第一篇:几何画板优化初中数学教学实践研究
几何画板优化初中数学教学实践研究
前言
数学是一门强调逻辑性的学科,并且也是一门强调专业性的学科。对于数学教师而言,在教学中除了要具备必备的专业知识以及教学能力之外,还需要具备和数学相近的计算、空间、归纳演绎以及推理方面的专业能力,并且可以通过这些专业能力,将数学知识更好地传授给学生。在信息技术和计算机技术快速发展的今天,传统的数学教学模式和手段已经难以说符合时代所需。同时在新课标的规定中,课堂教学也更加自由和开放,教学的不确定性大大增加。在此背景下怎样保障教学质量,甚至是提升教学质量,是每一位初中数学教师都必须思考的问题。
充分利用现代教学技术对提升教学质量有着十分明显的促进效果,并且已对目前诸多学科教学产生一定的影响。初中数学课程对学生整体发展而言具有极其重要的意义,同时,内容体系中的几何部分对培养学生的空间思维能力和逻辑能力具有一定的帮助作用。依托于现代信息技术而诞生的几何画板,其在几何教学中的充分使用,对帮助学生形象化、具体化地理解数学几何的相关知识点,有着十分明显的促进效果,因此值得每一位初中数学教师在教学中充分合理地使用。
几何画板具有作图精准、演示交互以及计算精准等诸多优点,在初中数学教学中的应用能够很好地提升教学质量。但是就实际情况而言,几何画板目前在初中数学教学中的使用并没有得到广泛的普及,同时很多教师对几何画板的教学意义还没有清晰的认识。为此通过调查问卷的形式,调查研究教师对几何画板的使用情况。调查结果显示,虽然很多教师对几何画板的制作能力和运用水平存在不足,但是使用几何画板的教师在教学质量上却有很大提升[1]。因此,需要展开对几何画板优化初中数学教学实践途径研究,让教师更加深刻地认识到几何画板对初中数学教学的价值所在。
基于此,本文对调查结果进行了简单分析,继而提出教师在教学中合理使用几何画板的方法,希望为广大初中数学教师以启迪和参考。
调查问卷结果分析
本研究以针对某一中学的12位初中数学教师进行的一次问卷调查为依据,本次调查共发放调查问卷12份,收回12份,问卷有效率达到100%[2],下面对调查结果进行简单的分析。
首先对12位教师的多媒体应用情况以及几何画板的制作能力进行调查。分析结果可知,很多数学教师在教学上对多媒体有所涉及,但是能够熟练制作几何画板的只有三人。这一方面说明了几何画板在该学校的使用率很低,另一方面也说明了教师在几何画板的认知上存在严重不足。
在简单地向教师演示了几何画板,并且指导他们在教学中使用一段时间的几何画板后,针对教师使用几何画板后的教学变化进行了调查。调查结果清晰地表明,近四分之三的教师认为使用几何画板能够改变以往陈旧的教学观念;有一半的教师认为,通过运用几何画板,自己的教学方式得到了很大的改善;有五分之四的教师认为,几何画板的使用对提升学生的学习兴趣有明显的效果;有三分之二的教师认为,几何画板的使用对教学难点的讲解有很大的帮助;同时,所有的教师都认为几何画板具有十分明显的教学效果[3]。
将几何画板应用于初中数学教学的途径
从上文的调查结果分析,可以清楚地知道教师都认为使用几何画板对提升教学质量、学生学习兴趣等诸多方面有着十分明显的效果,但是同时也存在很多教师不会使用几何画板的现象。为此,针对如何把几何画板应用于初中数学教学进行讨论。
对于初中的数学学科而言,其属于一门极其抽象的学科,使用传统的教学方式,对于一些空间思维能力以及逻辑能力不足的学生,在理解上难度很大,因此,教学的质量难以保障。
将几何画板应用于数学教学中,可以将一些极其抽象的数学知识变得形象化和具体化,将其实实在在地呈现出来,进而帮助学生更为直观地去理解,具有十分明显的增强教学效果的作用[4]。
