第一篇:数学教学中的数学史教育
数学教学中的数学史教育
数学史是研究数学概念、数学方法和数学思想起源与发展、及其与社会、经济和一般文化联系的一门学科,它反映了数学发展的脉络与本质。数学史的价值表现为三个方面:数学史的历史价值,数学史的数学价值,数学史的教育价值。在新一轮中学数学课程改革中,数学史对数学教育的价值被人们所认识和应用,数学史被看成理解数学的一种途径。
在教学中,我给学生讲陈景润、华罗庚,讲孙子定理和歌德巴赫猜想等等。每每这一时刻,看着学生们一双双好奇的眼睛,我总想把自己知道的有限的东西一股脑的告诉他们。我认为,教师在课堂上结合教材内容有目的、有意识、持之以恒地对学生进行数学史的教育,对提高学生学习数学的兴趣,获得人文科学修养,培养刻苦钻研精神,拓展视野,提高学习数学的能力都大有好处。但是所占用的时间不必过长,以免影响课堂的正常教学。我是从以下几方面入手的:
1、结合数学符号谈其发展概况
数学符号主要有:数字符号(阿拉伯数字)、字母符号及运算符号。在教学过程中,我根据教材内容,对某个或某种数学符号或整个符号体系的发明创造过程进行简明扼要的阐述。如:
(1)数学符号发展的概况:古人用绳结、小石子记数——用刻在骨或竹上的符号代替结绳来记数——阿拉伯数字;古印度人和阿拉伯人对“阿拉伯数字”的发明创造起了关键作用;阿拉伯人在“印度数字”的基础上发明创造了“阿拉伯数字”。
(2)符号体系发展的概况:用象形文字来表达数学内容(文词代数时期)——用较为简单的字表达了数学内容(简字代数时期)——用特定的符号和字母表达数学内容(符号代数时期)。法国数学家韦达(1540-1603)对符号体系的引进和形成做出巨大贡献。他不仅使用和改进代数符号,还精心设计了代数符号,力图使其成为一个体系。但他并没有完成这个体系,直到11世纪末,经过笛卡儿、莱布尼兹等伟大数学家的不懈努力,符号体系才趋于完成。当然,随着数学知识的扩充,人们在不断地丰富它的“词汇”。
数学符号组成的数学语言能够代替文字的叙述,表达高度抽象的数学材料,准确、深刻表达概念、方法和逻辑关系。
2、结合发明创造的命名谈数学家的伟大成就
每一个发明创造过程都是一部数学发展史,无不包含着数学家对数学刻苦钻研、勇于探索,并为之奋斗终身的精神;无不包含着数学家对数学发展所起的巨大推动作用。它们就像一座座丰碑屹立在历史的长河之中。
在教学过程中,我根据教材中的“韦达定理”、“杨辉三角”、“笛卡儿直角坐标系”等介绍数学家的简历、时代背景、重大成就及历史意义。
如笛卡儿是法国数学家、物理学家、哲学家。笛卡儿直角坐标系的创立实现了代数与几何结合的问题。笛卡儿在1637年发表的《几何学》是历史上最伟大的数学著作之一,它带来了数学观念的革命。笛卡儿的名言:“给我物质和运动,我将为你们构造出宇宙来”。笛卡儿用运动的观点,把曲线看成为点的运动的轨迹,不仅建立了点与实数对的对应关系,而且把“形”(包括点、线、面)和“数”(包括数、式、方程及函数)两个对立的对象统一起来,建立了曲线和方程的对应关系。它不仅是函数概念的萌芽,而且表明变数进入了数学。因而,笛卡儿《几何学》的发表,使数学在思想上发生了伟大的转折——由常量数学进入了变量数学时期。对此,恩格斯给予了高度的评价:“数学中的转折是笛卡儿的变数,有了变数,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微积分也就立刻成为必要的了。”
3、结合某一体系谈其发展概况
数学每一体系的形成都经历了漫长的历史时期,其间的每一项成就都是以无数次的挫折和失败为代价。在教学过程中,可根据教材中的数的理论体系、解析几何的理论体系的形成等谈其发展概况。
如数的发展概况:自然数——整数——有理数——无理数——实数——复数。原始人在分配猎取食物和制造打猎武器时,总要先“数一数”和“量一量”,然后进行分配,在“数一数”和“量一量”的亿万次的实践中,便逐步形成数的概念,同时慢慢地产生了自然数。在分配食物和度量过程中,常有分不完和量不尽地情况,但仍然需要继续分和更精确地量下去,为了解决这些矛盾,于是就产生了分数。随着生产的发展,又产生了负数,从而产生了有理数。后来,在计算直角边长为1的直角三角形斜边的长时,又产生了无理数。有理数和无理数统称为实数。由于解方程的需要又产生了虚数,虚数和实数统称为复数,从而建立了数的理论体系。自然数、整数、有理数、实数和复数环环相扣,紧紧相连,在数学教学中,如能将其因果关系阐述清楚,对培养学生发展变化的观点是非常有利的。
对学生进行数学史的教育还有其它的方法,如可利用墙报和数学园地等途径。我一直在思考如何对学生进行数学史教学这一问题,使之更有效的服务于课堂教学。但是,无论怎样都不能急于求成。毕竟,我们还处在逐渐摸索的阶段,就像人们对史的认识一样,是一个逐步推进的过程,数学史的教学也不例外。
数学教学中的数学史教育
李 世 艳
第二篇:数学史与数学教育
第三节 数学史与数学教育
数学是历史地形成的。只有懂得历史,才能深刻理解数学。法国伟大的数 学家亨利·庞加莱曾说: “如果我们想要预测数学的未来,那么适当的途径是研究这门学科的历史和现状。”近几年来,我国数学教育改革中,强调数学的文化价值,致使数学史知识得到广泛的关注。《高中数学课程标准》把“数学史选讲”作为一门选修课加以开设,进一步推动数学史和数学教学的融合。
