数学史在数学教育中的作用

时间:2019-05-14 14:00:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学史在数学教育中的作用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学史在数学教育中的作用》。

第一篇:数学史在数学教育中的作用

数学史在数学教育中的作用

【摘要】在数学课堂教学中,给学生适当介绍数学史对学生的培养起到很重要的作用。数学专业的学生为例探讨了数学史对课堂教学中的作用。

【关键词】课堂教学

数学史

数学教育

【基金项目】河套学院教学研究项目(HTXYJY15006);河套学院教学研究项目(HTXYJY16001)。

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)35-0115-02

一、引言

数学史在人才培养中的作用越来越被人们所重视。通过查阅“数学史与人才培养”研究的相关文章,发现研究者较少关注数学史在人才培养中的作用,重复性研究较多;研究方法缺乏科学性;研究缺少数学史家与一线数学教师的合作;研究对象缺乏对学生认知发展的关注。许多人对数学史在人才培养中的作用缺少基本的认识和了解,认为数学史教育无足轻重。另一方面,由于绝对主义数学观的影响,数学教育中单纯强调数学的严谨性和抽象性,注重形式演绎的现象非常严重。不仅数学专业教材中缺少对数学发现过程、数学理论形成过程的探究与剖析,而且在各专业数学课堂教学上,“公理、定义、定理、证明”的逻辑展开,呈现给学生的只是已失去生动性和创造性的一些结论和严谨的、完美的推理证明过程。如果把数学仅视作一套概念体系、一种研究活动过程、一些方法、技术和结果,数学教育就只能成为一种简单的、静态的过程反映,而根本的危害是不利于创造型专业人才的培养。

二、数学史与数学教育

数学史与数学教学的关系是当今国际上数学教育研究的热点问题之一。随着国内外HPM研究的逐步深入,其理论与实践日趋完善。当前,我国正在积极推进基础教育改革,数学新课程标准也提出对数学的文化价值加以关注。义务教育数学课程标准(2011)指出:“数学文化作为教材的组成部分,应渗透在整套教材中。为此,教材可以适时地介绍有关背景知识,包括数学在自然与社会中的应用,以及数学发展史的有关材料,帮助学生了解在人类文明发展中数学的作用,激发学习数学的兴趣,感受数学家治学的严谨,欣赏数学的优美”。长期以来,我国数学教学强 调解题教学,数学史在人才培养中没有得到应有的重视,从而忽视了培养学生从整体、宏观认识数学思想体系、文化内涵和美学价值。

三、数学史与课堂教学

数学教科书舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是研究数学史在人才培养中的作用。如果在数学课堂教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。通过数学史渗透课堂,可以使数学专业的学生在接受数学专业训练的同时,获得人文科学方面的修养,其它专业的学生通过数学史的学习可以了解数学概貌。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。

数学史是学习数学、认识数学的工具。人们要弄清数学概念、数学思想和方法的发展过程,增长对数学的通识,建立数学的整体意识,就必须运用数学史作为补充和指导。特别是,现代数学的体系犹如“茂密繁盛的森林”,使人“站在外面窥不见它的全貌,深入内部又可能陷身迷津”,数学史的作用就是指引方向的“路标”,给人以启迪和明鉴。

数学史与数学哲学、科学哲学、社会文化史都有密切的联系。数学与人类思想的革新,数学与其他科学技术,数学与社会进步等关系,有助于深刻理解数学的文化内涵。对于培养“学、才、识”兼备的数学专业人才有重要意义。“学、才、识”即知识、能力以及见识和思想,其中“识”更是引导知识和能力走向何方的根本性问题。如果数学教育只停留在数学理论本身的学习上,甚至对数学理论的实质也没有深入探究,学生就不可能理解依托于数学知识体系之上的数学思想和信仰,贯穿于数学研究活动中的科学精神和数学的美感及鉴赏能力,与数学的社会功能密切相关的伦理准则等数学文化的底蕴,更不会形成“才”与“识”。因此,课堂教学中融入数学史是以“素质教育”为目标的数学教育的内在要求,它对于培养学生的人文主义精神以及数学观念、数学能力、数学整体意识有特殊意义。

四、数学史与人才培养

(一)数学史在学习专业知识中的作用

专业知识与历史知识总是互补的。就是说,不仅研究、学习历史需要具备一定的专业知识,而且学习专业知识也同样需要用历史知识帮助分析和思考。著名数学家赫尔曼?外尔认为:“如果不知道远溯古希腊各代前辈所建立和发展的概念、方法和结果,我们就不可能理解近50年来数学的目标。”如果教材是根据现代数学的分科来编写,并主要是按照公理化的思想方法而不是知识的发生过程编排体系,就会使学生在学习数学知识时,常常知其然而不知其所以然,尤其会对数学概念的发展过程,定理证明的发现过程以及数?W各分支之间的联系知之甚少。因此,让学生了解各门课程的发展历史是促进各科学习的必要途径。具体地,数学史的作用可以概括为:(I)对数学给出一个整体框架,对数学有一个整体图景,能认识到各分支之间的相互关系。(II)对数学问题、概念、理论和方法的来龙去脉有一定认识。对引入它们的动机与产生的后果有所了解,以上两点使我们对于某分支在整个数学中的定位能够初步理解。(III)总结历史上的经验、教训,借鉴解决问题的各种途径、方向。(IV)对数学发展趋势有一定的估计和预测。向学生介绍一些数学家的生平或者历史上数学进展中的曲折历程,以及在教学中提供一些历史上的真实“问题”,还可以激发学生的学习兴趣,促进专业课程教学。