有理数的认识 有理数的认识一课是有较大难度的初一基础知识点,教师在进行该课时的教学时就可以引进几何画板,进而让学生逐渐接受几何画板的教学方式。教师可以使用几何画板制作一个坐标系,具体而言是一个横坐标,通过在横坐标上标记数字,让学生更为直观地对横坐标上的数进行观察,就可以让学生把坐标和数进行联系,这也就能直接帮助学生理解和掌握有理数知识。
三角形中位线定义 三角形也是在初中数学中难度较大的知识点之一,同时是几何知识体系中极其重要的组成部分。但是就目前的大多数教材而言,在对问题进行研究的一开始,就将结论或者概念给出,这对学生而言十分突兀。此外,教师通过口头的阐述也难以对三角形的相关概念有一个清楚的描述,因此导致很多学生在三角形的相关概念的理解上存在诸多问题[5]。教师在三角形的相关概念的教学上可以充分使用几何画板,来消除这方面教学的弊端。如在三角形中位线一课的教学中,教师就可以使用几何画板的功能进行生动形象的描述教学,学生对知识理解很深刻,取得很好的教学效果。
从割线到切线 使用几何画板除了可以对单一的知识点进行描述之外,也可以对初中数学几何中一些相关联的知识点进行教学,进而可以帮助学生更为深刻和清晰地判别两个不同知识点之间的关联和区别。如目前在我国的初中数学教学体系中并没有对圆的割线和切线有一个十分清楚明白的区分,但是在考试中又会经常涉及两者之间关系的内容,而且到高中阶段,割线和切线又是重点教学内容。因此,在初中阶段将两者进行联合教学是有必要的[6]。在教学中可以使用几何画板中的移动功能,将切线和割线之间的差别进行形象化的描述[7]。通过几何画板的移动动画功能,学生可以清晰地对割线和切线有一个极其清晰的认知,对切
线以及割线的概念和本质也有了一个更为详细的认知,则为后面的教学乃至为学生高中阶段的学习打下一個良好的基础[8]。
结语
在现代教学技术不断发展以及新课改不断推进的今天,在数学教学中使用几何画板已经逐渐成为数学教学的必要措施。使用几何画板,可以最大化地将数学中的数与形之间的关系生动形象地表现出来,规避了传统数学教学中动态属性难以切实生动地描述以及变量关系难以深入浅出地介绍的薄弱点。面对初中数学教学中的重点和难点,几何画板均可以充分应用其中,起到相应的作用。同时,依托于几何画板的生动化、形象化的教学模式,也可以让学生从运动的角度对数学中的数量关系、几何关系有一个更为直观和清晰的认知,对于教师提升进课堂教学效率也有着十分明显的效果。
因此,每一位教师在数学教学中都应对几何画板的应用有一个十分清醒的认识,要结合数学科学的特点、不同知识点之间的特点以及学生的年龄特点,进行科学合理的几何画板应用,解决数学教学中的重难点,以提高教学效率,降低学生的学习难度,取得理想的教学效果。
参考文献
[1]赵生初,杜薇薇,卢秀敏,等.《几何画板》在初中数学教学中的实践与探索[J].中国电化教育,2012(3):104-107.[2]翁娟娟.几何画板在初中数学教学应用中的有效性研究[D].江苏:苏州大学,2010.[3]黄孝玲.借得春风好行雨:浅谈几何画板在初中数学函数教学中的应用[J].课程教育研究,2016,41(26):204.[4]谢红霞“几何画板”.在初中数学几何教学中的应用[J].中国信息技术教育,2014(12):156.[5]王爱琴.初中数学教学中几何画板的应用分析[J].读与写,2016,13(18):393.[6]赵兴文.几何画板在初中数学课堂教学中的应用[J].学周刊,2014(6):116.[7]李莎.实现几何画板与数学整合,提升初中数学教学直观性[J].读写算:教育教学研究,2014,12(46):235.[8]李春荣.信息技术与课程整合的理论探索与实践研究:运用“几何画板”进行数学教学[D].长春:东北师范大学,2011.
