第一篇:如何在数学教学中渗透数学史教1
如何在数学教学中渗透数学史教育
河南省焦作市武陟县实验中学
郭小利
我们的数学课堂上,常见到老师把大量时间要么用在对知识的深度、广度挖掘上,要么用在学生对知识的练习巩固上,学生对数学的认识仅仅会做题,会应用数学知识解决实际问题,而对数学知识的历史知之甚少。数学作为科学进化中不可分割的一部分,自然有着令人惊讶、令人激动、令人振奋的历史。数学史所折射出的人生哲理、数学文化与数学人文精神是任何说教无法比拟的。通过数学史的教学,有利于培养学生的爱国主义思想;有利于学生了解数学发展的规律和概况,从而帮助他们学好数学,用好数学;有利于学生形成正确的数学观念,掌握正确的数学思想和治学方法,培养他们刻苦勤奋、奋发图强的作风;有利于形成尊重客观事实的态度及独立思考的习惯;有利于激发学生对数学学习的兴趣和探究欲望。那么,如何在数学教学中渗透数学史教育呢?|
首先,教师在备课时应深入研究教材所涉及的相关数学知识,弄清其中的每个定理、公式、概念和图形等所关联的数学史知识,必要时可通过网站查找相关资料,以作好充分的知识储备工作。
其次,在深入分析数学教材知识的同时,应根据学生现有的认知水平和思维特点,找出其中的难点和重点,然后找到与其相关的数学史知识,为课堂上使用数学知识帮助学生理解新知作好准备。
另外,教师应研究新课程的教学目标,特别要研究《数学课程标准》,以制定合理的教学方法和教学过程,更好地确定新授的哪些知识需要数学史知识的帮助,哪些知识不需要数学史知识来作铺垫;确定出在课堂教学时如何给学生讲解和介绍相关的数学史知识;确定好应在什么环节上补充数学史知识的介绍等。作为教师要明确数学史知识在数学教学中只是辅助知识,只能结合新授的数学知识,在需要的时候才呈现,切忌因频繁出现而冲淡教学。并且在给学生讲解数学史知识时应力求简单通俗、言简意赅,让学生易于接受.课堂上应结合数学知识及时补充,切忌和当前所学的数学知识无关,要确保教学效果,避免喧宾夺主。
数学史知识的补充、渗透还要建立在科学、客观的基础上,应实事求是,不可随意杜撰;数学史知识的介绍还应重视课外的拓展、引伸,可引导学生自己看数学史的材料介绍,也可上网查寻或学做数学史的卡片。
从某种意义上讲,数学史的教学可成为陶冶情操、追求真理、训练心智、启迪心灵的有效手段,让学生感到数学不再“面目可憎”,让数学史的教学真正渗透到课堂,让学生在数学史的学习中理解数学、学习数学、喜欢数学、热爱数学、掌握数学,让学生在一种清新、轻松、情知并茂的体验中去探究数学,体验到数学的奇、异、妙、趣,使学生受到数学精神、思想、方法的熏陶。为新课程的实施推波助澜,真正提升数学教育的成效。
第二篇:浅谈数学史在初中数学教学中的渗透
更多资料请访问:豆丁 教育百科
浅谈数学史在初中数学教学中的渗透
镇江市丹徒区宝堰中学 212125 陈磊
摘要:在新课程理念下,我们应该加强教育教学方法的改革。数学史在初中数学教学中的渗透是数学教育的一种创新、也是提高初中数学教学质量的一个重要途径。通过渗透数学史能够培养学生正确的思维方式、增强学生的民族自豪感、激发学生学习数学的兴趣、调动学生的能动性与积极性。本文旨在结合自己的教学体会浅谈数学史在数学教学中如何渗透及其作用。
关键字:数学史 数学教学 渗透
数学史是研究数学概念、数学方法和数学思想的起源与发展及其与社会政治、经济和一般文化联系的一门科学。在数学千年漫长的发展过程中,数学史与数学教育的联姻已有很久的历史了。数学史家M·克莱因曾深刻指出:“数学史是数学的指南。”随着教育事业的不断发展,数学史越来越受到数学教育工作者的重视。在国际上,“数学史与数学教育”研究组于1976年正式成为国际数学教育委员会(ICMI)的下属组织;在国内,数学史也成为一些重点大学与师范院校的必修科目,不仅如此,中学数学新课程标准中也将数学史列为高中数学的必修内容。虽然我们初中现在还没有开设与“数学史”相关的课程,但初中数学教材和教师用书上都提涉到一些与初中数学知识点相关联的数学史知识。因而,数学史在初中数学教学中加以适当的渗透是一种必然趋势,也是提高数学教学质量的重要途径,它具有重要的作用。
一、渗透有关知识背景,培养学生正确的思维方式
数学教材很多是经过专家们千锤百炼的,语言非常的精炼简洁。为了保持知识的系统性,教学内容一般按定义,定理,证明,例题,更多资料请访问:豆丁 教育百科
练习的顺序编排,在引入时,很多也仅仅是通过生活中的一些小的实例,而对数学知识的由来背景以及创造过程介绍的很少,同时相对也失去了天然、顺理成章的感觉。从这个意义上讲,教师若只会从课本入手,则很难让学生感受数学知识由来的一系列自然的创造过程,从而影响自己的教学质量以及学生的正确思维过程。
一般来说,有关数学知识背景的数学史的渗透不仅可以给出一种正确的数学知识,还可以给出相应知识的自然的创造过程。而对这些创造过程的了解,既有利于学生对知识的理解,更能体会一种活的、真正的数学思维过程。例如:在介绍实数时,可以渗透与无理数产生背景相关的数学史,让学生领会到无理数其实是在有理数“不够用”的情况下必须定义的另一类数,也很好的体会无理数其实也就是对有理数的扩充,它和有理数一起将数域推广到实数域。在介绍函数时,也可适当的渗透些有关函数概念的起源、发展与演变的数学史。这样通过课堂上这一类知识背景的渗透,可以使学生体会到一种真正的思维过程,有利于学生对一些数学知识产生深刻的认识,了解数学知识的现实来源和应用,而不是单纯的接受教师讲授的书本知识,从而可以在这种不断学习,不断探究的过程中逐步形成正确的数学思维方式。
二、渗透祖国光辉数学史,增强学生的民族自豪感
我们伟大的祖国拥有悠久的光辉数学史,在古代,中国数学的繁荣时期最为长久,中国现当代的数学成就也很是辉煌。而现在初中数学教材里面所讲的大都是外国的数学成就,对我国在数学上的贡献及更多资料请访问:豆丁 教育百科
成就提及很少。那么我们教师在平时教学时,可结合教学内容有计划的渗透我国数学史,使教学更生动,更富有吸引力,且更能使学生很好的了解祖国数学史上的辉煌,更能对学生进行爱国主义教育,增强他们的民族自豪感。如:在讲授《勾股定理》时,可介绍《周髀算经》卷上记载西周开国时期周公与大夫就开始讨论过勾股测量,且有了勾股特例“勾广三,股修四,行隅五”,且在公元前3世纪三国时期的赵爽就证明了勾股定理。在讲解有关圆周率时,可渗透数学家刘徽在《九章算术》中有关“割圆术”的历史,刘徽早在公元3世纪就提出3.14,且一再声明:“此率尚微少”,可算是中算史上第一位建立可靠的理论来推算圆周率的数学家。另外,也可渗透一些近现代数学发展史中取得的丰硕成果。这些都可以在课堂中加以渗透,可让学生顿时产生民族自豪感,为身为中国人而骄傲!