一、数学史对数学教育的作用
经过几十年的不懈努力,在数学教学中使用数学史,现在已经相当普及。各种教材都有关于数学史的材料。数学史对数学教育的作用主要有以下四个方面。
第一、帮助理解数学。
数学家发现数学的时候,是火热地思考着的。一旦研究完毕,呈现在我们面 前的则是冰冷的美丽形式。教师的工作是要揭开这层形式化外衣来显现数学本质,让学生体会到数学的内涵。
当然,完成这项工作有许多途径,应该说所有这些途径都属于教学方法范畴之内。但从数学历史的角度来把握数学本质也是其中的一种有效的途径。正如医生给病人看病,询问病人的病史是一个不可或缺的环节一样,理解数学也要知道它的发生、变化和发展的历史全过程,才能透析出隐藏于其中的数学内涵。
一个明显的例子是古希腊的演绎几何。为什么古希腊人要用公理化方法展开数学?他们所处的时代背景如何?中国古代数学的特点和古希腊数学的特征有何不同?弄清这些问题,对学生理解古希腊的演绎几何学,体会其中的理性精神和人文主义价值十分重要。
再如,西周时期的商高在解释勾股定理的来源时,提到“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”其中明确地指出“矩”是一个最为根本的数学概念,它可以产生“方”(正方形),进一步可以产生与圆有关的数学知识(古代有“环矩以为圆”的说法),所以他认为只要对“矩”加以不同方式的变形(即折矩)就能衍生出新的数学关系(如勾股定理)。这是一个把握中国古代数学思想的典型例子。因此,如若我们经常仔细品思这些数学历史素材,则定会“遂悟其意”,进而更为深刻地理解数学本质,形成全面、正确的数学观。
第二、提高数学的宏观认识。
数学教师的任务不仅要把书本上的东西说清楚,还要对数学发展的来龙去脉有清楚的认识。一个优秀的教师,不仅要授人以业,还要授人以法,进而授人以道。教师要掌握这些“法”和“道”,必须宏观地理清数学发展的脉络,深入数学的本质。对于进行数学创新来说,数学史研究更具有指引的作用。数学史中记载了许多数学家发明发现的生动过程,向学生介绍这些过程,有助于学生理解掌握创造的方法、技巧,从而增强其创造力。如公元263年,刘徽对我国古籍《九章算术》的注释中提出了计算圆周长的“割圆”思想,刘徽本人精辟的论述: “割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣!”这些生动的描写,对后人是一种创新激励。
第三、数学史能够为数学教学设计提供一定的指导
数学历史可以把古人的思维与现今学生的思维作一番比较,共通的规律是什么?不同的特点又是什么?进而帮助设计数学教学。
例如,商高对矩形加以折叠(或者分割),叫做折矩(或者割矩),即把矩形沿对角线分割。然后“环而共盘”,叫做拼盘。如此一割一拼,不仅道出了复杂(直角三角形边的关系)源于简单(矩形)的深刻道理,同时给出了勾股定理的一个巧妙而简洁的证明。
上述方法可直接用于勾股定理的教学,更重要的是其中蕴涵的思想(如简单与复杂的辨证关系,追求简洁的表达形式,讲究策略与方法等)对数学教学具有重要的启示意义。
第四、数学历史能够凸现数学的文化价值
数学教材内容中的一个数学定理,或一个数学公式,其背后就是一位人物、一种思想、一种品格或一种精神。前者是静态的,是“冰冷的美丽”,后者是活 2 生生的,是“火热的思考”。但要想透过“冰冷的美丽”,看到“火热的思考”背后的精神动态,数学历史便是最好的选择。笛卡儿主张“我思故我在”,打破欧氏几何的局限,创立解析几何的故事; 欧拉著作等身,勤奋创作的精神,费马创立微分学思想、研究概率论、提出数论中的“费马大定理”,到300年后才完满解决。这些绚丽多彩历史故事,永远是激励后人进行数学创新的动力。
我们常说,读历史其实就是读人物,就是读人物的内心世界,品人物的人格 魅力和精神风范。一个数学历史人物的事迹也许会让某一个人因此而喜欢上了数学,甚至走上了探索数学奥秘之路。充分介绍中国现代数学家的贡献,激励意义更为直接。华罗庚、陈景润、苏步青等名家的事迹对青少年是很大的鼓舞。此外对当代世界数学有重大贡献的华裔数学大师陈省身等的名字也应该在中学数学课程中出现。感人至深的包头五中物理教师陆家羲的数学献身精神,同样是进行思想教育的良好材料。当我们品味出数学之中人文精神的底蕴,触摸到数学历史人物的情感、操行、思想和精神,并与之在思想上、精神上进行交流与汇合的时候,将会感召我们的心灵、激励我们的行动。此时,学生的人文感怀也就油然而生。
二、培养数学历史素养的途径
要想实现数学历史的数学教育价值,挖掘数学历史的数学教育功能,首先要提高教学设计者的数学历史素养,能够从简约的数学史叙述中看到其中的科学价值与人文精神。
首先,数学史要宏观把握。常常看到一些教材中的数学史介绍,只是提供 一位数学家的画像,配以简历,说明做了“伟大”贡献就结束。这就太潦草了。宏观地把握各个时代的文化特征,才能起到教育作用。以勾股定理来说,如果仅仅了解它是什么时候发现的,由谁发现的,在中国叫商高定理,而在西方叫毕达哥拉斯定理等等,那就只看到了一些皮毛。只有进行东西方数学文化的比较,看到古人的思考过程和理性精神,那才能感染学生。