第二篇:几何画板优化初中数学教学研究
几何画板优化初中数学教学研究
摘 要:实现初中数学教学与信息技术的整合是现代教学发展的必然趋势,理应得到教师的重视与关注。几何画板凭借其独特的优势受到教师的青睐,能够优化初中数学教学。
关键词:几何画板;优化;初中数学教学
几何画板是现代信息技术发展的产物,其主要服务于数学与物理教学。几何画板借助信息技术将原本抽象的教学内容变得生动,能够增加教学的有效性。但从目前来看,教师还没有在初中数学教学中合理运用几何画板。本文在此浅谈几何画板优化初中数学教学,以期能够为相关人士提供有益参考与借鉴。
一、利用几何画板增加教学的生动性
几何画板以一种立足于信息技术的现代教学软件,教师能够利用信息技术轻松方便地绘制几何图形,能够突破传统教学资源的限制,让初中数学教学变得更加生动有趣。
例如,在学习了相似三角形之后,教师需要让学生对比相似三角形和全等三角形,以此增加学生的印象,让学生更好地把握两种特殊的三角形。此时,教师可以利用几何画板快速地绘制出标准的全等和相似三角形,极大地节约了课堂教学时间。
在此基础上,教师也可以要求学生利用几何画板进行图形的绘制,让学生真正参与到学习过程中,感受信息技术的魅力,也感受初中数学教学的趣味,以此提高学生的学习兴趣。
二、利用几何画板转变抽象的知识
除此之外,几何画板还可以将抽象的知识变得生动具体。借助几何画板,教师能够将传统教学中难以言诉以及学生无法用肉眼观察到的知识变得直观具体,让学生在观察中获得更深刻的认识。
以《旋转》的教学为例,在传统的教学中,教师虽然能够利用相应的工具画出旋转前后的图形,也可以通过实物进行展示。
此时,教师可以利用几何画板所具有的动画功能,首先绘制出需要运动的图形,并设计相应的运动轨迹使其在多媒体技术下进行旋转。在此过程中,教师可以将图形运动的轨迹标准出来,让学生了解到图形旋转过程中各个边和角的对应关系,也能够帮助学生在脑中建立图形运动的真实轨迹,使学生获得更加深刻的认知,达到提高学生学习效率的目的。
几何画板借助了现代信息技术的优势,凭借其独特的功能为初中数学教学提供新的发展方向。因此,教师需要在初中数学教学中有意识地运用几何画板,并通过实践不断反思,完善几何画板的运用,促进初中数学教学的发展与建设。
参考文献:
刘德广.几何画板优化初中数学教学的研究[J].中学生数理化:教与学,2015(04).
第三篇:几何画板优化初中数学教学的分析与探讨
几何画板优化初中数学教学的分析与探讨
【摘要】本文在简要分析几何画板主要优势的同时,重点研究了在初中数学教学活动当中,应用几何画板的主要方法与优势,望能够引起各方关注与重视.【关键词】几何画板;数学教学;优势;应用
在新课标下的初中数学教学活动期间,通过应用几何画板,能够使整个数学学科的教学过程发挥优势,为传统教学提供动力,并最终促使课堂教学效率以及教学质量的全面提升.本文即主要针对以上相关问题展开探讨.1.几何画板的主要优势分析
(1)几何画板具有动态性特征
在初中数学教学期间,教师在教学过程当中,可以操作鼠标对图像当中的点、线、面进行拖动,但同时也能够使图像的基本性质以及所对应的几何关系保持在恒定状态下.而这种动态性与固定性的融合也正是应用几何画板的最主要优势之一.借助于对这一特性的应用,使得学生能够在几何图形的运动变化当中把握固定的几何规律,领悟几何的精髓.教师可以将几何画板视作数学教学中一块特殊的、动态的黑板,利用几何画板发挥其他教学手段所不具备的优势,凸显计算机技术、多媒体技术与数学教学融合的价值.(2)几何画板具有形象性特征