三、多方位渗透数学史,激发学生学习数学的兴趣
古人云:“知之者不如好之者,好之者不如乐之者。”爱因斯坦也有句名言:“兴趣是最好的老师”。兴趣,对学习特别是数学学习有着神奇的内驱动作用,能变低效为高效,化无效为有效。而据报道,在日本中学生夺取国际IEA调查总分第一名的同时,发现日本中学生不喜欢数学的比例也是第一。在中国尚无全面的报道,但本人就这一问题在本校现教初二年级250名学生中进行了问卷调查,结果发现:选择“我不喜欢数学,但为了考试,我必须学好数学”的学生有161人,比例高达64.4%,而对数学“感兴趣”的只有54人,比例仅21.6%。可见学生对数学的兴趣很不高,他们认为数学枯燥乏味,抽象难懂,更多资料请访问:豆丁 教育百科
这很大程度上影响了他们对数学的学习。
其实数学本身多姿多彩,包罗万象。历史上数学与物理学,天文学,美学,哲学等都交织共生。数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。绘画使人赏心悦目,练歌能动人心弦„,但数学能给与以上的一切。”那如何让学生们领会数学的这些魅力,激发他们学习数学的兴趣呢?在数学教学中适时、恰当、多方位的渗透数学史是一个重要途径。数学史中有很多能够激发学生兴趣的史实,能够很好的将学生引入数学的丰富天地,领会数学的动人之处,从而激发学生的兴趣,继而更好地学习数学。如:黄金分割、哥德巴赫猜想、多阶幻方、巧拿火柴棒等的渗透,总能给学生以吸引,让学生感觉心旷神怡,兴趣顿浓。在讲解轴对称图形时,可让他们欣赏一些历史杰作中轴对称现象,如观赏《非洲人的设计》中的“木制卫兵雕像”、名画《委加·派尔》、中国剪纸等,从而增强对学生的吸引力,让其产生浓厚的兴趣,继而带着兴趣去学习轴对称图形,事半功倍。这样通过课堂数学史的渗透,让学生对数学产生浓厚的兴趣,对数学由“怕”转化为“爱”,从而全面提高数学乃至其他课程的教学质量。
四、渗透数学家的感人故事,学习他们的优秀品质
在数学发展的漫长历史中,涌现出一批批优秀的数学家,而这些科学家身上的故事以及他们显出的优秀品质值得我们学生们学习。数学家们或是坚持真理,不畏权威;或是坚持不懈,努力追求,很多人甚至付出毕生的努力,如:阿基米德在敌人破城而入危及生命的关头更多资料请访问:豆丁 教育百科
仍沉寂在数学研究之中,为的是“我不能留给后人一条没有证完的定理。”第一个发现无理数的希帕金斯不畏数学界传统观念的排挤,提出违背毕达哥拉斯学派的无理数,最终被抛进大海。大数学家欧拉31岁右眼失明,在视力极差的情况下,他仍以坚强的毅力继续研究,他的论文多而且长,以致他去世之后的10年内,他的论文仍在科学院的院刊上继续发表。在教学中渗透这些内容,我们相信会增强数学的吸引力,使学生对数学家们产生钦佩之情,从而学习他们身上的优秀品质,继而培养自己的优秀品质。
五、渗透数学史于课外活动,调动学生的能动性与积极性
学生在学校学习不单纯的只是课堂学习,丰富多彩的课外活动实际也是他们娱乐与学习的好方式。数学教育也是如此,在课外活动中学习有时会受到良好的效果。数学教育中数学史的渗透当然也不光光靠课堂上,课外数学史的渗透亦是多样的,精彩的,且更能调动学生的能动性与积极性。我们可以组织学生去学校图书馆阅读与数学史有关的书籍,让其交流自己的心得体会;可组织学生在课外活动中以兴趣小组的形式在班级或年级进行数学史知识竞赛;也可让学生出几期有关数学史的黑板报等。通过这样一些课外活动,可以在班级以及学校营造一种学习数学史、了解数学史的良好氛围,从而调动学生对学习数学的能动性与积极性。
以上只是从五个小方面浅谈了数学史在初中数学教学中的渗透,但数学史在数学教学中的渗透远不止这些,作用亦是深远。通过这些数学史的渗透,可以帮助学生更好的了解数学,喜欢数学,从而爱上更多资料请访问:豆丁 教育百科
数学。而在数学史的渗透中,我们必须掌握好一个“度”,切勿为了讲数学史而讲数学史,毕竟数学知识的学习才是课堂重点,要努力做到“润物细无声”般,这样的数学史的渗透必将使我们的数学教学更加精彩!
参考文献:
[1].李文林,数学史概论.高等教育出版社2002 [2].陈慧玲,浅谈数学史教学的教育功能.全国高师院校数学教育研究会 2004
第三篇:在中学数学教学中渗透数学史的教育
在中学数学教学中渗透数学史的教育
刘峰
摘要:数学史在中学数学教学中的作用是非常重要的。教师在教学过程中融入数学史的内容,可以帮助学生认识数学、形成正确的数学观;有利于培养学生正确的数学思维方式;有利于开阔学生视野,培养学生对数学的兴趣。传授数学史的一些知识也为德育教育提供了舞台。为了提高教学质量,加深学生对数学理论的认识。本文从历史和人文等角度分析了数学史在这方面的作用。通过数学名人轶事、千古名题激发学生求知欲。有助于学生更全面、深入地理解数学知识。
关键词:数学史 数学兴趣 知识框架 教育功能 数学史融入中学教学的提出 1.1 数学史融入教学的背景
数学是人类最久远的知识领域之一。从结绳记数到电子计算机的发明;从量地测天到抽象严密的公理化体系的建立,五千余年的数学历史长河中,重大数学思想方法的诞生与发展是数学史中最具魅力的题材。“数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系”。丹皮尔(W.C.Dampier)曾经说过:“再没有什么故事能比科学思想发展的故事更有魅力了。”
《普通高中数学课程标准(实验)》全面规划了新时期高中数学的课程框架,明确提出:高中数学课程对于认识数学与自然、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析问题和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。那么,高中数学的课堂教学如何适应这些新的要求,使得学生能够更充分地认识到数学的科学价值以及人文价值呢? 法国数学家庞加莱(H.Poincare)曾经提出,数学课程内容应按照数学史内容的发展顺序展现给读者。我国著名的数学家徐利治也认为,数学哲学、数学史与数学教育的结合是教育改革的一个重要方向。数学教育家华东师范大学张奠宇教授也积极倡导,让数学史成为数学教育的有机部分。既然数学史走进中学数学课堂已经成 1
为一种共识,那么,数学史又应该以怎样的面貌出现在数学课堂之上,成为教学的一个有机成分呢? 1.2 数学史对数学教育的意义
《普通高中数学课程标准(实验)》提出,高中数学课程目标应该使得学生“了解概念、结论等产生的背景、应用,体会其中所蕴含的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程;具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辨证唯物主义和历史唯物主义世界观。”而这些课程目标的达成单纯地依靠数学知识的传授学习及数学技巧的机械训练几乎难以实现,在数学课堂教学中,如果能穿插些相关的数学史,有证据表明,这对上述数学课程目标的实现具有积极的影响作用。
全面性数学课程目标的达成离不开数学史。数学课堂的教学也离不开数学史。本研究着眼于数学史走进中学课堂,力求探索其实现的具体途径。所要研究的基本问题就是,数学史应该以怎样的面貌出现在中学数学的课堂教学之中? 在本文中,所谓数学史走进中学课堂主要是指一种教学的具体途径,使得在数学课堂教学中适当地、恰如其分地渗透一些数学史的知识。比如:①在教学设计中融合一些数学史的知识;②充分利用数学教科书中有关插图、阅读自学、注释等内容,借题发挥“评述”相关的数学史知识;③开展与数学史相关的课题学习等三个方面。希望借此以提高学生数学学习的兴趣,丰富学生的数学视野,进而为学生更好地理解数学概念及结论逐步形成的过程,体验数学发现与创造的历史过程,体会蕴含其中的思想方法,提供一种“催化剂”。
1.2.1 数学教学的现实需要一些数学史
2003年对数学骨干教师作的问卷调查显示:①缺乏对数学史教育意义的深入理解。虽有教师曾经有意识的将数学史引进数学课堂,但并未充分认识到数学史深刻的数学教育价值,所写出的数学史在数学教学中的作用包括内容新颖、进行德育、有愉悦性、使课堂气氛活跃、引发学习兴趣等。②教师对数学史知识只有一些粗浅的了解;缺乏与课程内容相对应的数学史参考资料;对中国的数学家较为熟悉,对 2
国外的数学家知之甚少。③教师自觉运用数学史的意识不强。有一部分教师从未自觉地在教学中运用数学史,对教材中的阅读材料或不予理睬或安排学生自己阅读。④不知道如何运用数学史。教师普遍有使用数学史的愿望,但对数学史如何恰当的引入到数学教学中缺乏必要的认识,担心用不好会浪费时间。