其次,数学史知识要运用细节。
运用数学史知识进行数学教学,如能关注数学历史发展中的细微之处,往往可以探得数学文化之精妙。例如,勾股定理为什么曾经又被称为陈子定理呢?因为《周髀算经》记载了陈子用勾股定理推算地球与太阳的距离以及太阳的直径。3 这就表明中国古代数学文化的一大特色是追求实用价值。数学教学应该继续发扬这种精神,但是也要防止以实用为唯一追求的狭隘做法。
又如,“勾广三,股修四,径隅五”(或“勾三,股四,弦五”),反映了中国古代数学形式化、符号化进程缓慢的特点。相比于古希腊,毕达哥拉斯虽然也是从古埃及的“黄金三角形”(即边长分别为3,4,5或6,8,10的直角三角形)发现勾股定理的,但很快过度到符号化的一般表示。此外,毕达哥拉斯也可能是受启于古巴比伦的勾股数(即一组可以构成直角三角形三边的数,现在我们也称勾股数3,4,5为毕氏三数)。从3,4,5到勾股数是一个重要的数学进展。
再次,数学史知识要适当引申。数学是一种文明,要从数学历史中获得联系性的启示,融会贯通,才能充分发挥教育效能。
仍以勾股定理为例,要从早先的勾股定理,延伸到刘徽、赵爽的“勾股术”并引申到费尔马大定理;既要看到商高的证明,也要看到刘徽的证明,还要看到欧几里得的证明以及美国总统加菲尔德对勾股定理的多种证明;既要看到“环而共盘”,又要看2002年第24届国际数学家大会的会标图案;既要看到“a2b2c2”,又要看人们预想的太空语言的表达方式等等。
三、数学史教育的原则
数学史教育应遵循以下四个原则:科学性、实用性、趣味性、广泛性。第一、科学性是第一位的原则。教师向学生传授的数学史知识必须是正确的。我们应该尊重历史,尊重事实,既不可随意编造,也不能无端拔高,更不可艺术加工,把数学史当作故事,随意虚构。特别在讲授中国的数学史时,实事求是更能激发民族自尊心和爱国主义热情。
第二、实用性是指所讲的数学史对学生的数学学习及将来工作有直接帮助作用。限于时间、授课计划,应有所侧重,例如初等数学中的数的起源与记法、无理数的导入与确立、圆周率、勾股定理、笛卡尔对直角坐标系的贡献等,高等数学中的微积分的概念、函数的概念、非欧几何的创立,不仅史料丰富,而且内容精彩,非常适合于课堂教学,对学生理解所学的知识有很大的帮助。
第三、趣味性指课堂教学要有趣味。题材的典型,情节的生动,发展的曲折,数学史上惊心动魄,引人入胜的例子不胜枚举,教者应恰当选材,能使课堂教学娓娓动听。讲授时要合理地运用语言,全身心地投入表达,语调同情节配合,知 识性与趣味性共生,应避免照本宣科或哗众取宠,要寓教于乐,以教为本。
第四、广泛性是指选取的数学史知识要不分年代、国家。数学是几千年来全人类孜孜以求、不断探索、历尽千辛万苦共同取得的财富。在整个数学科学发展长河中,数学是在人类社会变革推动之下,各国数学家相互交流,学习共同探索的结果。因此在进行数学史教学时注意选择不同时期、不同国度的史料,不能仅局限于中国的数学史。这样才能全面地、真正地、准确地展示数学史的全貌。
四、数学历史与数学教育结合中的一些注意问题
从目前来看,数学历史与数学教育相结合的实践过程,确实发生了一些可喜的变化,但存在的问题依然不少。以下是几个应注意的问题:
首先,数学历史与数学教育要在深层次结合,避免表面化。例如,只提及历史上有那么个人,有那么回事,没有切入到更深层次的联系界面中,因而不能发挥数学历史的启示和引导作用。
其次,数学历史与教学内容要融合,不要割裂。这就是说,不要介绍一段数学历史,然后接着讲课程内容,前后没有任何联系,不作任何衔接,给人一种断裂感,学生在思想上不能得到启发。
再次,运用数学史知识要客观,不要片面拔高。例如,对于到底是商高定理出现早,还是毕达哥拉斯定理出现早的问题,应该根据史实客观地叙说,多一些谦逊的态度、欣赏的目光,不要带有狭隘的民族主义情绪。
事实上,在勾股定理的发现上中国人是否走到了前面至今没有定论。目前比较倾向于古巴比伦的勾股数为勾股定理的最早原形。至少是知道勾股数的时间,比起我国公元前1000年的《周髀算经》中描述的勾股定理要早几百年的时间。
最后,数学史用于教育,要把爱国主义和国际意识统一起来,不要局限于发现的迟早。数学是全人类的共同财富。在科学发现上,各个国家和各个民族应该彼此借鉴,互相学习,共同提高。不能以己之长,说人之短,借以提高自己的信心。相反,要实行拿来主义,把外国的一切优秀文化,包括数学成就都充分尊重,吸收过来。“洋为中用”,为中国的建设服务,这是爱国主义的精粹。我们注意到,许多国家的数学教学大纲中,并没有直接提到“爱国主义”的字样,但是他们强调联系现实生活,努力吸收世界上的一切优秀数学成果,为发展本国科 5 学事业服务,实际上也是爱国主义教育。数学上的成就不能只论迟早,不可用比别人早多少年作为衡量数学成就的标准。