在传统意义上的教学活动开展期间,初中数学教学中经常会涉及这样一种问题,即教师会要求学生在平面当中取任意一点.在没有使用几何画板前,学生大多需要通过发挥三维空间想象力的方式进行取点,即便是教师在黑板上定义了相关的点位,但这些点位仍然基本处于恒定状态下.所谓的任意一点均离不开学生的想象.然而,在教学实践活动中,通过应用几何画板的方式,能够操作鼠标实现对任意一点的任意移动,这对于提高学生对于任意一点这一概念的理解度、接受度而言均是至关重要的.(3)几何画板具有操作性特征
在当前的技术条件支持下,几何画板应用于教育教学活动当中对于计算机硬件配置、软件设置的要求不高.几何画板的制作也比较简单,相关功能的操作与实践比较易于掌握.根据几何画板所制作的课件也比较短小、精悍,从而使得课堂教学中教师根据教学需要,对于几何画板的应用非常灵活,这对于提高几何画板的优势而言意义显著.2.初中数学教学中对几何画板的应用
(1)使抽象的数学概念变得可视、具体
在初中阶段的数学教学活动开展过程当中,存在大量的抽象概念,需要调动学生的空间想象能力.这决定了在使用传统教学方法展开教学的过程当中,学生往往难以理解,无法真正掌握.研究显示,若仍然按照传统的PPT图像显示方法展开这些知识点的教学工作,学生只有通过强化记忆的方式才能够了解概念的内涵,但在实际应用中也会出现一定的问题.以初中阶段“中心对称”知识点的教学为例,中心对称作为相当抽象的数学概念之一,要想让学生在初次接受该概念的情况下即在头脑中形成一个完整的轮廓,其难度是相当大的.因此,在教学中教师可以通过使用几何画板的方式,制作一个能够旋转的风车风轮.经过几何画板制作形成的风车风轮一出现就吸引了全班同学的注意,一些平时上课不专心的学生也对教师所制作的风车风轮产生了浓厚的兴趣.在这种直观的几何画板形象下,同学们能够根据风车风轮叶片在旋转过程当中不断重合的现象来理解“中心对称”这一知识点的概念.在教师的引导之上,还可掌握有关旋转中心、旋转角度在内的多种概念,对旋转的性质进行验证.在之后的学习中,能够根据几何画板所构建的这一形象,在脑海中对旋转的知识点进行回顾复习,达到巩固学习成果的目的.(2)使静态的数学图形变得动态、连续
在初中阶段的数学教学活动的实施过程当中,静态的图形可以通过几何画板的方式加以展现,赋予静态图形以更加丰富的内涵,在这一因素的作用之下,使相关数学问题的本质能够得到彻底的挖掘,帮助教师引导学生层层递进,揭示与数学概念相关的规律,在解决问题的同时,实现对课程的良好整合.(3)使固定的数学实验更加智能、多元
研究显示,在初中阶段数学教学活动的实施过程中,通过对几何画板智能型优势的应用,可以构建科学的数学模型.在引导学生认识相关问题的过程当中,教师对于问题、对于数学概念的构想能够以一种可视化的方式展现出来,从而使得学生在形成数学思维期间的感受更加的真实与具体.从传统意义上的“学数学”转变为“做数学”.同时,几何画板在数学教学中的应用还有助于学生形成系统化的数学框架,激发学生在研究数学问题中的创新意识与创新能力.3.结束语
几何画板与初中阶段数学教学活动的融合为学生提供了一个主动学习数学的有效平台,使学生有更多的机会去试验和探索,提出并验证自己的猜想,发现并解决问题.即有更多的机会去“做数学”,使数学学习不只是枯燥的推理和论证,从而充分调动学生的积极性,有利于学生形成全面的数学观,培养学生的辩证思维.文章重点探讨了几何画板在初中数学教学中的应用及其相关问题,希望能够引起各方特别关注与重视.【参考文献】
[1]王瑞霖,綦春霞,田世伟,等.以几何画板为作业评价学生数学理解的研究与实践[J].中国电化教育,2012(5):113-117.[2]张景中,彭翕成.三款数学教育软件的比较与设计思想分析[J].中国电化教育,2010(1):107-113.[3]聂晓颖,黄秦安.Authorware携手几何画板走入数学课堂[J].价值工程,2013(29):203-205.