1.2.2 有意义的数学教学需要一些数学史
当前数学教育还是“应试教育”主导着高中数学教学,无论是教材的编写还是具体的课堂教学,过于偏重演绎论证训练,课堂上讲的是逻辑论证,学生关注的是逻辑推理,忽视了定理发现发展过程,“掐头去尾烧中段”的教学方式依然盛行,这对培养学生的创新意识是极为不利的。
学校评价老师的标准是学生的考分,社会评价学校的标准是升学率的高低,导致教师的教学针对的是考试而不是学生数学素养的提升,针对评分标准过分强调得分细节,在教学中常常是只见树木不见森林;细节多,思想少,见不到本质;重视知识的学习和技能的培养,忽视情感态度方面的发展。
偶然的背后有着必然的联系,中国数学教育在优异成绩的背后存在着不和谐的一面,改变这种情形,除了要改革现行的教育评价体制外,教材的编写和教师教学观念的转变也是关键因素,而在教材编写和课堂教学中渗透数学史,引导学生关注数学概念、数学思想的发生发展过程,重视双基的同时关注学生情感态度的发展是改变当前数学教学现状的有效途径之一。
1.2.3 数学史走进中学课堂的价值
数学史的研究有三重目的:一是为历史而历史,即恢复历史的本来面目;二为数学而历史,既古为今用,洋为中用,为现实数学研究的自主创新服务;三是为教育而历史,既将数学史用于数学教育,发挥数学史在培养现代化人才方面的作用。
数学史对数学教学的作用主要在四个方面:①有利于帮助学生加深对数学概念、方法和思想的理解;②有利于帮助学生体会活的数学创造过程,培养学生的创造性思维能力;③有利于帮助学生了解数学的应用价值和文化价值,明确学习数学的目的,增强学习数学的动力:④有利于帮助学生树立科学品质,培养良好的精神。
1.3数学史融入中学数学教学的条件
数学史融入中学数学课堂教学必须做到以下条件:
第一,经常与一线教师接触,经常听课,了解一线教师、教学的现状; 第二,对中学的教材、教法、考试非常熟悉: 第三,对教育、教学的理论比一线教师要认识深刻; 第四,数学史理论研究人员接触很多,取得合作相对较易; 第五,经常进行教学研究活动,有利于不同学校教师之间的交流; 第六,进行教师培训,经常出去讲学,研究的成果有利于推广.
以上的条件可以看出应该以教研员为核心,组成数学史专家、数学教育家、数学教师的一个团队,合作解决数学史如何融入中学数学课堂教学. 数学史融入数学教学的重要性 2.1 数学史在数学教学中的地位
数学史是学习数学、认识数学的一门学科。人们要认识数学概念、数学思想和方法的发展过程,增加对数学学科的了解,建立数学的整体意识,就必须运用数学史作为补充和指导。数学史与数学哲学=科学哲学,与社会史、文化史的各个方面都有密切的联系。它们之间的内容涉及什么是数学、数学与人类思想的革新、数学与其他科学技术的关系、数学和社会进步等方面。数学与其他学科的联系不仅具有沟通文、理的性质,而且有助于深刻理解数学的文化内涵,对于培养文、理兼通,“学、才、识”兼备的数学专业人才有重要意义。“学、才、识”,即知识、能力以及见识和思想,其中“识”是引导知识和能力走向何方的根本性问题。如果数学教学只是停留在数学理论本身的学习上。甚至对数学理论的实质也没有深入探究,学生就不可能理解依托于数学知识体系之上的数学思想和信仰,不可能理解贯穿于数学研究活动中的科学精神(包括科学的实证精神、理性精神、批判精神)与数学的美感及鉴赏能力,不可能理解与数学的社会功能密切相关的伦理准则等数学文化底蕴,更不会形成“才”与“识”。因此,学习数学史是以“素质教育”为目标的数学教学的内在要求,它对于培养学生的人文主义精神以及数学观念、数学能力、数学整体意识有特殊意义。
2.2 数学史在数学教学中的作用
在数学教学中,结合教学内容,适时、适度、适量地运用一些数学史料,可以 4
激发学生的学习兴趣,启迪思维,帮助学生更好地理解数学。因此融数学史于数学教育之中是数学教育改革的一个重要方向。
2.2.1加深对数学理论的理解
数学史可以让学生认识数学发展的规律,从前人的经验教训中获取鼓舞和启示。一般说来,数学史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程。历史可以引导我们创造一种探索与研究的课堂气氛.而不是单纯地传授知识。历史上许多著名问题的提出与解决方法还有助于学生理解与掌握所学的内容。
对于那些需要通过重复训练才能达到的目标,数学历史名题又可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出及解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题。或许这个问题曾难住过许多有名的人物,学生会感到一种智力的挑战。也会从学习中获得成功的享受。这对于学生建立良好的情感体验无疑是十分重要的。数学并不是一个静止的和已经完成的领域.而是一个开放性的系统.认识到数学正是在猜想、证明、犯误、修正错误中发展进化的。数学进步是对传统观念的革新,可以激发学生的非常规思维。
2.2.2 培养正确的数学思维方式
现行的数学教材都是经过了反复推敲,语言十分精练简洁。为了保持知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。这样虽然有利于学生接受知识,但容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好地掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到数学理论的真实建立过程。影响了学生正确数学思维方式的形成。数学史的学习,可以让学生在学习系统的数学知识的同时,对数学知识的产生过程.有 5
一个比较清晰的认识,从而陪养学生正确的教学思维方式。譬如,传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下,经过创造得到的。而且在数学家们的不断补充、完善下.经过几十年才逐步成熟起来的。通过对这种创造过程的了解,使学生体会到一种活的、真正的数学思维过程.而不是单纯地接受教师传授的知识。在这种不断学习.不断探索,不断研究的过程中逐步形成正确的数学思维方式。
2.2.3 激发学生学习数学的动机
心理学理论认为.动机可分为两个部分:人的好奇心、求知欲、兴趣、爱好构成有利于创造的内部动机;社会责任感构成有利于创造的外部动机。兴趣是最好的动机。数学史中有很多能够培养学生学习兴趣的内容。主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等.它们都有很强的可操作性.作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事.比如说一些年轻的数学家成材的故事,《新课程标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在数学研究上取得骄人成绩的例子。如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力。终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容.定能消除学生对数学的恐惧感,增加数学的吸引力。
2.2.4 建立德育教育平台
首先,可以对学生进行爱国主义教育。现行的教材讲的大都是外国的数学成就.对我国在数学史上的贡献提得很少,其实中国数学有着光辉的传统,有刘徽、祖冲之等一批优秀的数学家.有中国剩余定理、祖瞩公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。当然,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。在新 6
时代的要求下.除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就.虚心的学习,“洋为中用”。
其次,可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的.无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。欧拉3l岁右眼失明.晚年视力极差最终双目失明。但他仍以坚强的毅力继续研究,他的论文多而且长。以致在他去世之后的lO年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时是如何执著追求的故事。对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。