人类的数学文明最早起源于巴比仑,其次是埃及。巴比伦的泥板、埃及的纸 草书上的数学记载都在公元前1000年以上。即便是后来的古希腊的数学文明 也远早于中国。中国古代数学虽然出现得比地中海文明要迟许多,但是具有自 己的特点,同样为人类作出了重要贡献。我国著名数学家,2001年获得首届国家最高科学奖的吴文俊教授,曾经十分深刻地指出,中国古代数学的优秀传统是“算法数学”。中国算学虽然缺乏古希腊式的公理化演绎体系,却十分准确地用算法的形式表达出来。1970年代,吴文俊教授从研究中国古算受到启发,并结合现代计算机技术进行思考,发展出了世界领先的“数学定理机器证明”方法(世称“吴方法”)。这样的古为今用,才是真正的爱国主义,才能真正激发起民族自豪感。
如何运用数学史进行数学教学,是一个国际数学教育界共同关心的问题。1998年,国际数学教育委员会在法国马赛组织了一次“数学史与数学教育”的专题研讨会①。这次会议的主题是数学文化,要求数学教学充分反映数学的文化底蕴,从课程内容,概念形成,证明方法,习题配置等各个方面,全方位地使数学史融入、丰富和促进数学教学。
总之,数学史不是竞赛场,仅仅记录“胜者为王”。数学文化观念下的数学 史,要把握各民族文化发展的历史进程,看到世界各国的科学技术是如何各自发 展,又如何彼此融合,互相促进的。
思考与练习
1.试举例说明数学史对数学教育的价值。
2.怎样认识数学史教育中爱国主义和国际视野之间的关系。
3. 进一步阅读有关吴文俊研究中国古代数学史,并做出机器证明创新工作的文献。
第三篇:高中数学教学中的数学史教育
高中数学教学中的数学史教育 新课标有关数学史教育的要求
在以前的数学课程改革中,尽管也取得了一些成就,但是也存在好多弊端。比如只注重知识的传授,为应试教育而提高学生的解题能力,从而使学生慢慢的对数学失去了兴趣,感觉数学就是单纯的公式计算或证明,有的甚至对数学产生了畏惧。在进行应试教育的同时,忽略了学生的各方面的素质和能力的发展。针对这一问题,教育部进行了新一轮的课程改革,要让人们知道到作为教育组成部分的数学教育,并不是枯燥的,在提高学生的解题能力的同时也要发展和完善人们的能力和素质。新课程的改革主旨就是提高学生的数学素养和整体素质,以满足个人的发展和社会进步的需要。在新课程的理念下,作为数学文化的载体——数学史充当了一个重要的教育角色,在《普通高中数学课程标准》的课程基本理念中要求要体现数学的文化价值,提出“数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展的作用,逐步形成正确的数学观。”新课程标准在《内容标准》的必修内容的要求中也多次提到渗透数学史教育,例如在函数的教学中,要求通过阅读材料,了解对数的发现历史以及对简化运算的作用;在算法初步中,要求通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献等等。并把数学史选讲作为一个选修课内容的一个系列。其实,在新的数学教材中有很丰富的数学史料,通过这些知识的学习,可以让学生了解数学的发展历程,认识到数学家对真理的热爱和追求,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。进而培养学生正确的人生观、世界观、价值观,也增强学生对实际问题勇于探索的意识,培养他们的艰苦学习和创新的精神。数学史在数学教育中的作用
2.1 更好的理解数学,树立正确的数学观 数学本身是一个历史的概念,数学知识是随着人类知识的丰富而不断的深入变化的,要真正的理解数学就要弄清数学的起源、发展。通过数学史的学习学生能知道定理和概念的由来,以便更好的理解和学习数学知识。著名数学家外尔认为:“如果不知道远溯古希腊各代前辈所建立和发展的概念、方法和结果,我们就不可能理解近50年来数学的目标。”对于一些抽象概念的理解,只有给学生讲清楚其来龙去脉才能加深他们对知识的理解和记忆。例如无理数是由于度量问题而产生的,它的发现导致几何学在一定时期内独立于算术发展;对极大、极小问题、曲线长等问题的研究,直接促使牛顿、莱布尼茨发明微积分。微积分产生后,出现了许多分支,如常微分方程、偏微分方程。在讲解这些数学知识形成的过程中,也使学生开阔了视野,让他们认识到数学与人类生活的密切联系和对人类历史发展的作用,体验数学活动充满着探索和创造的乐趣,感受数学的严谨性和结论的确定性,使他们感到数学并不是一门枯燥的学科,而是一门生动有趣的学科。从而形成正确的数学观。
2.2 激发学生学习兴趣,培养学生创新精神 在学习过程中“兴趣”是最好的老师,是学习动机中最现实最活跃的成分,学生一旦形成学习数学的兴趣,他们对数学知识会牢牢的记住,同时产生愉快、满足和欢喜的学习情感态度,推动学生进行主动的数学学习活动。通过讲解数学家的坚持不懈的探索创造过程,会使学生产生对学习的热情,让他们了解了数学家的经过好多次证明、推理或一次次的实验才得出结论,可以激发他们的学习兴趣,并再现数学家们的思维过程,让学生了解他们的思维的途径,成功的经验及失败的教训,加以内化,从而培养他们强烈的数学意识,掌握一定的数学思维的方法和技巧,培养学生象当初数学家发现定理那样发现问题、探索和解决问题的志趣,形成发现知识的能力,培养学生的创新精神。