第四篇:基于几何画板的初中数学教学的实践探索
基于几何画板的初中数学教学的实践探索
摘要:几何画板作为信息技术与数学教学整合的主要工具,具有灵活的绘图功能,并能对图形的几何变换进行动态演示,增强了学习的直观效果,这些教学能效在传统的笔纸环境中是难以达到的。几何画板在辅助数学教学方面的独特优势开创了教与学的新方式,有助于教师成为学生学习的引导者,有助于学生成为主动获取知识的探索者。本文结合教学案例,从数形结合、实验探究、辅助变式三方面来论述几何画板在初中数学教学中的实践运用,旨在为广大数学教师优化课堂教学提供一些借鉴或启示。
关键词:几何画板;数学教学;整合;实践
《全日制义务教育数学课程标准》指出:现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。几何画板是信息技术与数学教学整合的主要工具之一,其快捷精准的绘图、智能的几何变换、直观的动态演示等功能,为学生创造了一个探索几何图形内在关系的环境,让学生在观察、探索、发现的过程中深化对各种图形的感性认识,形成丰富的几何认知经验,促进对数学问题的深入理解和思考。几何画板为学生探索知识增添了更多的途径,同时也为教师研究教学开辟了更广的空间。在初中数学课堂教学中如何充分发挥几何画板的功能优势,优化课堂教学,成为当前新课程改革中值得探索的一个问题。下面笔者结合案例,谈一谈几何画板在初中数学教学中的实践运用。
一、揭示数形关系,优化思维品质
数(数量关系)与形(空间形式)是数学教学中的两大基本内容。数形结合思想贯穿于整个中学数学教材体系之中,它是重要的数学思想方法之一。华罗庚说过:“数缺形时少直觉,形缺数时难入微”,也就是说数与形之间相辅相成:以形助数,可以化抽象为直观;以数辅形,可以化直观为精确。在传统的数
学教学中,因受教学条件的限制,数与形很难真正地完美结合,特别是有些蕴藏在数量关系背后的几何意义很难直观地展现出来。而几何画板凭借其强大的功能优势弥补了这一不足,能化隐为显,化静为动,直观地反映数、形的同步变化,为学生提供一个探索和构建数学模型的平台,从而帮助学生优化思维品质,简化解题过程,提高学习效率。
【案例1】
有一张三角形纸片ABC,其中BC=6,∠C=90°,∠A=30°。
(1)如图1,若用这张纸片裁剪出一个矩形CDEF,使点D、E、F分别落在AC、AB、BC上,且使矩形CDEF的面积最大,则点E应选在何处?
(2)如图2,若用这张纸片裁剪出一个矩形DEFG,使点D、G分别落在AC、BC上,点E、F均在AB上,且使矩形DEFG的面积最大,则点E应选在何处?
图1
图2
对于上述题组,建立恰当的数学模型是解解决该问题的关键,而学生很难找到解题的突破口,因而退避三舍。这里运用几何画板就能有效突破难点,几何画板为学生寻求解题模型提供了便利。第(1)问中,若假设AE的长为x,则矩形CDEF的面积可表示为y=13x233x,用几何画板构造动点P(x,y),4再运用动点追踪功能,就能直观地演示当点E在线段AB上运动时,动点P的运动轨迹(如图3),帮助学生快速建立二次函数模型来解题。第(2)问中,也可以设AE的长为x,则矩形CDEF的面积可表示为
y=43x243x,类似地用几何画板直观地演示动点P(x,y)的运动轨迹(如图4)。用几何画板将数、9形之间的关系动态地展示出来,活跃了学生的思维活动,使抽象的数学知识变得生动形象,容易接受。
图3
图4
二、探究数学实验,把握问题本质
学习和研究数学不仅需要演绎、推理,也需要实验、归纳。数学实验作为一种新颖的数学研究方法,已成为中学数学学习的一种新形式。广义的数学实验是指在特定的实验条件下,实验者为了解决某个未知问题,验证某个数学猜想,获取某个数学结论,运用一定的技术手段或工具,并以数学理论和数学思想为指导,将实验对象进行数学化的处理,从而解释数学现象、理解数学内容或构建数学知识的一类数学研究活动。进行数学教学时,既要关注数学内容抽象化、形式化的一面,还要关注数学发现过程中经验化、具体化的一面,为此可以利用几何画板进行数学实验,辅助学生把握数学问题的结构特点,认清数学本质。
【案例2】
在初中数学“中点四边形”的探究活动中,教师可以运用几何画板引导学生探究中点四边形的特征,探究的过程如图5所示。
图5 “中点四边形”的探究过程
几何画板为学生进行数学实验创造了良好的条件,利用其实时度量功能,能快速地为学生提供精准的度量数据,利用其动画功能,可以动态地展示任意改变四边形形状时某些几何元素的变化情况,这有利于学生发现问题背后所隐藏的规律。教学时,先用“几何画板”课件进行演示,通过点击不同的按钮来改变四边关系6),让形何变AEB对角线相等DHGCFDHAEFBGCAEHDGCFB形的对角线的位置与数量关系(如图学生观察中点四边EFGH的形状是如化的,它与原四边
对角线互相垂直对角线相等且互相垂直(1)(2)图6
(3)
形ABCD的哪些量有关系,然后引导学生归纳出隐藏在现象背后的规律。这些实验操作既让学生体验了由特殊到一般、由一般到特殊的数学研究过程,又让学生进一步理解和掌握了四边形的有关知识。几何画板所呈现的丰富的动态图形,极大地开阔了学生的视野,给学生提供了更多“发现”的机会。
三、辅助变式教学,提升课堂效率
变式教学是促进数学学习的一种有效的教学方式,长期以来被数学教师广泛地用于教学之中。在现代信息技术不断发展的背景下,重新审视数学变式教学,对培养学生的创新思维能力有着深远的意义。几何画板所具有的图形动画处理、几何变换、自动推理、符号计算等功能,为数学变式教学创造了一个简易、快捷的智能操作平台。在数学变式教学中,利用几何画板从不同层次、不同角度、不同途径、不同背景这四方面变更数学对象的内容或形式,引导学生从变化的现象中抓住不变的本质,从不变的本质中探索变化的规律,让学生经历数学知识的发生、发展及形成的过程,强化对知识结构的认识,增加思维活动的经验,提高分析问题和解决问题的技能。
【案例3】
如图7,已知∠AOB=90°,P 为∠AOB的角平分线上一点,PC交AO于N,PD交BO于M。若∠PNO=∠PMO=90°,则利用角平分线的性质易证:PM=PN。
变式1:如图8,若保持∠CPD=90°不变,将∠CPD绕点P旋转,则PM与PN仍相等吗?