(二)数学史在提高数学素养中的作用

随着人类社会由工业社会向信息社会的转化,人才观以及成才观也都在发生深刻变化。社会进步对数学工作者的需求主要并不是他们能利用数学的运算去要求解答,而是借助他们能在复杂错综的境遇中,去找寻有条理的分析,有助于最后的决策,即他们的数学素养。数学素养包括知识、才能和思想三个方面,即数学科学知识、数学能力和数学思想素养。这三个方面彼此联系,层次由低到高。形成数学素养的关键是要在知识传授、才能培养以及有目的、有计划的素质教育中让学生理解数学中蕴涵的精神、思想、观念、意识等内容,并培养他们运用数学的思想和方法去处理数学问题和现实问题的意识。而数学的思想和方法、数学研究中的科学精神以及数学的美,首先是从数学的发展史中总结归纳出来的。因此,学习数学史对于深刻理解数学的内容、思想、方法、语言及其应用,对于提高数学素养,具有重要的现实意义。

(三)数学史在教师的培养中的作用

面向21世纪的基础教育改革对教师素质提出了更高的要求,使得教师培养成为一项具有深远意义的工作。虽然目前对于数学教师的素质构成还处于研究探讨之中,但可以肯定的是,数学教师与数学研究人员、工程技术人员在知识、能力以及观念、意识等方面是不尽相同的。数学教师必须认识到数学是一门有着悠久历史的科学,具有突出的文化功能,在社会中有广泛的应用,并与其他学科有密切的关系。数学教师所具备的数学科学知识应该充满着与历史、文化以及现实世界的丰富关系;数学教师不仅需要了解数学的过去,也要接触数学的现在;数学教师不仅要学习数学的科学体系,更要学习数学科学的研究方法,包括数学思维模式与数学思想方法等。数学教师还必须树立正确的数学观,因为不同的数学观会通过教学对学生产生不同的影响。

五、结论

数学史在课堂教学中使学生领会数学内容的教育价值、数学的应用、各科的联系与交叉。数学思想及数学发现的过程对于开设数学课程的学生至关重要。研究数学史在人才培养中的作用,让每一位专任教师充分认识在课堂教学中渗透数学史的重要性以及提高数学课的教学质量的重要性。从而提高教师的教学及教研水平和学生的综合素质。

参考文献:

[1]梁宗巨.世界数学通史[M].辽宁教育出版社,2001.[2]李迪.中外数学史教程[M].福建教育出版社,1993.[3]徐利治.漫谈数学学习和研究方法[M].大连理工大学出版社,1989.[4]张奠宙.数学教育经纬[M].江苏出版社,2003.[5]曲建民.谈谈数学史教学[J].长春大学学报,2006(3).[6]高夯.现代数学与中学数学[M].北京师范大学出版社,2010.[7]徐利治.数学史与数学教育的结合[J].数学教育学报,1994(5).[8]郭华明.浅谈德国大学特色教学法[J].中国地质教育,2006(3).作者简介:

李权(1978-),男,内蒙古科左中旗人,本科,讲师,研究方向:数学教学与控制论。

第二篇:浅谈数学史在数学教学中的作用

浅谈数学史在数学教学中的作用

张永强

内容提要:

“二十一世纪的数学大国”,“中国数学率先赶上世界先进水平”,这是我国数学界和数学教育界的共同愿望。一直以来,中国数学重视基本运算,基本训练,注意培养逻辑思维能力,在国际上,中国学生的成绩也一直名列前茅。但西彦有云:“你可以将马拉到河边,但你无法迫使它喝水。”我们把学生集中在教室里,也并不等于他们进入了主动学习的状态。因此,让学生学习数学,首先应该让他们接受数学,了解数学,了解数学的历史和现状。在我省实施的人教版新教材中,已经把数学史作为一门选修课,在必修中,每部分也都出现了大量的数学史知识做为阅读内容。笔者通过实践证明:数学教学过程中适当向学生介绍一些数学史知识,对数学教学和学生的学习的确能起到潜移默化的作用。