2.3 培养学生坚强的意志,形成正确的情感态度 在数学史中有很多数学家勇于克服困难,坚持真理的事例。例如俄国数学家罗巴契夫斯基在他的非欧几何不被理解时毫不气馁,坚持研究新几何学,为新几何学能被人们理解和承认奋斗不息;大数学家欧拉双目失明后仍坚持心算,并且写出许多著作;阿基米德在罗马侵略者闯进家门时还在专心研究数学;俄国女数学家柯瓦列夫斯卡娅在当时社会歧视妇女的环境中,仍能潜心研究数学;我国数学家华罗庚在有残疾的情况下靠自学在数学领域取得了令人瞩目的成绩。数学家们的这些事迹能深深地感染学生,培养学生勇于战胜困难的意志,对学生树立正确的人生观、价值观有很大的作用。通过学习我国古代数学家的发明对世界数学发展的贡献,可以培养学生爱国主义情操,也能使学生感觉到合作的重要性,建立团结协作的师生情意和同学关系。数学史教育的基本方略
3.1 结合教材,进行渗透 为了发挥数学史的教育作用,体现数学的文化价值,现在数学史已经作为阅读材料被写入中学教材。但是,目前教师中普遍存在不重视数学史教育的现象,认为用讲数学史的时间还不如多讲些习题,其实这是一种急功近利的行为。而为了达到好的教学效果,培养学生的数学思想,数学教学本身就应渗透数学史教育,并且二者必须同步进行,协调一致,做到相互促进,相互渗透。教学中不能为学数学史而学习数学史。数学史要走进课堂,真正成为数学教学的一部分,就必须与学生所关心的学科内容有机结合起来,适应课堂教学的实际情况,抓住中心,突出重点,把握时机和分寸,亦不可喧宾夺主,本末倒置。在教材中对一些定理或概念应结合数学史恰当的进行讲解,以增加学生对知识的理解能力。对阅读材料也可以详细的讲解,有利于学生完整地、系统地掌握知识。在教学中也可以结合知识讲解数学家的发明故事,激发学生学习兴趣,通过让学生体验数学家探索真理的过程,培养科学探索精神, 通过再现数学家思维创造的过程,培养学生解决问题的能力和创新精神。
3.2 课内外相结合与开设专题报告 在数学史教学的过程中,可能好多老师都有这样的困惑,学生有强烈渴望了解数学史的愿望,但是,在课堂上穿插讲解的又不能很多,毕竟课堂的时间不是很多。其实,这个时候老师可以对一些数学史内容有所提及,然后留给学生在课外搜查这些资料,在下节课上课前和学生进行探讨。学生在自己查阅数学史资料时,也会对数学的发展有比较好的认识,从而扩大了他们的知识面,让他们看到数学的每一个定理和概念都不是简单的由来,会刺激他们对未知知识领域的好奇心,同时经过了查阅资料也树立了他们正确的人生价值观和态度;也可以在课外时间开设专门的讲座,学生从这些讲座中认识到数学家是在怎样的历史条件下,通过什么方法,提出过哪些大胆设想,克服过哪些困难险阻,最后才创建新的学说、理论或取得成果。在讲述过程中可以结合目前所学的知识,不仅对新知识进行了巩固,也提高学生学习的兴趣。讲座的内容和形式也是多种多样的,可以结合多媒体增加趣味性,也可以让学生共同探讨。内容可以是一个定理或概念的由来,也可以介绍数学家的故事,通过这些故事让学生明白发明创造都必须付出辛勤的汗水和劳动。
3.3 利用习题进行数学史教育 当我们进行解题时,老师可以根据适当的内容结合数学史进行教学,不仅提高学生的注意力,同时也进行了数学史的渗透。比如当讲尺规作图的题目时,可以给学生引申几何作图的由来,告诉他们几何作图是从实践中发展起来的一种数学方法。早在古埃及用绳子进行测量测定地界的方法被认为是几何学的起源之一。最早将几何作图规范化的是古希腊的数学家。在解题过程中也激发了学生对科学的追求和信仰,同时有联系了实际。让他们知道数学的发展是和生活密切相联系的,培养了学生的人文主义精神。数学史是数学教学的重要内容,也是培养数学能力和实施数学素质教育的重要知识工具。数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文明的重要力量,数学史介入教育,有助于把数学的“学术形态”转化为“教育形态”。通过数学文化的载体——数学史的学习,学生能认识到数学对人类文明的发展的重要性,深入了解数学发展的规律性,树立正确的数学观;激发勇于探索问题意识和创新的精神,形成良好的情感和态度;提高学习数学的兴趣。学习数学史是以“素质教育”为目标的数学教育的内在要求,它对于培养学生的人文主义精神以及数学观念、数学能力、数学整体意识有特殊意义。所以教师在教学中应该注意发挥数学史的现代教育价值,在教学过程中渗透数学史对学生的学习有着至关重要的作用。