变式2:如图9,若将题目背景改为P为等腰直角三角形斜边AB的中点,∠CPD绕点P旋转,并保持∠CPD=90°不变,则PM与PN仍相等吗?
变式3:如图10,若将已知条件“∠AOB=90°”改为“∠AOB=(0180)”,条件“∠PNO=∠PMO=90°”改为“∠PNO+∠PMO=180°”,其它条件不变,结论还成立吗?
图7 图8 图9 图10
变式4:如图11-13,P为正多边形的中心,仍保持∠PNO+∠PMO=180°,其它条件不变,结论还成立吗?
图11
图12
图13
图14
在初中阶段存在一些典型的几何变换问题,由于传统的变式教学无法直观、形象地演示图形的变化过
程,使得学生的认知不能深入到问题的内部本质,此时可借助几何画板的几何变换、动画等功能,将几何图形因条件改变而变化的过程从不同角度呈现出来。尽管图形的部分条件发生变化,但解题思路依然没变,上述变式题组的基本模型如图14所示,其中一个直角三角形是由另一个直角三角形经过旋转而得到。利用几何画板的复制和动态模拟功能,可以从复杂图形中分离出基本模型,并使其与原图形保持同步变化,这样有助于学生认识图形,学会从基本模型入手寻找解题的突破口,从而收到触类旁通、举一反三的效果。
数学教学中合理地整合几何画板,能让学生真正参与问题的解决过程,体验知识的形成过程,构建清晰的认知结构,深刻地理解和掌握数学知识。几何画板丰富了教学的手段,给数学教学注入了新的活力,使得在传统的笔纸环境中无法开展的数学探究活动能真正开展起来,更重要的是它使抽象、枯燥的数学变得直观、形象,激发了学生的学习兴趣,有助于学生从传统的被动式学习向主动式学习转换。但值得注意的是,教学中不能用几何画板完全代替教师的板书和学生的思维训练,几何画板只能视为辅助教师解决教学难点问题、提高教学效率、辅助学生思维的工具。随着课程改革的不断推进,日新月异的信息技术必然会促进数学课堂教学模式的变化。如何在教学中恰到好处地运用几何画板,更好地优化数学课堂教学,仍需要教育工作者不断地去探索。
参考文献:
[1] 中华人民共和国教育部.全日制义务教育数学课程标准(2011年版)[S].北京:北京师范大学出版社,2012.
[2] G·波利亚.怎样解题——数学教学法的新面貌[M].上海:上海科技教育出版社,2002. [3] 鲍建生,黄金荣,易凌峰,顾冷沅.变式教学研究(续)[J].数学教学,2003,(2):6-10. [4] 陶维林.几何画板实用范例教程[M].北京:清华大学出版社,2011.