第三,可以提高学生的美学修养。能欣赏美的事物是人的一个基本素质.数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理。有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。另外,在感叹和欣赏几何图形的对称美、尺规作图的简单美、i角公式的统一美、非欧几何的奇异美等,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。
2.2.5 鉴过去而知未来,感悟数学与社会
在过去的数学课程中很少涉及数学与社会的内容,除了数学书上一些数学应该题外,似乎看不到数学与社会有什么密切联系。新课标教材试图使学生对数学与社会的关系的认识方面做出努力。数学的发展与社会的进步息息相关,互相促进。一方面,数学的发展依赖于社会环境,受社会经济、政治和文化等诸多因素的影响;两一方面,数学的发展又反过来对人类社会的进步起推动作用,不管是物质文明还是精神文明。
对物质文明的影响:数学对人类物质文明的影响,突出的反映在它与能够改变人类生活方式的产业革命上。人类历史上有三次重大的产业革命,这三次产业革命的主体技术都与数学的新理论、新法方法的应用有直接或间接的联系。牛顿和莱布尼茨发明的微积分作为一种强有力的新工具,推动了以机械运动为主题的17、18世纪整个科学技术的高涨,成为18世纪下半叶开始的第一次产业革命的重要先导。19世纪60年代,第二次产业革命开始,这次产业革命发电机、电动机以及电气通信为标志,这些技术当然依靠了电磁理论的发展,而电磁理论的研究是与数学分析的应用分不开的。第三次产业革命发生在上世纪40年代,主要以电子计算机的发明使用、原子能的利用以及空间技术、生产自动化等为标志。这这些技术发展的每一个关头都记载着数学家的不可磨灭的功勋。
对精神文明的影响:作为教授数学的教师,学生或者你自己是否提出过这样的问题:我们为什么学数学?对于这个问题你是怎样思考和回答的?有些教师会回答,我们所学习的数学是有用的,小到我们个人生活中有些问题需要用到数学知识,大到计算机技术、自动化技术、航空航天,军事等等领域都要应用数学。这样的回答无疑是正确的,但却并不全面,它只提到了数学的两个作用的一个作用。
数学有两大作用,一个是工具作用,像现实问题到应用数学这是它的工具作用,也就是上述的对物质文明所起的作用;另一个作用就是人文作用,也就是对人类的精神文明所起的作用,数学对人类精神文明的影响极为深刻。某种程度上,对于大多数人来说数学的人文作用比其工具作用更具意义。想一想,绝大多数的学生未来都不会从事与数学有关的工作,对这些学生来说小学的四则运算几乎就足够他们应付日常的生活问题了,甚至连开方都用不到,如果仅从学以致用的角度来看,他们从小学到高中要学习12年的数学,不是浪费生命吗?事实上并非如此。数学本身就是一种精神,一种探索精神。这种精神包含的两个要素,即对真理和完美的追求,千百年来对人们的思维方式、教育方式以及世界观、艺术观都有着毋庸质疑的影响。数学对人类精神文明的意义,也突出地表现在历次重大思想革命的关系上。由于其不可抗拒的逻辑说服力和无可争辩的计算精确性,数学往往成为解放思想的决定性武器,尤其在文艺复兴之后科学与神学的斗争中表现的更为突出。
中学数学课程中,对数学知识本身的学习还不足以使学生感受到数学与社会之 8
间的深刻的关系,为此要在数学课程中加入一些数学史的内容,当然,教材中的这些内容仅仅是冰山一角,教师应该应该提高自己对数学发展历程的了解,只有这样才能更好地促进数学教学。
总之数学史对于揭示数学知识的现实来源和应用.对于引导学体会真正的数学思维过程,创造一种探索与研究的数学学习气氛.对于激发学生对数学的兴趣,培养探索精神.对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。国内外在教学中融入数学史的成果 3.1 国外的研究成果
国际上对数学史在数学教育中的应用的相关研究和实践操作已经有了相当程度的发展.1998年4月20日至26日,在法国马赛附近luminy镇,举行了由国际数学教育委员(ICMI)发起的“数学史在数学教育中的作用”国际研讨会.此次会议的主题是数学文化,要求数学教学充分反映数学的文化底蕴,从课程内容、概念形成、证明方法、习题配置等各个方面,全方位地使数学史融入、丰富和促进数学教学.
3.1.1 数学史融入数学教学行动研究的成果
融入的层次
对于将数学史融入数学教学有很多片面的理解,最普遍的是将其理解为在数学课堂中讲点数学史以提高学生的兴趣,显然这只是数学史应用的较低层次.教师应用数学史至少可以分为三个层次:
(1)说故事;
(2)在历史的脉络中比较数学家所提供的不同方法,拓宽学生的视野,培养全方位的认知能力和思考弹性:
(3)从历史的角度注入数学活动的文化意义,在数学教育过程中实践多元文化关怀的理想.
融入的过程
将数学史融入数学教学并不是在教学中插入几个历史故事那么简单,融入过程一般包括以下几个阶段:
(1)学习历史资料;
(2)选出适合课堂教学的话题;(3)分析课堂需要:(4)制定课堂活动计划;(5)完成方案;(6)对活动的评价.
教学不一定完全遵循发明者的历史足迹,而是要经过一定的改良,符合学生的认知,这样才能更好突出历史过程,引导学生思维.
融入的形式
数学史融入数学教学有隐性和显性两种形式.隐性融入是指根据历史对教学内容重新设计和加工,制作适用于教学的“历史套装”,在隐性融入过程中,数学史扮演的角色是担当教学设计的指南,因为“数学史并非最终目的,而是通过数学史的途径以达到教学目的”.
显性地融入数学史旨在“描述数学发展的进程”.它的两种错误倾向,首先是如果教师只提供给学生有限的历史片段,就可能造成学生对数学发展过程的错误或片面理解.当前的不少数学教材,表面上看起来注重数学史的应用,但大多数只局限于在每一章节的后面增加几个历史注解,如数学家小传、个别概念的发展历史等,这实际上势必导致教师将数学史与数学课程割裂开来,甚至认为将数学史融入数学教学与日常课堂教学背道而驰.另一个错误倾向是“脱离数学史融入数学教学的目的,将融入数学史转化为数学史教学”.这种做法的直接结果是让学生感到数学史只不过是新增加的考试内容而已,如此以来,恐怕连“激发学生的兴趣”这一作用也会消失殆尽.
融入的途径
在具体的教学过程中,将数学史融入数学教学有很多做法,这取决于教师的信念、教学观、课程内容、历史资源等诸多因素,已有的文献也提供了很多成功的经验,包括使用传记、游戏、历史调查、本地历史考察、历史家庭作业、历史命题、参观、观看影视作品甚至戏剧表演.
John Fauvel在《数学学习》上编辑了一期教学中如何应用数学史的专刊,其中 10
列举了应用数学史的12种不同的具体做法.本文对各种做法进行了概括,提出了应用数学史的8种具体方法和途径:
(1)在教学中穿插数学家的故事和言行;
(2)在讲授某个数学概念时,先介绍它的历史发展;
(3)应用数学历史名题讲授数学概念,根据数学史上典型的错误帮助学生克服学习困难;
(4)指导学生制作富有数学史趣味的壁报、专题研究、剧本、录像等;(5)应用数学历史文献设计课堂教学:(6)在课堂内容里渗透历史发展的观点;(7)以数学史做指引设计整体课程;(8)讲授数学史的课.
3.2 国内的研究成果
虽然国内外对数学史所具有的教育价值能够在理论上达到共识,但如何将数学史融入数学教学中,我国在这方面研究处于探索阶段.张奠宙教授认为应用数学史于数学教学有助于将数学的“学术形态”转化为“教育形态”,并且提出了应用数学史将数学的“学术形念”转化为“教育形态”的三个途径:
(1)揭示数学发展的规律,形成正确的数学观:
(2)反朴归真,揭示数学发展的过程,并使之适合今天的课堂教学;
(3)提供真实的历史材料,包括原始问题、原始数据、原始过程、增强真实感、体现数学的人文精神.
这三点不仅指出了数学史融入数学教学的任务,也为数学史的具体运用指明了方向.
罗腾根在《谈中学数学中的数学史教学》对数学史的教学原则和数学史的教学方法进行了论述,数学史的教学原则有: 准确性原则、交融性原则、可接受性原则.数学史的教学方法有以下四点:
(1)在新授课进行知识探求时,作简短的数学史料的插话;(2)在解题教学中贯穿数学史料;(3)举办数学史讲座或报告会;
(4)组织兴趣小组,课外搜集、阅读、研究数学史料.