在高科技迅猛发展的信息时代,数学显的越来越重要,但“数学”在人们心中是一个什么样的形象呢?好多人都认为数学是一个非常的枯燥的学科。而同样作为理科的物理,却往往给人是一种兴趣的学科。究其原因,我们不难发现,物理学中好多定理公式都有其由来,物理学家的发现定理的过程深深的吸引每一个学生去学习;更甚之,一些物理学家的名字被用做物理单位。如果在学习的过程中只有简单的记忆和推理,连一个定理和公式的由来都不知道,怎么有兴趣去学习呢?单纯的推理和计算肯定会让人感觉到枯燥的。看来在教学过程中进行数学史教育有着至关重要的作用。在美国,早在19世纪末就有人提倡将数学史作为教学工具引入数学教学之中。美国著名数学史家、第一个数学史教授卡约黎在他的《数学史》前言中强调数学史对教学的重要价值:如果用历史回顾和历史轶事点缀枯燥的问题求解和几何证明,学生的兴趣就会大大增加。算术课上的学生乐于听巴比伦人和印度人的工作以及印度人“阿拉伯数码”的发明;他们会惊叹“经过了数千年,人们才想到把哥伦布鸡蛋——零引入数字记号”。令他们惊奇的是,发明一个他们今天一个月就能学会的记号要花费如此漫长的时间。在历史的解说中,教师可以让学生明白:数学并不是一门枯燥呆板的学科,而是一门不断有进步的学科。数学的价值与人类文明发展的历史有着不可分割的联系。在大力开展素质教育的今天,数学史教育已引起数学家和学者的极度重视,人们也认识到了数学史的重要性,数学史不仅能培养学生的爱国主义精神,也能使学生更好的理解数学,激发学生学习的兴趣,培养学生的人文素质。
第四篇:数学史在数学教育中的作用
数学史在数学教育中的作用
【摘要】在数学课堂教学中,给学生适当介绍数学史对学生的培养起到很重要的作用。数学专业的学生为例探讨了数学史对课堂教学中的作用。
【关键词】课堂教学
数学史
数学教育
【基金项目】河套学院教学研究项目(HTXYJY15006);河套学院教学研究项目(HTXYJY16001)。
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)35-0115-02
一、引言
数学史在人才培养中的作用越来越被人们所重视。通过查阅“数学史与人才培养”研究的相关文章,发现研究者较少关注数学史在人才培养中的作用,重复性研究较多;研究方法缺乏科学性;研究缺少数学史家与一线数学教师的合作;研究对象缺乏对学生认知发展的关注。许多人对数学史在人才培养中的作用缺少基本的认识和了解,认为数学史教育无足轻重。另一方面,由于绝对主义数学观的影响,数学教育中单纯强调数学的严谨性和抽象性,注重形式演绎的现象非常严重。不仅数学专业教材中缺少对数学发现过程、数学理论形成过程的探究与剖析,而且在各专业数学课堂教学上,“公理、定义、定理、证明”的逻辑展开,呈现给学生的只是已失去生动性和创造性的一些结论和严谨的、完美的推理证明过程。如果把数学仅视作一套概念体系、一种研究活动过程、一些方法、技术和结果,数学教育就只能成为一种简单的、静态的过程反映,而根本的危害是不利于创造型专业人才的培养。
二、数学史与数学教育
数学史与数学教学的关系是当今国际上数学教育研究的热点问题之一。随着国内外HPM研究的逐步深入,其理论与实践日趋完善。当前,我国正在积极推进基础教育改革,数学新课程标准也提出对数学的文化价值加以关注。义务教育数学课程标准(2011)指出:“数学文化作为教材的组成部分,应渗透在整套教材中。为此,教材可以适时地介绍有关背景知识,包括数学在自然与社会中的应用,以及数学发展史的有关材料,帮助学生了解在人类文明发展中数学的作用,激发学习数学的兴趣,感受数学家治学的严谨,欣赏数学的优美”。长期以来,我国数学教学强 调解题教学,数学史在人才培养中没有得到应有的重视,从而忽视了培养学生从整体、宏观认识数学思想体系、文化内涵和美学价值。
三、数学史与课堂教学
数学教科书舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是研究数学史在人才培养中的作用。如果在数学课堂教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。通过数学史渗透课堂,可以使数学专业的学生在接受数学专业训练的同时,获得人文科学方面的修养,其它专业的学生通过数学史的学习可以了解数学概貌。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
数学史是学习数学、认识数学的工具。人们要弄清数学概念、数学思想和方法的发展过程,增长对数学的通识,建立数学的整体意识,就必须运用数学史作为补充和指导。特别是,现代数学的体系犹如“茂密繁盛的森林”,使人“站在外面窥不见它的全貌,深入内部又可能陷身迷津”,数学史的作用就是指引方向的“路标”,给人以启迪和明鉴。
数学史与数学哲学、科学哲学、社会文化史都有密切的联系。数学与人类思想的革新,数学与其他科学技术,数学与社会进步等关系,有助于深刻理解数学的文化内涵。对于培养“学、才、识”兼备的数学专业人才有重要意义。“学、才、识”即知识、能力以及见识和思想,其中“识”更是引导知识和能力走向何方的根本性问题。如果数学教育只停留在数学理论本身的学习上,甚至对数学理论的实质也没有深入探究,学生就不可能理解依托于数学知识体系之上的数学思想和信仰,贯穿于数学研究活动中的科学精神和数学的美感及鉴赏能力,与数学的社会功能密切相关的伦理准则等数学文化的底蕴,更不会形成“才”与“识”。因此,课堂教学中融入数学史是以“素质教育”为目标的数学教育的内在要求,它对于培养学生的人文主义精神以及数学观念、数学能力、数学整体意识有特殊意义。
四、数学史与人才培养
(一)数学史在学习专业知识中的作用