第五篇:基于几何画板的初中数学教学的实践探索
基于几何画板的初中数学教学的实践探索
摘要:几何画板作为信息技术与数学教学整合的主要工具,具有灵活的绘图功能,并能对图形的几何变换进行动态演示,增强了学习的直观效果,这些教学能效在传统的笔纸环境中是难以达到的。几何画板在辅助数学教学方面的独特优势开创了教与学的新方式,有助于教师成为学生学习的引导者,有助于学生成为主动获取知识的探索者。本文结合教学案例,从数形结合、实验探究、辅助变式三方面来论述几何画板在初中数学教学中的实践运用,旨在为广大数学教师优化课堂教学提供一些借鉴或启示。
关键词:几何画板;数学教学;整合;实践
《全日制义务教育数学课程标准》指出:现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。几何画板是信息技术与数学教学整合的主要工具之一,其快捷精准的绘图、智能的几何变换、直观的动态演示等功能,为学生创造了一个探索几何图形内在关系的环境,让学生在观察、探索、发现的过程中深化对各种图形的感性认识,形成丰富的几何认知经验,促进对数学问题的深入理解和思考。几何画板为学生探索知识增添了更多的途径,同时也为教师研究教学开辟了更广的空间。在初中数学课堂教学中如何充分发挥几何画板的功能优势,优化课堂教学,成为当前新课程改革中值得探索的一个问题。下面笔者结合案例,谈一谈几何画板在初中数学教学中的实践运用。
一、揭示数形关系,优化思维品质
数(数量关系)与形(空间形式)是数学教学中的两大基本内容。数形结合思想贯穿于整个中学数学教材体系之中,它是重要的数学思想方法之一。华罗庚说过:“数缺形时少直觉,形缺数时难入微”,也就是说数与形之间相辅相成:以形助数,可以化抽象为直观;以数辅形,可以化直观为精确。在传统的数学教学中,因受教学条件的限制,数与形很难真正地完美结合,特别是有些蕴藏在数量关系背后的几何意义很难直观地展现出来。而几何画板凭借其强大的功能优势弥补了这一不足,能化隐为显,化静为动,直观地反映数、形的同步变化,为学生提供一个探索和构建数学模型的平台,从而帮助学生优化思维品质,简化解题过程,提高学习效率。
【案例1】
有一张三角形纸片ABC,其中BC=6,∠C=90°,∠A=30°。
(1)如图1,若用这张纸片裁剪出一个矩形CDEF,使点D、E、F分别落在AC、AB、BC上,且使矩形CDEF的面积最大,则点E应选在何处?
(2)如图2,若用这张纸片裁剪出一个矩形DEFG,使点D、G分别落在AC、BC上,点E、F均在AB上,且使矩形DEFG的面积最大,则点E应选在何处?
图1
图2
对于上述题组,建立恰当的数学模型是解解决该问题的关键,而学生很难找到解题的突破口,因而退避三舍。这里运用几何画板就能有效突破难点,几何画板为学生寻求解题模型提供了便利。第(1)问中,若假设AE的长为x,则矩形CDEF的面积可表示为y=13x233x,用几何画板构造动点P(x,y),再运用动点追踪功能,就能直观地演示当点E在线段AB上4运动时,动点P的运动轨迹(如图3),帮助学生快速建立二次函数模型来解题。第(2)问中,也可以设AE的长为x,则矩
形CDEF的面积可表示为y=43x243x,类似地用几何画板直观地演示动点P(x,y)的运动轨迹(如图4)。用几何画9板将数、形之间的关系动态地展示出来,活跃了学生的思维活动,使抽象的数学知识变得生动形象,容易接受。
图3
图4
二、探究数学实验,把握问题本质
学习和研究数学不仅需要演绎、推理,也需要实验、归纳。数学实验作为一种新颖的数学研究方法,已成为中学数学学习的一种新形式。广义的数学实验是指在特定的实验条件下,实验者为了解决某个未知问题,验证某个数学猜想,获取某个数学结论,运用一定的技术手段或工具,并以数学理论和数学思想为指导,将实验对象进行数学化的处理,从而解释数学现象、理解数学内容或构建数学知识的一类数学研究活动。进行数学教学时,既要关注数学内容抽象化、形式化的一面,还要关注数学发现过程中经验化、具体化的一面,为此可以利用几何画板进行数学实验,辅助学生把握数学问题的结构特点,认清数学本质。
【案例2】
在初中数学“中点四边形”的探究活动中,教师可以运用几何画板引导学生探究中点四边形的特征,探究的过程如图5所示。
图5 “中点四边形”的探究过程
HDGCEB对角线相等DHAEFBGCAEHD几何画板为学生进行数学实验创造