一、提高学习兴趣

数学从表面看来是枯燥无味的,特别是一些成绩相对较差的学生,更是对数学学习失去兴趣。因此,介绍数学史中的一些数学家发现真理的思维的艰辛过程,让学生知道数学家在创造性劳动中同样遇到困难,挫折甚至失败。这样,会对学生增强信心,坚定学生学好数学的信念。另一方面,数学史中一些有趣的、动人的事实,既拓宽了学生的知识面,又增强了学生的学习兴趣。比如,我们在几何中学习“勾股定理”这节内容时,关于这一重要定理,可穿插这样一个小故事:在古希腊,相传毕达哥拉斯发现勾股定理时,“欢欣之情,不可言状”,宰了100头牲畜祭缪斯女神(神话中掌管文艺、科学的女神)以酬谢神的默示。这个典故不但可以加深学生对勾股定理的认识,更激发起学生学习勾股定理的兴趣。像这样的典故、有背景的例子在数学史中非常之多,我们在教学过程中或在数学史课上适当加以应用,对激发学生学习兴趣会有极大帮助。

二、数学教育功能

1、揭示数学真理的特性。

数学不同于其他学科,特别是数学真理,它不同于其他科学真理的最大特征,是它的结论必须经过严格的逻辑证明。数学的对象是形象化的思想材料,它的结论是否正确,一般不能像物理等学科那样,借助于可重复的实验来检验。而主要用严格的逻辑推理来证明,而且一旦由推理证明了结论,那么这个结论也就是正确的。

2、提示数学的认知规律。

现代心理学家发现了一个能够体现数学认知功能的“遗传法则”:数学发展的历史顺序,通常也是学习数学的大致顺序,数学家们体验过的困难之处,也大致是学生学习中的难点。而数学家们常通过归纳、类比和猜想等直觉思维去发现重要的结论,然后才考虑它们的证明,因此,向学生介绍这些数学史知识,可让学生了解数学家发现真理的思维过程,从而揭示数学认知规律和思考问题的方法。

三、对学生起到思想教育的作用。

1、培养学生辩证唯物主义观点。

“培养学生良好的个性品质和初步的辩证唯物主义观点”这是《数学教学大纲》结合数学的特点对学生思想教育方面作出的规定,事实上,数学史中可以个用于说明唯物辩证法的例子真是举不胜举。恩格斯在《自然辩证法》一书中说“数学是从人的需要产生的,但是,正如同在其他领域中一样,从现实世界中抽象出来的规律,在一定的发展阶段上就和现实世界相脱离,并且与现实世界对立。”数学的发展就是这样遵循辩证法规律的。向学生展示这样的规律,对培养其唯物主义观点有莫大的帮助。

2、培养学生爱国主义精神。

数学家阿基米德的故事是表现爱国精神的一个典范。阿基米德诞生在西西里的叙拉古城,年轻时曾去亚历山大城学习,后来返回叙拉古,毕生从事科学研究。公元前214——前212年,罗马侵略军围攻叙拉古,阿基米德设计的城防装置曾使兵临城下的敌人长期受阻。不料由于内奸的破坏,叙拉古城最终陷落。这时阿基米德依然在专心致志地思考沙盘上的几何图形,当他突然发现一个罗马兵出现在他面前,只说了一句“不要动我的图!”就被那士兵刺死了。他虽然丧身罗马兵刀下,但是他的杰出的科学成就和爱国主义精神,二千多年来一直为人们所景仰。在建设数学大厦的过程中,中国数学也作出了巨大的贡献。中国古典数学是数学中的珍品,它的成就可同希腊数学相媲美,如祖冲之对圆周率的计算结果为

3.1415926<<3.1415927。这在当时世界上是最好的结果,而且这一纪录在世界上保持了1000年之久,其子祖暅子承父业,进一步钻研,创造性地发现了球体的体积计算公式V=R,完成了其父未竞事业,这种家庭历代成员对数学的贡献,为后世学者树立了榜样。此外,中国数学在十进位值计数法,分数运算,正负数概念及计算,线性方程组解法及高次方程的数值解法等很多方面都曾在世界处于领先地位。这充分说明中华民族是一个擅长数学的民族。在教学过程中适当地颂扬这些中国古典数学的伟大成就或某些科学家的爱国主义精神,有利于培养学生的爱国主义情感。

3、培养学生献身科学事业的高贵品质。

为了求解一个数学问题,数学家常常几代人前仆后继,表现出坚韧不拔的精神。上文提到的祖冲之就是一个很好的例子。自从意大利数学家于16世纪发现三次、四次方程的求根公式后,许多优秀科学家投身到寻求五次方程根式解的研究。但经过200多年的奋斗,依然没有成功。为此挪威科学家阿贝尔更是贡献出了自己年轻而宝贵的生命,年轻时代爱读拉格朗日和高斯著作的阿贝尔不断钻研高次方程的解法,读大学时,他认为自己已经发现了如何用代数方程解五次方程,但不久就纠正了这种想法,他在1824年的论文《论代数方程,证明一般五次方程的不可解性》中,证明了用根式解五次方程是不可以的。但他的天才发现却遭到冷遇,去欧洲大陆谋求教职的努力失败,在贫困交加中死去,时年27岁。一些大的数学家诸如阿基米德、刘徽、欧拉、高斯和牛顿等等,都具有十分高尚的品德和献身科学事业的情怀。这些都是不失时机的对学生进行思想教育的生动素材。