专业知识与历史知识总是互补的。就是说,不仅研究、学习历史需要具备一定的专业知识,而且学习专业知识也同样需要用历史知识帮助分析和思考。著名数学家赫尔曼?外尔认为:“如果不知道远溯古希腊各代前辈所建立和发展的概念、方法和结果,我们就不可能理解近50年来数学的目标。”如果教材是根据现代数学的分科来编写,并主要是按照公理化的思想方法而不是知识的发生过程编排体系,就会使学生在学习数学知识时,常常知其然而不知其所以然,尤其会对数学概念的发展过程,定理证明的发现过程以及数?W各分支之间的联系知之甚少。因此,让学生了解各门课程的发展历史是促进各科学习的必要途径。具体地,数学史的作用可以概括为:(I)对数学给出一个整体框架,对数学有一个整体图景,能认识到各分支之间的相互关系。(II)对数学问题、概念、理论和方法的来龙去脉有一定认识。对引入它们的动机与产生的后果有所了解,以上两点使我们对于某分支在整个数学中的定位能够初步理解。(III)总结历史上的经验、教训,借鉴解决问题的各种途径、方向。(IV)对数学发展趋势有一定的估计和预测。向学生介绍一些数学家的生平或者历史上数学进展中的曲折历程,以及在教学中提供一些历史上的真实“问题”,还可以激发学生的学习兴趣,促进专业课程教学。
(二)数学史在提高数学素养中的作用
随着人类社会由工业社会向信息社会的转化,人才观以及成才观也都在发生深刻变化。社会进步对数学工作者的需求主要并不是他们能利用数学的运算去要求解答,而是借助他们能在复杂错综的境遇中,去找寻有条理的分析,有助于最后的决策,即他们的数学素养。数学素养包括知识、才能和思想三个方面,即数学科学知识、数学能力和数学思想素养。这三个方面彼此联系,层次由低到高。形成数学素养的关键是要在知识传授、才能培养以及有目的、有计划的素质教育中让学生理解数学中蕴涵的精神、思想、观念、意识等内容,并培养他们运用数学的思想和方法去处理数学问题和现实问题的意识。而数学的思想和方法、数学研究中的科学精神以及数学的美,首先是从数学的发展史中总结归纳出来的。因此,学习数学史对于深刻理解数学的内容、思想、方法、语言及其应用,对于提高数学素养,具有重要的现实意义。
(三)数学史在教师的培养中的作用
面向21世纪的基础教育改革对教师素质提出了更高的要求,使得教师培养成为一项具有深远意义的工作。虽然目前对于数学教师的素质构成还处于研究探讨之中,但可以肯定的是,数学教师与数学研究人员、工程技术人员在知识、能力以及观念、意识等方面是不尽相同的。数学教师必须认识到数学是一门有着悠久历史的科学,具有突出的文化功能,在社会中有广泛的应用,并与其他学科有密切的关系。数学教师所具备的数学科学知识应该充满着与历史、文化以及现实世界的丰富关系;数学教师不仅需要了解数学的过去,也要接触数学的现在;数学教师不仅要学习数学的科学体系,更要学习数学科学的研究方法,包括数学思维模式与数学思想方法等。数学教师还必须树立正确的数学观,因为不同的数学观会通过教学对学生产生不同的影响。
五、结论
数学史在课堂教学中使学生领会数学内容的教育价值、数学的应用、各科的联系与交叉。数学思想及数学发现的过程对于开设数学课程的学生至关重要。研究数学史在人才培养中的作用,让每一位专任教师充分认识在课堂教学中渗透数学史的重要性以及提高数学课的教学质量的重要性。从而提高教师的教学及教研水平和学生的综合素质。
参考文献:
[1]梁宗巨.世界数学通史[M].辽宁教育出版社,2001.[2]李迪.中外数学史教程[M].福建教育出版社,1993.[3]徐利治.漫谈数学学习和研究方法[M].大连理工大学出版社,1989.[4]张奠宙.数学教育经纬[M].江苏出版社,2003.[5]曲建民.谈谈数学史教学[J].长春大学学报,2006(3).[6]高夯.现代数学与中学数学[M].北京师范大学出版社,2010.[7]徐利治.数学史与数学教育的结合[J].数学教育学报,1994(5).[8]郭华明.浅谈德国大学特色教学法[J].中国地质教育,2006(3).作者简介:
李权(1978-),男,内蒙古科左中旗人,本科,讲师,研究方向:数学教学与控制论。
第五篇:数学史在数学教育中的价值
数学史在数学教育中的价值
摘要:良好数学观形成的阶梯;学习热情激发的养料;数学思想方法培养的载体;人文思想教育的参考;爱国情怀的培养
我国著名数学家和数学教育家徐利治先生认为:数学思想史向人们揭示了数学创造性思想的萌芽、成长、发展的客观历史过程,同时也反映了数学成果(一般表现为数学模式及其建构)的发现、发明、创造的动力、契机其增值发展的规律,从而将能启发年轻一代数学家们顺应客观历史规律,总结并扬弃前一代数学家的思想方法,为人类的数学文化事业做出继开来的贡献。在数学教育中,让学生接受更多的数学史方面的教育,不但可以提高学生的文化修养,激发广大学生学习数学的热情,同时又能增加学生对数学知识的理解,促进学生的学习。
1、良好数学观形成的阶梯