GCFB了良速地画功状时(1)AF好的条件,利用其实时度量功能,能快为学生提供精准的度量数据,利用其动能,可以动态地展示任意改变四边形形某些几何元素的变化情况,这有利于学
对角线互相垂直对角线相等且互相垂直(2)图6
(3)
生发现问题背后所隐藏的规律。教学时,先用“几何画板”课件进行演示,通过点击不同的按钮来改变四边形的对角线的位置关系与数量关系(如图6),让学生观察中点四边形EFGH的形状是如何变化的,它与原四边形ABCD的哪些量有关系,然后引导学生归纳出隐藏在现象背后的规律。这些实验操作既让学生体验了由特殊到一般、由一般到特殊的数学研究过程,又让学生进一步理解和掌握了四边形的有关知识。几何画板所呈现的丰富的动态图形,极大地开阔了学生的视野,给学生提供了更多“发现”的机会。
三、辅助变式教学,提升课堂效率
变式教学是促进数学学习的一种有效的教学方式,长期以来被数学教师广泛地用于教学之中。在现代信息技术不断发展的背景下,重新审视数学变式教学,对培养学生的创新思维能力有着深远的意义。几何画板所具有的图形动画处理、几何变换、自动推理、符号计算等功能,为数学变式教学创造了一个简易、快捷的智能操作平台。在数学变式教学中,利用几何画板从不同层次、不同角度、不同途径、不同背景这四方面变更数学对象的内容或形式,引导学生从变化的现象中抓住不变的本质,从不变的本质中探索变化的规律,让学生经历数学知识的发生、发展及形成的过程,强化对知识结构的认识,增加思维活动的经验,提高分析问题和解决问题的技能。
【案例3】
如图7,已知∠AOB=90°,P 为∠AOB的角平分线上一点,PC交AO于N,PD交BO于M。若∠PNO=∠PMO=90°,则利用角平分线的性质易证:PM=PN。
变式1:如图8,若保持∠CPD=90°不变,将∠CPD绕点P旋转,则PM与PN仍相等吗?
变式2:如图9,若将题目背景改为P为等腰直角三角形斜边AB的中点,∠CPD绕点P旋转,并保持∠CPD=90°不变,则PM与PN仍相等吗?
变式3:如图10,若将已知条件“∠AOB=90°”改为“∠AOB=(0180)”,条件“∠PNO=∠PMO=90°”改为“∠PNO+∠PMO=180°”,其它条件不变,结论还成立吗?
变式11-13,P形的中心,4:如图为正多边仍保持图7 图8 图9 图10
∠PNO+∠PMO=180°,其它条件不变,结论还成立吗?
在初中阶段存在一些典型的几何变换问题,由于传统的变式教学无法直观、形象地演示图形的变化过程,使得学生的认知不能深入到问题的内部本质,此时可借助几何画板的几何变换、动画等功能,将几何图形因条件改变而变化的过程从不同角度呈现出来。尽管图形的部分条件发生变化,但解题思路依然没变,上述变式题组的基本模型如图14所示,其中一个直角三角形是由另一个直角三角形经过旋转而得到。利用几何画板的复制和动态模拟功能,可以从复杂图形中分离出基本模型,并使其与原图形保持同步变化,这样有助于学生认识图形,学会从基本模型入手寻找解题的突破口,从而收到触类旁通、举一反三的效果。
数学教学中合理地整合几何画板,能让学生真正参与问题的解决过程,体验知识的形成过程,构建清晰的认知结构,深刻地理解和掌握数学知识。几何画板丰富了教学的手段,给数学教学注入了新的活力,使得在传统的笔纸环境中无法开展的数学探究活动能真正开展起来,更重要的是它使抽象、枯燥的数学变得直观、形象,激发了学生的学习兴趣,有助于学生从传统的被动式学习向主动式学习转换。但值得注意的是,教学中不能用几何画板完全代替教师的板书和学生的思维训练,几何画板只能视为辅助教师解决教学难点问题、提高教学效率、辅助学生思维的工具。随着课程改革的不断推进,日新月异的信息技术必然会促进数学课堂教学模式的变化。如何在教学中恰到好处地运用几何画板,更好地优化数学课堂教学,仍需要教育工作者不断地去探索。
参考文献:
[1] 中华人民共和国教育部.全日制义务教育数学课程标准(2011年版)[S].北京:北京师范大学出版社,2012. [2] G·波利亚.怎样解题——数学教学法的新面貌[M].上海:上海科技教育出版社,2002. [3] 鲍建生,黄金荣,易凌峰,顾冷沅.变式教学研究(续)[J].数学教学,2003,(2):6-10. [4] 陶维林.几何画板实用范例教程[M].北京:清华大学出版社,2011.