四、起到美学教育的作用。

数学家孜孜不倦地研究数学,和他们对美的追求是分不开的。数学中充满着美的因素,数学美是数学科学的本质力量的感性与理性的呈现。古今中外有不少数学家都用像诗一般的语言赞颂过数学美。

普洛克拉斯早有断言:哪里有数学,哪里就有美。

罗素认为:数学,如果正确地看它,不但拥有真理,而且也具有至高的美,正像雕刻的美是一种冷而严肃的美,这种美不是投合我们天性的微弱方面,这种美没有绘画或音乐的装饰。它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术才能显示出那种完美的境地。

不仅这些,亚里士多德,庞加莱,及我国数学家徐利治等,都对数学美有着同样深刻的感触。既然如此,我们在数学史课上使可结合具体的能够展现实现美的例子印度学生欣赏实现美,提高学生的美学欣赏能力。比如以下几种常见的数学美:

1、曲线美如正弦曲线如图

2、公式美如tan18°+tan36°+tan54°+tan72°

该式本身有一种和谐美,四个正切值排列整齐,角度每次增加18°,且首末两项及距首末等远的两项角度之和为90°,因此化简时必须利用这种和谐关系而采用重新组合的策略。

3、图形美如黄金分割

线段的黄金分割早已引起人们的注意,主要是由此而构成的长方形给人“匀称美”的感觉,黄金分割比w=„„被誉为“人间最巧的比例”。一些名画的主题,电影的画面主题大都放在画面的0.618处,给人以舒适的美感。

4、对称美上述正弦曲线就是轴对称图形,能给人以舒适的美感。杨辉三角更组成美丽的对称图案:

121

1331

14641

15101051

„„

从数学发展的历史来看,对美的追求曾在一定的程度上促进了数学的发展。教学过程中适当的让学生欣赏这些数学美,不仅能激发学生的求知欲,又能使学生的思维目的性得到应有的锻炼,达到美育的效果。

事实证明:在教学过程中,贯穿一些必要的数学史知识,对提高学生的数学素养,甚至对整个数学教育都能起到很好的作用。特别在我们这类生源不优的学校,数学史知识对学生来讲是一笔巨大的精神财富,因此我们在教学过程中应该积极的加以运用。

第三篇:浅谈数学史在中学数学教育中的作用(本站推荐)

浅谈数学史在中学数学教育中的作用

【摘要】数学史在中学数学教学中十分重要,数学史的研究不仅可以提高教师的素质,它对数学教学也有很大的帮助,它可以激发学生对学习数学的兴趣,加深学生对数学知识的理解,有助于学生掌握数学思维方法,培养学生不畏艰险勇往直前的探索精神。此外,教师可以通过巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习。【关键词】数学史 中学数学教学 作用 渗透 1引言

数学,是最能体现人类智慧的一门学科,也是人类文明赖以生存的学科,作为人类思维的表达形式,它反映了人民积极进取的意志、缜密周详的逻辑推理以及对完美境界的追求。中学数学是素质教育的重要组成部分,对培养学生分析解题能力、逻辑推理能力、空间想象能力等都非常重要。而数学史教育对中学数学教育的巨大影响力在近年来愈加为人所获知,越来越多的国家开始重视数学史的教学,我国也不例外,数学史教学已成为数学教学中不可或缺的一部分了,由中华人民共和国教育部门定制的《普通高中数学课程标准》于2003年正式出版,该条例明确地提出学生要“感受在人类历史文明进程中数学的力量,体会数学家们在探究新知的过程中严谨的科学态度和大无畏的探索精神,激发学生对学习数学的兴趣,提高学生对数学的理解感悟能力。”

中学数学老师所要必备的教学素质有很多,其中教师对数学史的扎实掌握是非常重要的一项。教师只有掌握一定的数学史知识,才能改进自身的教学不足,提高自身的数学素养,才能真正的把握到数学发展的脉络,向学生传授真正完整的知识。

2、数学史的内涵

要全面的了解一样事物,我们就要了解清楚事情的来龙去脉,要学会数学,我们就要追问数学的发展历程。“研究这门学科的历史与现状我是们预测数学未来的适当途径。”引用法国著名数学家亨利·庞加莱的原话,也就是说如果我们只是一味的强调知识的掌握却不去了解清楚这些知识的发展历史,那么对这些学生来说,他们所学到的只是些数学的片段知识,并不能真正地认清数学这一学科,而数学史却可以给我们展示知识的总体面貌,让我们更好地地认清数学的过去、现在与未来。

作为一门研究该学科的产生发展及其规律的科学,数学史不仅仅是史料知识这么简单,它还可以追溯到数学的内涵、思维逻辑方式的衍化、发展历程,此外,它还研究数学发展对人类五千多年的文明所带来的影响以及其在人类历史上举足轻重的地位。有人单纯地认为数学史研究就是仅仅为了弄清楚有哪些知识在哪一年由哪个数学家提出的,人类目前为止知道了哪些知识、不知道那些知识,毋容置疑,这是数学史要研究的工作之一,也是最为基础的工作。但是,学习数学史更重要的目的是为了在教学工作中,让师生站在现代数学的成果上,从源头处清理该学科的发展方向和发展规律、并认清它的逻辑思维方式,从本质上更好地理解数学,学会数学。