上海师范大学数学系陈跃老师在《中学数学应用数学史实教学的一些建议》一文中给出了关于三角恒等式的入门教学和用简化乘除的问题引入对数的概念的具体建议.
华东师范大学数学系汪晓勤老师在数学史如何融入数学教学方面做了不少的研究,在《数学通报》发表了“数学史如何融入中学数学教材”,在《中学教研》上发表了“HPM视角下的等比数列教学”,《中学数学杂志》发表了“几何视角下的和角公式”等.
浙江师范大学数理学院朱哲老师在数学史如何融入数学教学方面也有自己深刻的看法,他在《中学数学》发表了“数学教育目的的深化和拓展:数学史的视角”,在《中学教研》发表了“从理论到实践:数学史融入数学教学”,在《中学数学教学参考上》发表了“一节基于数学史的教学课例:正四棱台的体积公式”,在《中学教研》上发表了“等比数列前n项和的教学设计及其分析”等.
从以上文献本研究者可以看到,国外对于数学史如何融入数学教学的研究,不论从理念上还是从实践上都达到了很高的程度,我国香港和台湾地区的有关学者在HPM领域的活动相当活跃,做了很多出色的工作,但大陆HPM研究起步很晚,虽然有很多学者大声呼吁“应该讲点数学史”,但探讨如何做的研究明显偏少. 数学史融入教学的一些策略
数学史的确值得引进数学课堂之中.结合数学史到数学教育中的问题, 也一直是国际数学教育界备受关注的研究课题.20 世纪70 年代, 数学史与数学教育关系(HPM)就已成为西方的一个学术研究新领域,美国学者的有关研究、论述和大力提倡是该领域创立与深入发展的重要推动力量.长期以来,虽然人们已认识到数学教学中融入数学史的许多重要意义, 并在教学实践中有所行动,但其困难和问题的存在也是显然的.其中一个显著的困难和问题就是, 数学教学中需要采取哪些教学策略来融入数学史呢?可以说,这个问题目前还不为大多数的教师所充分认识和理解.在数学史融入数学教学的过程中,一般来说,最常遇见的困难就是如何对材料适 12
当地剪裁, 使其与课程主题融合,以达到数学史的利用能自然、协调,不至于过分突兀,这应是我们追求的最佳效果.要达到这个目的, 那就要求教师在教学活动中,必须注意结合教学实际和学生的经验与体验,依据一定的目的,对数学史资源进行有效的选择、组合、改造与创造性加工, 使学生容易接受、乐于接受, 并能从中得到有益的启迪.尽管数学教学中,数学史的利用随着施教者的不同和材料的不同,所采取的形式各异,总结出以下几种策略。
4.1 故事策略
虽说数学史不等于数学故事,但是,数学家或数学界的遗闻佚事, 不仅能大大激发学生的学习兴趣,而且对学生的人格成长还富有启发作用.譬如,我国著名数学家陈景润, 就是在上中学时, 听了他的数学老师沈元向学生介绍了, 哥德巴赫猜想这一难倒无数数学家的难题后, 其心灵受到了震撼,点燃起了他攀登高峰、摘取桂冠的热情, 从而他一生醉心于数学, 并取得了令世人瞩目的成绩.再如, 十八世纪法国女数学家苏菲姬曼, 就是受到阿基米德故事的“煽动”, 迷上数学而终生无怨无悔.据说, 苏菲童年时正值法国大革命发生,为了排遣难耐的孤独和寂寞, 遂被数学史家莫度西亚的《数学史》所记载的阿基米德传奇所吸引.相传,阿基米德正沉醉在一道几何问题时,对已经陷城的罗马士兵浑然未觉, 就莫名其妙地被杀死了.这个悲剧让百无聊赖的苏菲神醉心痴,她想几何学若真有这种魅力,那真的值得探索一番了.于是,她终于走上了数学研究的不归路了.说故事的目的就是要设计一个教学情景,这个教学情景主要是能引起学生的学习动机与兴趣.同时,也可利用故事情景引出学生已有的数学概念,或是借故事情节引入要教的数学概念,也可以利用故事情节的铺设, 呈现给学生想要解决的问题等.4.2 方法比较策略
著名科学家巴甫洛夫指出:方法是最主要和最基本的东西.一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就.如果方法不好,即便是有天才的人也将一事无成.数学教学必须要使学生明白,任何方法仅仅是许许多多的方法之中的一个, 其中有许多你可能联想都未曾想过.那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,这些都是自负的表现.而自负是思维的重大过失,它会扼杀真正的思维.13
事实上,数学教学中涉及的许多问题,从它的历史到现在,经过数代数学家们的不懈努力,大都产生过不少令人拍案叫绝的各种解法.如勾股定理,就有面积证法、弦图证法、比例证法等300 余种;求解一元二次方程, 历史上就有几何方法、特殊值代入法、逐次逼近法、试位法、反演法、十字相乘法和公式法等;求不规则图形的面积,历史上也有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法以及现代的微积分方法.通过搜集比较历史上的各种不同方法之后, 不仅能使学生更好地领会每种方法的内在本质,而且能启发学生,这对培养知识面宽、有能力、有信心、灵活多变的人大有帮助.4.3追踪历史起源策略
数学固然起源于人类对日常生活现象的观察,但它决不简单, 有一定的难度, 需要时间去体验、把玩并体会它的意蕴.譬如无限的概念,“向人类头脑提出的挑战,激发了人类的想像力,是思想史中任何其他单个问题都无法比拟的.无限显得既生疏又熟悉,有时超出了我们的领悟能力,有时又自然而易于理解,在征服它的过程中,人也砸碎了将自己束缚在地球上的镣铐.而为了实现这一征服, 需要调动人的一切能力,——人的推理能力,诗一般的想像力以及求知的渴望.”①再如代数符号的产生,代数符号早期是没有的,人们使用文字代替,到了古希腊人们才开始用单词表示,中世纪才开始用单个字母表示.再后来人们才用特殊的字符来表示, ?每一次的演进,都凝聚了数学先贤们大量的心血和智慧, 都充满了古代数学家们的神思技巧;还有函数概念的发展,从笛卡尔给出最简单的函数概念出发, 经莱布尼兹、贝努利、欧拉、柯西、黎曼、狄利克雷、维布伦等人之手, 一步一步的发展,其间经历了大约六七次扩充,才形成了我们今天看到的函数概念.追踪历史起源,就是要引导学生去揭示或感受知识发生的前提或原因、知识概括或扩充的经过以及向前发展的方向,引导学生在重演、再现知识发生过程的活动中,内化前人发现知识的方法和能力.使学生在掌握知识的同时,还能占有镌刻于知识产生中的认识能力,这种认识能力正是构成创新思维能力的核心.4.4 揭示思维过程策略
将数学研究中的思想和方法的要点原原本本地告诉学生,引导青年学生沿着科学的艰险道路作一次富有探索精神的、充满为真理而斗争的崇高动机的旅行, 使学 14
生充分领略以前数学大师们的灵感,承受他们的启迪,可以从中学到他们的策略和经验等.譬如, 讲数学的抽象性时, 就可以原原本本地向学生展示欧拉解决七桥问题时的思考过程,或是介绍牛顿发明万有引力定律时,关于把地球、月球抽象为质点来处理的曲折过程;讲反证法时,可以向学生详细叙述伽利略是如何更正延续1800 多年的,亚里士多德关于物体下落运动的错误断言的;讲类比时,可以向学生全面介绍自然数平方的倒数之和问题的产生背景、当时的情形及欧拉解决该问题时的奇思妙想等;结合几何知识的学习,可以向学生揭示历史上有关几何第五公设的、令一代又一代数学家忙碌了二千多年的、各种各样的思考过程及最终的解决办法.让数学史曾闪烁过光芒的火花,重新在学生的心中点燃。
前人的成功和失误,都是后人聪明的源泉.数学史可以将逻辑推理还原为合情推理, 将逻辑演绎追溯到归纳演绎.通过挖掘历史上数学家解决问题的真谛,学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生更具有洞察力.结论及建议 5.1 研究结论
5.1.1 数学史融入中学课堂教学有利于教师对文化理念的落实
数学新课程的基本理念是:全面提高学生的数学文化素质,以提高一般科学素质,增进道德品质修养,形成和发展数学品质.理念的实现,可以通过将数学史的史学形态转化为教育形态,通过数学史融入中学课堂教学,来实现文化理念的落实.从本课题研究来看,数学史融入中学课堂教学已经成为课题实施教师,乃至一些数学教师的自觉行为,现在,我们经常会听到数学史融入的课,这些都表明了数学史融入中学课堂教学的行动研究是将文化理念的落实在课堂教学中的一种非常有效的途径.