数学观是人们对数学的认识和看法,既关于“数学是什么?”的数学本质问题,这不仅是对数学认识的问题,也是数学教育中的一个根本性问题.从数学史上看,无论是最早讨论数学本质的古希腊哲学家柏拉图,还是关于数学基础的三大学派——逻辑主义、直觉主义和形式主义,以及关于数学知识的生成为核心的社会建构主义。如果把数学只是看成一门由数学家创造出来的纯理论的学科,凡人不必去理解其创造发现的过程,那么,数学教育就必将仅仅是纯粹的知识传授.通过在数学教学中逐步渗透数学史的知识,就可容易地理解以下结论:(1)数学不仅是一门系统化的演绎科学,而且是源于社会实践的归纳科学;(2)数学是由问题和解决问题的方法构成的有机整体;(3)数学是不断完善、广泛应用和持续发展的。
2、学习热情激发的养料
当前我国高校很多学生学习数学的动力不强,特别是我们这样的石油工科院校,有部分学生选择了数学系其实只是一种无奈,因此在学习过程中随着知识的加深,学习兴趣日益在减弱。学生的学习兴趣不高也极大地影响了数学教学的效果。但这并不是因为数学本身无趣,而是教学忽视了对学生学习兴趣的培养。美国数学家魏尔德(R.Lwilder)[1]认为:数学课堂上只强调数学的技术是不够的,要使学生被数学所吸引,一定要运用数学历史知识。也就是说,数学史素养对于一个合格的数学教师而言是不可缺的。在数学教育中适当结合数学史知识,并充分挖掘数学史在课程中的教育价7生对数学的了解和学习热情的激发。挖掘数学历史中的榜样,激励学生的学习意志,通过有意识地向学生讲解一些数学家的奋斗史和历史上优秀人物在逆境中成才的故事,可激励学生学习数学家的非凡毅力和刻苦精神,帮助他们树立正确对待挫折的观念;介绍数学发展历史中的辉煌成就,利用教学内容教育学生,可使学生增强民族自豪感和自信心,让他们产生对数学家的崇拜以及对数学的热爱,从小树立远大的奋斗目标。我觉得学校开设数学文化这门课真心不错,尤其是对于作为文科生的我来说激发了我对数学的热爱,让我不再惧怕高数。
3、数学思想方法培养的载体
数学教育的根本目的在于培养数学能力,即运用数学解决实际问
题和进行发明创造的本领,而这种能力和本领,不仅表现在对数学知识的记忆,而且更主要地反映在数学思想方法的素养.正如日本数学家米山国藏[2]曾指出:科学工作者所需要的数学知识,相对地说是不够的,而数学的精神、思想与方法却是绝对必需的,数学知识可以记忆一时,但数学思想方法却永远发挥作用,可以受益终生,是数学能力之所在。在数学学习中经常有这样的现象,很多大学生虽然能记住大量的数学公式,对教材中的诸多定义、定理也很熟悉,也做了一定量的数学习题,可是遇到一个看起来比较新颖的
题目时,还是感到束手无策,没有解题思路.其实问题的症结就在于,学生平时只知道做题,不注意其中数学的思想方法.事实上,数学的学习主要是数学思想方法的学习和掌握,培养学生解决数学问题和猜想的主要思想和方法对于培养数学创新精神有着十分重要的意义.数学能力的培养与数学问题的解答很重要的一点是引导学生学习、体会与运用数学思想方法.由于数学教材中编写的内容主要是经过严格论证的结论,而不写这些结论产生的过程,很少反映人们是怎样去想的.而数学史的学习恰恰可以弥补这方面的不足,作为一种史料,本着精确、尊重事实的态度,它详细地记载和介绍了各类数学事件以及数学定理产生的前因后果,方便于学生查阅并了解知识的来龙去脉,掌握某类数学事实或定理,更好地感受多种数学思想方法的魅力。
4、人文思想教育的参考
在传统数学教学中,数学史与爱国主义教育是密不可分的,而在利用数学史进行爱国主义教育时,往往又是言必称中国人的某项成就
比国外早多少年,其实这是把数学教育德育功能简单化了。数学是全人类的共同财富,从来不是某一个国家、民族或个人的专利,每一种文化都有自己的数学,各个国家和民族应该彼此借鉴,互相学习,共同提高。
从目前我国文理分科的现状,导致我们的教育所培养的人才已经越来越不适应当今社会自然科学与社会科学高度渗透的时代要求来看,数学史作为一门文理交叉的学科,又恰好弥补和沟通文理科方面的弱势,在人文教育方面数学史具有不可替代的作用。
例如:(1)给船制作帆布,每块帆布1000平方腕尺,帆高与宽之比为1比1.5.问帆高为多少?(1腕尺= 20英寸)(答案:25.8腕尺)
(2)一位先生劳动一天,得工钱4元,每周付伙食费8元;10周后他挣得144元;求他空闲的天数和劳动的天数.(答案:14天空闲,56天工作)
数学史的教学,既可使数学类专业的学生在接受数学专业训练的同时,获得人文科学方面的修养;也可以使文科或其它专业学生了解数学的面貌,获得理性思维方面的修养。此外,也可以使学生更好地感知到,人文教育不仅仅是由人文课程来承担的,数学课程不但能承担人文教育的作用,而且还可能起到某种特殊的作用,这种特殊作用也是不能被替代的。
5、爱国情怀的培养
数学是璀璨夺目的中国古代文化的重要组成部分,古代伟大的数
学贡献不仅是当今进行爱国注意教育的绝佳材料,而且古代数学家实事求是,敢于坚持真理、勇于攀登高峰的高尚品德,也可以激励后人振兴中华,为实现中华民族伟大复兴的而奋斗的自强精神。中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。现在的数学已经世界大同,已不可能用中国古代的方法去学习数学。不过应该给学生的数学学习作一个有益的补充,让学生在学习数学的时候能够知道,这些数学知识我们的先人都已经知晓。对中国古代数学的创造过程的了解可以使我们从前人的探索与奋斗中汲取营养,获得鼓舞,增强信心。结语: