结合,游离探针洗涤后用自显影或其它合适的技术进行检测,从而显示出待检的片段及其相对大小。可用于检测样品中的DNA及其含量,了解基因的状态, 如是否有点突变、扩增重排等。

主要应用于1.遗传病诊断 2.DNA图谱分析 3.PCR产物分析。例如在研究转基因的时候,可用于检测外源基因的插入和整合情况。

第五篇:超英分子生物学实验

超英生物实验室分子生物学系列服务项目

1、DNA提取(组织、细胞、血液、蜡块),质粒提取,基因克隆、纯化。

2、蛋白提取、定量。原核及真核基因蛋白表达纯化(盐析与透析)、分析鉴定、SDS-聚丙烯酰胺凝胶电泳,western-blot(常规DAB显色及化学发光)

蛋白组学相关技术

免疫蛋白质印迹(Western blotting)是根据抗原抗体的特异性结合检测复杂样品中的某种蛋白的方法。

3、总RNA提取 定量、电泳。总RNA是一种非常重要的试验材料。本公司可以提供从多种材料中提取总RNA的服务。常见的有:血液、培养细胞、动物组织、植物

4、聚合酶链反应(PCR)

5、RT-PCR:组织或细胞中的总RNA,以其中的mRNA作为模板,采用Oligo(dT)或随机引物利用逆转录酶反转录成cDNA.再以cDNA为模板进行PCR扩增,而获得目的基因或检测基因表达.降落PCR 引物设计及PCR相关实验

6、细胞培养、细胞冻存、原代细胞的分离与培养、细胞转染及细胞生物学相关技术

7、细胞凋亡检测(TUNEL,单细胞凝胶电泳等)

8、细胞周期调控,同步化细胞

9、特殊的细胞爬片材料,提供检测爬片细胞的特异性抗体检测,客户所感兴趣的基因检测

(RISH,DISH,IS-PCR,PRINS)

下载分子生物学实验教案,大纲,目录[范文]word格式文档
下载分子生物学实验教案,大纲,目录[范文].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分子生物学教案

    分子生物学教案 第一章 绪 论 本单元或章节的教学目的与要求 主要介绍分子生物学定义、研究内容和发展简史及未来发展方向等。 授课主要内容及学时分配 2 学时 第一章 绪......

    分子生物学实验总结范文合集

    分子生物学实验 1.TOMY全自动灭菌锅的使用 (1)检查排放蒸汽的水壶,腔体内的水位与托板齐平。 (2)SET键设置温度和时间(121℃,20min) (3)关闭排气阀,Start机器开始运行,Check Heat检查设......

    分子生物学实验 心得体会范文合集

    关于分子生物学实验的体会 梁慧媛(生技01级) 不知不觉间,一年的时间就这样流逝了,与分子生物实验相伴,对我而言,的确不同寻常。并不仅仅是学习生物学实验技术和方法的宝贵经历,它......

    现代分子生物学常用实验仪器

    实验一 分子生物学实验室常用仪器及使用 事实证明,在科学飞速发展的今天,无论从事哪个领域的研究,要想突破,除了有良好的理论基础外,更重要的是依赖于先进的技术和优良的仪器设......

    分子生物学实验室实验器材清单

    分子生物学实验室所需试剂、耗材清单 1、普通化学试剂,共计约2.89万。 名称 95%乙醇AR 无水乙醇AR DEPC EDTA二钠AR 柠檬酸钠AR 柠檬酸三钠AR L-精氨酸BR Tris 苯酚AR 变色硅......

    分子生物学实验方案设计(五篇模版)

    梅衣属ITS条形码物种的快速鉴定 实验目的: 一、学习并熟练地衣DNA提取技术 二、掌握PCR技术的原理及操作 三、DNA条形码技术的应用 实验技术路线: 1、地衣总DNA的提取 2、PCR......

    《分子生物学》教案(精)

    《分子生物学》教案 O RNA加工与核糖核蛋白复合体 教学目的和要求 1 了解RNA加工类型 2理解真核生物mRNA加工 3掌握原核生物rRNA和 tRNA的加工 O1 rRNA加工与核糖体 RNA加......

    分子生物学原理教案

    核酸的结构与功能 教学要求: 1.掌握核苷酸的分子结构,了解连接键及分子表达式 2.重点掌握DNA、RNA的结构特征及主要功能 3.了解DNA的理化性质与结构的关系 4.了解DNA的高级结构 课......