5.1.2 数学史融入中学课堂教学促进了教师对教育目标的理解
在数学史融入中学课堂教学的行动研究中,首先要学习课程标准,学习新的教育理论,这些使研究者对数学的价值和数学的教育目标有了新的认识.数学的价值,既有实用价值一提供了一种解决数学内社会生活中各种问题的有利工具;又有形式 15
训练的价值一提供了一种思维的方式和方法;还有着文化价值~提供了一种价值观,倡导一种精神,它表现为数学念在入的观念以及社会的观念的形成和发展中的作用.知识型的数学教育看重数学的实用价值;能力型的数学教育看重的是数学的能力训练价值:文化型的数学教育则在注意到数学教育的实用价值和形式训练价值的同时特别看重数学的文化教育价值.
不同的价值必然追求导致不同的教学目标.仅注重教学内容的使用价值,只会将知识的理解、技能的掌握作为教学目标的主体;注重数学对思维能力训练的价值,就会将培养思维能力作为教学目标的重点,突出过程与方法的目标纬度;只有在知识、能力并重的同时,还能够注意到数学的文化教育的价值,那么在制定教学目标时才真正能够将情感、态度、价值观落到实处。
5.1.3 数学史融入中学课堂教学加深了教师对教学内容的研究
数学史融入中学课堂教学的行动研究,目的不是在形式上,而是通过教师对数学史的研究,对教学内容的来龙去脉有了深入的理解,达到加深对课程的理解,也使得教学前后联系、融会贯通,浑然一体.
例如案例《正弦定理》,在没有研究数学史以前,对该定理的理解只认识到两个层次:
一是从转化的角度看,正弦定理是实现边角互化的一个工具;
二是从方程的角度看,正弦定理中含有七个量,除给定三个角外,一般情况下可知三求四.
在研究三角函数的数学史后,发现三角函数在历史上大都来源于几何,于是就思索正弦定理的几何背景是什么? 通过研究发现,正弦定理是对“大边对大角,大角对大边”的数量化解释.于是对定理的认识上升了一个层次,正弦定理是将几何问题转化为代数问题,是沟通代数和几何的桥梁,体现了几何与代数的统一.
5.1.4 数学史融入中学课堂教学提高了教师对教育理论的应用
数学史融入中学课堂教学的行动研究是把数学史融入课堂教学看成一种教学现象,用行动研究的理论来研究这种教育现象.在研究的过程中,本研究者学习了行动研究的理论,并用行动研究的理论指导对数学史融入课堂教学的指导,在实践的 16
过程,积累大大量的问题,通过这些问题的解决也促进了对行动研究理论的重新认识,提高了对教育理论的应用.
例如在《等差数列前n项和》案例研究中,用到了自然数从l加到100,少年高斯的数学思维:1+100=2+99=„„=49+52=50+51=101,101×50=5050,但缺乏对高斯思想的深入挖掘,随着对数学史的学习和研究,进一步研究高斯思想,发现以下结论:
(1)思维的变通性——追求算法简单;(2)思维的直觉性——数字内在和谐;(3)思维的概括性——寻找普遍规律;
这是多么精美的数学思维——加法向乘法的转化,因此,案例可以进一步发展,可以进一步深化.
5.2 研究建议
5.2.1 教师应加强数学史的学习与研究
在数学史融入中学课堂教学的行动研究中,发现大部分教师并不是不接受新的教育理念,也不是不愿意通过数学史的融入落实文化渗透的理念.而是由于数学史的知识匮乏导致理念难以落实,因此数学教师应注意多方学习数学史知识,多方研究数学史.
对数学史的学习研究可以分为以下三个层次:了解性学习、掌握性学习、研究性学习.
第一层次要求知道数学发展的概况,起过重要作用的数学家,影响深远的数学思想、方法等.
第二层次可以从数学史中适当提取相关内容,用于数学研究、教学、学习之中. 第三个层次以文献资料为线索,研究不同时期数学发展、数学家活动、数学思想、方法的进展等,并对数学的发展趋势提出预见性分析.
从中学数学的要求出发,中学数学教师应具有的数学史素养,属于第二层次.
5.2.2 教师应加强数学史的长期融入与渗透
数学教育是一项有目的、有计划、有组织的社会实践活动.它以传授知识和培养人才为宗旨,以促使社会进步、科学技术以及数学科学的发展,它是整个社会教 17
育的一部分.
新一轮基础教育数学课程改革将科学精神和人文精神统一于课程的“文化内涵”之中,强调人的科学素养和入文修养的辩证统一,致力于科学知识、科学精神和人文精神的沟通与融合.课程也关注到数学史对数学文化教育的意义,但文化的渗透靠不是一天、一学期、一年的渗透就能实现,而是一个长期的过程.只有长期加强数学史的文化渗透,对发展学生的文化素养才能起到应有的作用.
5.2.3 教师应加强数学史融入方式的研究与总结
数学史如何融入到课堂教学中目前虽然总结出六个方面,但还不够全面和深入.因此需要数学教师在教学中充分认识数学史的作用,全面认识数学史的意义.并且深入挖掘数学史的教育要素,不断地开发、设计、反思和总结,把数学史的史学形态转化为教育形态,再转化为可操作的教学形态,最后应用于具体的数学教学中.把数学史融入到课堂教学落到实处.
5.3 研究缺陷
数学史融入中学数学课堂教学的行动研究目前只从课堂教学设计的角度进行研究,该研究表明数学史融入中学数学课堂教学部分教师已把它做为一种自觉行为,但该研究没有从学生的角度进行跟踪,看看学生的学习和思维发生怎样的变化,这些将是该研究的后续内容.
参考文献
[1]中华人民共和国教育部制定.普通高中数学课程标准(实验稿)[M].北京:北京师范大学出版社,2003,4:1—28.
[2]中华人民共和国教育部制定.全日制义务教育数学课程标准(实验稿)跚].北京:北京师范大学出版社,2001,7:1—8.
[3]全日制普通高级中学教科书(必修)数学第一册(上)[M].北京:人民教育出版社,2006:105-137.
[4]全日制普通高级中学教科书(必修)数学第一册(下)[M].北京:人民教育出版社,2006:34-39.
[5]全日制普通高级中学教科书(必修)数学第一册(下)[M].北京:人民教育出版社,2006:129—139.
[6]全日制普通高级中学教科书(必修)数学第二册(上)[M].北京:人民教育出版社,2006:92—103.
[7]张苍等辑撰,九章算术[M].四川:重庆大学出版社,2006:217—245. [8]欧几里得,几何原本[M].北京:人民日报出版社,2005:3—6.