3、数学史在中学数学教学中的作用

在新课标下改革的大潮下,中学数学课本相应地也增加了不少数学史方面的知识。那么,数学史在中学数学教学中究竟起着怎样的作用呢?作为一个即将踏出学校从事数学教学事业的准老师,我觉得具体有以下几点作用: 3.1数学史能激发学生对学习数学的兴趣

新课标强调教师在教学过程中不仅要重视过程与方法,还要重视学生的情感与态度,只有这样,学生才会对学习产生浓厚的兴趣。在很多学生看来,数学是一门枯燥无味的学科,它既不像语文那样语言优美,又不像英语那样在生活中实用性强,让很多人提不起兴趣来学习。但数学在人类文明上又是不可或缺的,它是一门逻辑性、抽象性很强的学科,如果纯粹的去讲数学知识不去重视培养数学兴趣,那么学生就只是被动的学习,学习主动性就会受到抑制,而数学史在激发学生 学习数学的兴趣就有很大的帮助了,把数学史渗透到数学课堂教学中来能让数学教学活跃起来,不仅有利于学习效果的深化,还可以激发和提高学生数学学习的兴趣。在课堂一开始,根据教学内容讲叙相应数学家的故事,这样可以引起学生浓厚的兴趣,把心思从课间活动中转移到数学教学当中,这是创造最佳课堂情境,为课堂教学作铺垫的一种好的方法,不仅如此,在教师讲述数学典故的时候,学生的视野还得以开阔,这让他们知道原来这些看似乏味的知识背后却有一个如此一番故事,那么他们对所学的知识提起兴趣了。如在讲数列的前n项和时,在课堂开始开始的时候给学生讲高斯小学被罚算前一百位正整数和的故事,这样学生的心思很快就吸引到课堂来了。除此以外,教师在课堂中引入历史名题也起到引起学生兴趣的作用,许多历史名题的提出都与数学家的有关,学生在思考问题的时候就会不经意的想到这个问题许多大数学家思考过,就会感到一种挑战,自己现在思考的题目许多伟大的数学家也思考过,不知他们所遇到的困惑是否跟我的一样呢,即使想不出来学生也会对题目产生深厚的兴趣。

3.2数学史能加深学生对数学知识的理解

中学生的数学教材由于受一定的局限因素的限制,传授的知识虽然有一定的系统性,但学生对知识的来龙去脉还是不能有个清晰细致的理解,我们就可以利用数学史上人类认知的过程规律,对知识主干进行垂直梳理,使学生头脑中的知识脉络更加清晰,有利于学生对知识的深刻理解和记忆。数学史可以让学生更容易去接受新学的知识,在学生第一次接触代数,第一次面对用字母代替具体的数、时,他们常常会感到迷惑,不知为何要如此,这时教师若想改变这种状况,就可以在课堂上向学生讲述相关数学史料,帮助学生梳理、理解所学的的数学知识。数学的发展历史很长,而现今学生学习到的数学知识是间接学习所得,以前数学家所经历的困难正是学生现在经历的障碍,正因为这些知识产生的过程与学生间接学习的过程十分相似,数学史的讲授就可以帮助学生更好的理解数学知识。总的来说,数学知识是一环紧扣一环的,通过数学史对头脑中所学习的知识的梳理,学生可以更好地在脑海中建立各知识点间、各学科间以及学习与生活间的联系,为更为深刻地理解数学做好铺垫。

在数学历史上无理数的出现曾引发了第一次数学危机,在很长一段时间内人们在心理上都不愿意接受这一事实,学生在学习这个曾经引起动荡的无理数时并不容易,山西某中学曾做过调查,对于无理数相关知识,70%学生只是会做题目,对无理数的概念并没有深刻的理解,这势必对后面的学习造成一定的影响。查阅相关数学史料,我们就发现:在数学史上人们对无理数的发现和理解的过程是想到漫长的,在这个过程当中也犯了不少错误,这样我们就很好的了解学生在学习这一概念时遇到困难是不出奇的,这只是历史的“再现”。所以,在课堂上教师可对学生多讲一些无理数的发展史,这有利于帮助学生理解并接受这一知识。