[9]石中英,王卫东,王妙函,行动研究[M].北京:教育科学出版社.2003,6. [10]汪晓勤,中学数学中的数学史[M].北京:科学出版社.[11]张奠宙等,数学教育导论[M].北京:高等教育出版社.[12]张奠宙等,数学史选讲[M].上海:上海科学技术出版社,2000:56-89. [13]李文林,数学史概论[M].北京:高等教育出版社,2000:5—25. [14]李文林,数学史与数学教育[M].北京:科学出版社,2004:178-191. Abstract: The history of mathematics in secondary school mathematics teaching role is very important.Teachers in the teaching process into the history of mathematics content, can help students to understand mathematics, the formation of a correct mathematical concept;help students correct mathematical way of thinking;help students broaden horizons, develop student interest in mathematics.Some of the knowledge to teach the history of mathematics also provides the stage for moral education.In order to improve 19
the quality of teaching to enhance students understanding of mathematical theory.This article from the perspective of history and humanities, the history of mathematics in this role.By mathematical Mingrenyishi, ages were questions to stimulate students intellectual curiosity.Help students a more comprehensive, in-depth understanding of mathematical knowledge 20
第四篇:浅谈数学史在数学教学中的作用
浅谈数学史在数学教学中的作用
张永强
内容提要:
“二十一世纪的数学大国”,“中国数学率先赶上世界先进水平”,这是我国数学界和数学教育界的共同愿望。一直以来,中国数学重视基本运算,基本训练,注意培养逻辑思维能力,在国际上,中国学生的成绩也一直名列前茅。但西彦有云:“你可以将马拉到河边,但你无法迫使它喝水。”我们把学生集中在教室里,也并不等于他们进入了主动学习的状态。因此,让学生学习数学,首先应该让他们接受数学,了解数学,了解数学的历史和现状。在我省实施的人教版新教材中,已经把数学史作为一门选修课,在必修中,每部分也都出现了大量的数学史知识做为阅读内容。笔者通过实践证明:数学教学过程中适当向学生介绍一些数学史知识,对数学教学和学生的学习的确能起到潜移默化的作用。
一、提高学习兴趣
数学从表面看来是枯燥无味的,特别是一些成绩相对较差的学生,更是对数学学习失去兴趣。因此,介绍数学史中的一些数学家发现真理的思维的艰辛过程,让学生知道数学家在创造性劳动中同样遇到困难,挫折甚至失败。这样,会对学生增强信心,坚定学生学好数学的信念。另一方面,数学史中一些有趣的、动人的事实,既拓宽了学生的知识面,又增强了学生的学习兴趣。比如,我们在几何中学习“勾股定理”这节内容时,关于这一重要定理,可穿插这样一个小故事:在古希腊,相传毕达哥拉斯发现勾股定理时,“欢欣之情,不可言状”,宰了100头牲畜祭缪斯女神(神话中掌管文艺、科学的女神)以酬谢神的默示。这个典故不但可以加深学生对勾股定理的认识,更激发起学生学习勾股定理的兴趣。像这样的典故、有背景的例子在数学史中非常之多,我们在教学过程中或在数学史课上适当加以应用,对激发学生学习兴趣会有极大帮助。
二、数学教育功能
1、揭示数学真理的特性。
数学不同于其他学科,特别是数学真理,它不同于其他科学真理的最大特征,是它的结论必须经过严格的逻辑证明。数学的对象是形象化的思想材料,它的结论是否正确,一般不能像物理等学科那样,借助于可重复的实验来检验。而主要用严格的逻辑推理来证明,而且一旦由推理证明了结论,那么这个结论也就是正确的。
2、提示数学的认知规律。
现代心理学家发现了一个能够体现数学认知功能的“遗传法则”:数学发展的历史顺序,通常也是学习数学的大致顺序,数学家们体验过的困难之处,也大致是学生学习中的难点。而数学家们常通过归纳、类比和猜想等直觉思维去发现重要的结论,然后才考虑它们的证明,因此,向学生介绍这些数学史知识,可让学生了解数学家发现真理的思维过程,从而揭示数学认知规律和思考问题的方法。
三、对学生起到思想教育的作用。
1、培养学生辩证唯物主义观点。
“培养学生良好的个性品质和初步的辩证唯物主义观点”这是《数学教学大纲》结合数学的特点对学生思想教育方面作出的规定,事实上,数学史中可以个用于说明唯物辩证法的例子真是举不胜举。恩格斯在《自然辩证法》一书中说“数学是从人的需要产生的,但是,正如同在其他领域中一样,从现实世界中抽象出来的规律,在一定的发展阶段上就和现实世界相脱离,并且与现实世界对立。”数学的发展就是这样遵循辩证法规律的。向学生展示这样的规律,对培养其唯物主义观点有莫大的帮助。
2、培养学生爱国主义精神。
数学家阿基米德的故事是表现爱国精神的一个典范。阿基米德诞生在西西里的叙拉古城,年轻时曾去亚历山大城学习,后来返回叙拉古,毕生从事科学研究。公元前214——前212年,罗马侵略军围攻叙拉古,阿基米德设计的城防装置曾使兵临城下的敌人长期受阻。不料由于内奸的破坏,叙拉古城最终陷落。这时阿基米德依然在专心致志地思考沙盘上的几何图形,当他突然发现一个罗马兵出现在他面前,只说了一句“不要动我的图!”就被那士兵刺死了。他虽然丧身罗马兵刀下,但是他的杰出的科学成就和爱国主义精神,二千多年来一直为人们所景仰。在建设数学大厦的过程中,中国数学也作出了巨大的贡献。中国古典数学是数学中的珍品,它的成就可同希腊数学相媲美,如祖冲之对圆周率的计算结果为
3.1415926<<3.1415927。这在当时世界上是最好的结果,而且这一纪录在世界上保持了1000年之久,其子祖暅子承父业,进一步钻研,创造性地发现了球体的体积计算公式V=R,完成了其父未竞事业,这种家庭历代成员对数学的贡献,为后世学者树立了榜样。此外,中国数学在十进位值计数法,分数运算,正负数概念及计算,线性方程组解法及高次方程的数值解法等很多方面都曾在世界处于领先地位。这充分说明中华民族是一个擅长数学的民族。在教学过程中适当地颂扬这些中国古典数学的伟大成就或某些科学家的爱国主义精神,有利于培养学生的爱国主义情感。
3、培养学生献身科学事业的高贵品质。
为了求解一个数学问题,数学家常常几代人前仆后继,表现出坚韧不拔的精神。上文提到的祖冲之就是一个很好的例子。自从意大利数学家于16世纪发现三次、四次方程的求根公式后,许多优秀科学家投身到寻求五次方程根式解的研究。但经过200多年的奋斗,依然没有成功。为此挪威科学家阿贝尔更是贡献出了自己年轻而宝贵的生命,年轻时代爱读拉格朗日和高斯著作的阿贝尔不断钻研高次方程的解法,读大学时,他认为自己已经发现了如何用代数方程解五次方程,但不久就纠正了这种想法,他在1824年的论文《论代数方程,证明一般五次方程的不可解性》中,证明了用根式解五次方程是不可以的。但他的天才发现却遭到冷遇,去欧洲大陆谋求教职的努力失败,在贫困交加中死去,时年27岁。一些大的数学家诸如阿基米德、刘徽、欧拉、高斯和牛顿等等,都具有十分高尚的品德和献身科学事业的情怀。这些都是不失时机的对学生进行思想教育的生动素材。
四、起到美学教育的作用。