3.3数学史有助于学生掌握数学思维方法 数学是一门特别的学科,它的特别在于数学有极其严密的思维逻辑形式。我们之所以要学习数学,就是希望通过在数学学习的过程中去锻炼我们的大脑,让我们形成精确缜密的逻辑思维方式和锻炼提高我们的创造能力。实施证明,数学史为这一教育目的的实现起到了不可磨灭的作用。现在中学数学教 材向学生呈现的更多的是系统性的、“天衣无缝”的知识,语言十分的简练,基本都是按定义、定理、证明、推理、例题练习等固定形式去编排,学生在学习过程中跟多的是单纯的去接受这些知识,而缺乏一种真正的数学思维过程,由于学生认知水平的局限,这样他们很容易产生不正确的观点想法,虽然能简速便捷地接受到大批的知识,却让学生轻易认为数学知识学习的过程就固定的是“定义——得出性质定理——做题”,事实是系统化了,却无法让学生清楚了解到知识是经过发现问题、提出假设、论证假设、得出结论并完善,逐步的、经过漫长过程成熟起来的,这不利于学生正确数学思维方法的形成。但是,数学史却可以做到这一点。数学史向学生呈现的不仅仅是明确的数学知识,而更多的是传授相应知识的创造过程,这就让学生对数学知识的产生有一个较为清晰的认识了。通过数学史我们可以认识到数学的本原与特质,从这一个层面上看,在数学史的引领之下,师生间可以创造出一种双向的、探索与研究的课堂气氛。

这样的例子有很多,例如,我们可以再讲数形结合思想时,可以先向学生说在几何学中有很多长期不能解决的问题,例如立方倍级、三等分任意角、化圆为方等问题,直到十七世纪后半叶,法国数学家笛卡儿以坐标为桥梁、在点与数之间、曲线与方程之间建立起对应的关系,用代数方法研究几何问题,从而创立了解释几何学,至今也得到广泛的应用。又如,牛顿和莱布尼兹在在古代数学家研究积分学的思想成果上,为解决许多科学的问题创办了微积分学。

3.4数学史有能培养学生不畏艰险勇往直前的探索精神

一般来说,学生学习的数学课本呈现给学生的都是系统的、现成的知识,并未能体现到数学家们前赴后继、劈荆斩刺地获得数学知识的艰辛,数学家所经历的艰辛而漫长的道路对学生来说似乎只是种形式。但数学这一学科之所以有今天的繁荣昌盛,全赖一代又一代的数学家不畏艰险勇往直前的去摸索、去奋战。通过学习数学史,学生可以明白到这一个道理,知道这些数学家是经过怎样的艰辛奋斗、怎样的排除万难、去把知识一点一滴的积累下来给后来者一个更完善的知识环境,他们就会发现目前学习数学所经历的困难是微不足道的,这样也就不会被学习过程中所遇到的挫折所打倒。此外,通过数学史学生也会发现从古到今不少著名数学家也犯过如今看来非常可笑的错误,数学家跟他们一样也会犯错,那么他们就能正确看待在学习数学过程中所犯过的错误,从而树立起学习数学的自信心。

以计算圆周率∏为例子,古今中外,许多的人都致力于∏的研究与计算。为了计算出圆周率的越来越好的近似值,无数的数学家为这个神秘的数贡献了一生的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算∏的世界记录频频创新。德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,用古典的方法计算到圆的内接正262边形,在1609年得到了∏的35位精度值,以至于∏在德国被称为Ludolph数;英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。虽然后来又有了计算机,但人们对圆周率还是兴趣盎然,因为数学家们认为对∏的研究可以说明人类的认识是无穷无尽的。在教学圆周率的时候,向学生讲述适当的史料知识,这对培养学生不畏艰险勇往直前的探索精神是有积极意义的。历代数学家在困难面前劈荆斩刺、为数学的通天塔添砖加瓦,他们崇高的理想、坚定的信念、顽强的斗志、勇往直前的探索精神是教育学生最好的模范。4如何在中学数学教学中渗透数学史

乔治.屈维廉说过:“历史并没有真正的科学价值,它的真正目的乃是教育别人。”作为一个准数学老师,我们不只是应该是去学会数学史,更应该是学会运用数学史。教师如果在数学课堂中,结合所教授的内容,有目的、有计划地融入数学史,不仅可以教学内容更加的丰富饱满,还可以对学生起到潜移默化的作用,使学生医生受益。那如何在中学数学教学中渗透数学史呢,下面给大家介绍几种常见的方法: 4.1巧妙利用数学史名题教学

数学史发展的历史长河中,数学历史名题对数学知识的补充、发展都起过重大的作用,如《孙子算经》里面的“鸡兔同笼”问题、古希腊的三大几何难题、哥德巴赫猜想等等,这些历史名题的提出一般都具有一定的现实背景并对实质性的数学方法有所揭示,这对学生理解数学内容和思想方法有极其巨大的帮助。

通过教师对具有开放性的历史名题的展示,一方面可以让学生理解到,数学这个领域是运动着的、是活跃的、未完成的,它不是一个静止的、封闭的系统。另一方面,学生还能够认识到数学正是在猜想、错误、中发展进行的,数学进步是对传统观念的革新,从而激发学生的思维,使他们感受到,抓住适当的、有价值的数学问题将是多么激动人心的事情。

例如,初等几何著名定理勾股定理的证明,这个定理以它的简洁性和应用的广泛性,吸引了很多人。由于年代久远,已经很难知道谁是第一个证明勾股定理的人了,但它的证明方法各式各样,高达三百多种,其中有赵爽证明法、美国总统加菲尔证明法、欧几里得证明方法、利用相似三角形证明方法等等。向学生讲述勾股地理证明的历史,可以使单调无趣的证明过程变得趣味盎然而又富有人性化,跟重要的是让学生觉得他们是在自己探索知识,从而让学生更加积极地参与其中,历史上这么多名人去证明勾股地理,现在自己也跟那些名人一样在研究同样的问题,这个问题就变得不一样了。即使历史上已有人用同样的方法做出过证明,但当学生独自去解决掉勾股定理的证明时,他心里面所产生的成就感和自豪感是其他成功的获得所不能比拟的,而这种成就感也会使学生从此对数学产生浓厚的兴趣。4.2利用数学史进行新课引入

俗话说:“千里之行,始于足下”。好的开始是成功的一半,教师可以运用数学史来进行新课的导入,引发学生的注意力,把学生的思路从上一节课的知识中引导这一节课中,达到上课的最佳心理状态,从而提高学习的效率。在数学课堂的开端教师向学生适当地讲授一些数学知识产生的故事、传说不仅可以引起学生对知识点的直接兴趣,还可以让学生见识到知识的产生发展过程。当然,要做到这一点老师就要经过精心的设计,力求做到引人入胜,统摄全局,引起共鸣。

举个例子,在讲等比数列时,教师可以先向学生讲述古印度国王国王用麦子奖赏智者的故事:传说古代印度有个国王非常喜欢国际象棋,一天,一个智者与国王下棋并赢了国王,国王说可以满足他的一个要求,智者提出的要求就是要国王在棋盘的第1个格子里放上1颗麦粒,第2个格子放上2颗麦粒,第三个格子放4粒麦粒,如此类推,后一个格子里放的麦粒数都是前一个格子里放的麦粒的2倍(国际象棋棋盘有64个格子),希望国王把这些麦子赏赐给他.国王想这还不容易,就欣然同意了他的要求。经过计算,发明者要求的麦粒总数就是2的64次方减1,这个数字非常大。用这个故事引入等比数列新课,相信学生的注意力都会被吸引过来,而且还能培养学生学习数学的兴趣,机器学生对新知识的探究欲望,让学生情绪高涨,从而产生良好的课堂气氛。

4.3利用数学史设置课堂结束环节

一节课上得好不好,课堂的结束环节很重要。课堂结束这一环节主要是实现本节课的教学升华,辅助学生对知识点进行归纳整理、挖掘提炼,让他们理清教学过程的整体思路脉络,掌握知识的深处内涵。除此以外好的课堂结束环节还可以起到承上启下的作用,让学生对下节课的内容产生兴趣,为下一节课的顺利进行做铺垫。如果这个时候教师能好好利用数学史知识来结束本节课的内容,这样就不仅可以吸引学生的兴趣,还可以启发学生的想象力,探究数学知识的奥秘。不仅如此,由于每个学生学习的水平和需要都不尽相同,用数学史来作为课堂的结束环节,可以让不同基础的学生得到不同程度的发展,使扎实掌握好基础的学生继续深入探究,也给相对落后的学生启发。

譬如这样,陈景润的老师在“整数的性质”这堂课结束的时候跟学生说:“在自然科学当中数学处于皇后的地位,皇后头上的皇冠就是数论。而哥德巴赫猜想,则是这顶皇冠上最璀璨夺目的明珠,为了这了明珠许多数学家倾尽了毕生心血,不知将来在座各位谁能把这颗明珠摘下来呢?”就是这位老师在课堂结束的时候用了数学史的知识做结束环节,记起来学生的探究的种子,后来就有了这个世界上攻克“哥德巴赫猜想”的第一个人。4.4利用数学史讲授知识系列

每一系列的数学知识都是经过漫长的历史演变逐渐发展形成的,其中每个环节的知识的获得都是以一代代人无数的精力和挫折为代价的,数学教学应做到历史与逻辑的统一,寻找恰当的时机让学生像当年的数学家一样经历和体验数学创造的必要性和创造的基本方法。在数学教学过程中,教师可以把学生学习过的知识当成一个环节,各个环节用历史发生的时间和事件串连成一个知识体系,向学生系统地论述各环节知识产生的过程和发展,在教学进度的允许下,教师可以开展适当的专题性学习,适当向学生介绍一些数学史知识,如知识的背景、知识的影响力和现实生活中的实际应用等等,把学生头脑中的数学知识进行梳理,让这些知识形成一个相对清晰完整的系统,这样会起到1+1﹥2的效果了。