数学家孜孜不倦地研究数学,和他们对美的追求是分不开的。数学中充满着美的因素,数学美是数学科学的本质力量的感性与理性的呈现。古今中外有不少数学家都用像诗一般的语言赞颂过数学美。
普洛克拉斯早有断言:哪里有数学,哪里就有美。
罗素认为:数学,如果正确地看它,不但拥有真理,而且也具有至高的美,正像雕刻的美是一种冷而严肃的美,这种美不是投合我们天性的微弱方面,这种美没有绘画或音乐的装饰。它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术才能显示出那种完美的境地。
不仅这些,亚里士多德,庞加莱,及我国数学家徐利治等,都对数学美有着同样深刻的感触。既然如此,我们在数学史课上使可结合具体的能够展现实现美的例子印度学生欣赏实现美,提高学生的美学欣赏能力。比如以下几种常见的数学美:
1、曲线美如正弦曲线如图
2、公式美如tan18°+tan36°+tan54°+tan72°
该式本身有一种和谐美,四个正切值排列整齐,角度每次增加18°,且首末两项及距首末等远的两项角度之和为90°,因此化简时必须利用这种和谐关系而采用重新组合的策略。
3、图形美如黄金分割
线段的黄金分割早已引起人们的注意,主要是由此而构成的长方形给人“匀称美”的感觉,黄金分割比w=„„被誉为“人间最巧的比例”。一些名画的主题,电影的画面主题大都放在画面的0.618处,给人以舒适的美感。
4、对称美上述正弦曲线就是轴对称图形,能给人以舒适的美感。杨辉三角更组成美丽的对称图案:
121
1331
14641
15101051
„„
从数学发展的历史来看,对美的追求曾在一定的程度上促进了数学的发展。教学过程中适当的让学生欣赏这些数学美,不仅能激发学生的求知欲,又能使学生的思维目的性得到应有的锻炼,达到美育的效果。
事实证明:在教学过程中,贯穿一些必要的数学史知识,对提高学生的数学素养,甚至对整个数学教育都能起到很好的作用。特别在我们这类生源不优的学校,数学史知识对学生来讲是一笔巨大的精神财富,因此我们在教学过程中应该积极的加以运用。
第五篇:在数学教学中渗透传统文化
在数学教学中渗透传统文化
加强中华传统文化教育是深化中国特色社会主义和中国梦宣传教育的重要组成部分。而初中阶段主要以增强学生对中华传统文化的理解为重点,提高自身认识,引领学生了解我国是多民族统一的传统文化的基本国情。作为当代教师需要积极地培养学生对数学的热爱,逐步迁移到对数学知识的热爱和追求,从而激发学生对数学的学习兴趣,开发学生的智力,从而达到育人的目的。那么教师如何在课堂教学中渗透中华传统文化、如何在初中阶段数学学科对青少年进行传统文化教育,是每个数学教师应该思考的问题。因此,我将深入展开对中华传统文化的认识,并结合自己的教学体验,谈谈在数学教学中对中华传统美德的渗透。
一、巧用中华传统文化激发学生学习兴趣
兴趣是最好的老师。根据青少年青春期的成长特点他们会对比较新颖的和已有经验有关联的内容感兴趣,教师应抓住这一特点,在课堂上抓住时机巧妙的渗透中华传统文化知识。
例如,在学习图形的对称、旋转等有关的内容时,可以引入故宫、天坛、京剧脸谱、福娃等具有中国特色的图片使学生在学习欣赏的过程中,既体验到图形对称美的存在,又了解古代建筑、文化的底蕴深厚。这无疑激发了学生学习数学的兴趣,是一举多得的教学方法。
又如,在学习数学转化这一重要思想时可以引入曹冲称象的故事:曹冲五六岁时,知识和判断能力所达的程度可以比上常人了。孙权送来一只巨大的象,曹操想要知道象的重量,向他的下属询问这件事,可众大臣都想不出办法。曹冲说把象安放到船上,在水没过船的地方刻上记号,称实物装上船,比较之下就知道结果了。曹超听了很高兴,立刻按这个办法实施行动。实际上,聪明的曹冲用的是等量替换法,这一转化方法在解决数学问题时经常被用到,更体现思维的重要性,教师要善于用传统文化吸引学生,注重学生数学思维的培养。
二、妙用中华传统文化增强学生民族自豪感
榜样的力量是无穷的。“动人以言之,其感不深”,榜样是看得见的真理,用榜样去教育人,才能起到春风化雨润物无声的效果。青少年有必要认识中华民族的传统历史,了解对历史发展起作用的人物事迹,这对于学生认清国情,实现中华民族复兴的理想具有重要意义。
在讲解“勾股定理”时,教师可以介绍我国是最早发现并实用勾股定理的,我国古称直角边为“勾”与“股”,因而将这条定理成为勾股定理。古今证法400多种,在我国西汉《周髀算经》中勾股定理比西方早了500多年,并且东汉时的赵爽用弦图证法很直观、简明的得出结论,他表现了中国古代数学家高超的证题思想和对数学的转眼精神,是民族的骄傲。
在认识无理数时,教师可以介绍魏晋之际杰出的数学家刘徽在《九章算术》中利用割圆术得出准确的圆周率值=3.1416,为圆周率研究工作奠定坚实可靠的理论基础,在数学史上占有十分重要的地。在刘徽之后,南北朝时期杰出的数学家祖冲之把圆周率推算到更加精确的程度3.1415926。在讲解如何注重数学学习方法时可以引入宋代著名数学教育家杨辉,他主张数学教育中要贯彻理论联系实际、主张循序渐进的原则,要求学习者抓住要领,反复练习。他的“司算纲目”是我国历史上第一部数学教学大纲。在生活中用到合理安排工作进程时我们可以借鉴华罗庚的统筹法这一数学方法,三、深挖教材,渗透中华传统文化
在数学教学中,传统文化并不突显,这就需要教师认真专研,充分挖掘出中?A传统文化因素,在教学中应用,让学生潜移默化的接受传统文化的教育。
在学习方程组时,教师可以让学生解决百鸡问题:“今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,今百钱买鸡百只。问鸡翁、鸡母、鸡雏各几何?”教师说明这是著名难题,以此激发学生好奇心,增强学生挑战困难的意识,树立解决问题的信心,这样学生既学习了知识,又感受到中华传统文化的历史积淀。
在讲解最短路径问题时,教师可以引入古代数学中这道数学题,有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上到达树顶,请问这根藤条有多长?同学们为解决问题会将大树展开成平面图在利用学过的勾股定理进行计算。学生不仅学会在平面的基础上计算最短路径,又认识到立体图形上最短路径问题要转化为平面图形上的最短路径去计算,又感受到中华传统文化的博大精深。
四、教与学中,感受中华传统文化
当下的教学更注重学生核心素养的培养,不仅要学到知识指导我们做好事,更应该得到品德修养上的文化提升引领我们做好人。作为课堂的主导者要抓住课堂教学活动激发学生求知欲树立自信心,我国古代许多杰出的实例值得教师去引入,值得学生感受、学习。
比如,在讲解乘方时,让学生去感受当底数大于1时,乘方的结果增大的越来越快。教师可以引用这样的历史故事:从前,新疆有个非常聪明的人叫阿凡提,那时有个很坏的皇帝欺压百姓,阿凡提可不怕总想找机会收拾一下皇帝,有一天,阿凡提偶得机会与皇帝下棋,皇帝说这样下棋不够刺激,赌点什么吧,阿凡提说好啊,皇帝说如果我赢了你就给我打长工,阿凡提说行啊。皇帝问阿凡提你赢了呢,阿凡提看看皇帝的粮仓,说如果我赢了你就在棋盘的格子里放米就行。皇帝问怎么放,阿凡提说,棋盘上一共这么多格子,你要输了,就在第一个格子上放一粒米,第二个格子上放两粒米,以后每个格子上的米粒都是上一格的一倍,放完就行了。皇帝想,我家粮库那么大,别说一个小小棋盘了,就是再大很多的棋盘也装得下啊。于是他欣然答应。结果阿凡提赢了棋,皇帝在兑现承诺时发现,别说他一个粮库,就是再多几个粮库也装不满她的棋盘。故事讲完可以让学生去思考里面蕴含的数学知识并试着去计算解决。在学生计算时会发现乘方的结果增大越来越快特别是底数很大时增大的很快。这样学生在听故事的同时会感受数学的智慧又会充分参与并试图解决,这个过程学生不仅自身价值得以体现,又能感受到中华传统文化。
总之,中华文化五千年历史,是我们的国粹,是中华儿女的精神财富。在传承中华传统文化的责任上,初中数学教学也应承担起来。渗透文化的方法、形式多种多样,作为数学教师,不仅要充实自身文化底蕴,提高自身文化修养,更要在数学课堂教学中一点一滴的渗透。因为我们有责任让传统文化体现到教学中,让学生接受知识的同时受到国文化的侵染,为自身成长奠定基石。