以数的发展历史为例子,在生产活动中,人们为了计量物品的个数,产生出自然数这一概念,在对物品的分割中产生了分数,为了表示有相反意义的量时引入了正负数,在对连续的量进行度量时,又引入了无理数,从负数不能开方出发引入了虚数,并把实数扩展到复数。于是就形成了数的理论发展概况:自然数——整数——有理数——无理数——实数——复数,让学生一目了然,对培养学生知识是变化发展的观点十分有利。4.5利用数学史开展探究式学习数学知识的活动都是经过观察、实验、交流、分析、综合、推理、总结得出来的,但我们的教科书上鲜少反映这一漫长而复杂的过程,教师可以以数学史为载体,对某一概念形成的几个关键特征进行分析,在学习该概念时,思考学习者可能会感到一定的困难,他们只理解到概念的表面意思,对概念的深层意思却并不理解,但如果配合学生认知规律去给学生讲解数学概念的发展历程,并对这一数学概念进行拆开理解,再进行知识的序列化重构,然后在这样的基础上实施教学,让学习者在教师的引领作用下,重现数学家们在概念形成所经历的几个关键的探究活动过程,同时教师进行适当指导,让学生经历思维的原过程,不仅能丰富学生学习内容还能增加学生对数学史的兴趣,在探索交流的氛围中获得知识,通过喜欢数学史进而喜欢数学。

在探究性学习中,数学史还有一个非常普遍的作用,就是创建探究性学习的情景,而创设的请进要考虑到各方面的因素,创设的情景要有吸引性、真实性、切合学生的生活实际,又要考虑到知识产生发展的规律性和顺序性。那么运用数学史来进行探究性活动情景的创设就再适合不过了,这样既有利于探究性学习的开展又起到对学生的文化熏陶作用。例如,教师在教授“等可能性事件”知识的时候,可以向学生讲述当年今日在数学界所发生的事情,这一系列的数学事件都发生在这一天,这仅仅是一种巧合还是一种正常现象呢? 5小结 综上所述,数学史不仅是在学生对学习数学兴趣的激发,数学知识的理解和数学思维方法的掌握有所帮助以外,它对培养学生不畏艰险勇往直前的探索精神的过程中所起的作用不应忽视,在数学教学中利用数学史资源促进教育教学更是有必要的,如果运用的好,它可以使数学课更加的生动而富有感染力。理论应该是为实践而服务的,我们可以通过各种方法去渗透数学史,其中包括:巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习,以上是我个人心得体会,由于水平有限,如有不足之处,请多多包涵。

第四篇:数学史在数学教育中的价值

数学史在数学教育中的价值

摘要:良好数学观形成的阶梯;学习热情激发的养料;数学思想方法培养的载体;人文思想教育的参考;爱国情怀的培养

我国著名数学家和数学教育家徐利治先生认为:数学思想史向人们揭示了数学创造性思想的萌芽、成长、发展的客观历史过程,同时也反映了数学成果(一般表现为数学模式及其建构)的发现、发明、创造的动力、契机其增值发展的规律,从而将能启发年轻一代数学家们顺应客观历史规律,总结并扬弃前一代数学家的思想方法,为人类的数学文化事业做出继开来的贡献。在数学教育中,让学生接受更多的数学史方面的教育,不但可以提高学生的文化修养,激发广大学生学习数学的热情,同时又能增加学生对数学知识的理解,促进学生的学习。

1、良好数学观形成的阶梯

数学观是人们对数学的认识和看法,既关于“数学是什么?”的数学本质问题,这不仅是对数学认识的问题,也是数学教育中的一个根本性问题.从数学史上看,无论是最早讨论数学本质的古希腊哲学家柏拉图,还是关于数学基础的三大学派——逻辑主义、直觉主义和形式主义,以及关于数学知识的生成为核心的社会建构主义。如果把数学只是看成一门由数学家创造出来的纯理论的学科,凡人不必去理解其创造发现的过程,那么,数学教育就必将仅仅是纯粹的知识传授.通过在数学教学中逐步渗透数学史的知识,就可容易地理解以下结论:(1)数学不仅是一门系统化的演绎科学,而且是源于社会实践的归纳科学;(2)数学是由问题和解决问题的方法构成的有机整体;(3)数学是不断完善、广泛应用和持续发展的。

2、学习热情激发的养料

当前我国高校很多学生学习数学的动力不强,特别是我们这样的石油工科院校,有部分学生选择了数学系其实只是一种无奈,因此在学习过程中随着知识的加深,学习兴趣日益在减弱。学生的学习兴趣不高也极大地影响了数学教学的效果。但这并不是因为数学本身无趣,而是教学忽视了对学生学习兴趣的培养。美国数学家魏尔德(R.Lwilder)[1]认为:数学课堂上只强调数学的技术是不够的,要使学生被数学所吸引,一定要运用数学历史知识。也就是说,数学史素养对于一个合格的数学教师而言是不可缺的。在数学教育中适当结合数学史知识,并充分挖掘数学史在课程中的教育价7生对数学的了解和学习热情的激发。挖掘数学历史中的榜样,激励学生的学习意志,通过有意识地向学生讲解一些数学家的奋斗史和历史上优秀人物在逆境中成才的故事,可激励学生学习数学家的非凡毅力和刻苦精神,帮助他们树立正确对待挫折的观念;介绍数学发展历史中的辉煌成就,利用教学内容教育学生,可使学生增强民族自豪感和自信心,让他们产生对数学家的崇拜以及对数学的热爱,从小树立远大的奋斗目标。我觉得学校开设数学文化这门课真心不错,尤其是对于作为文科生的我来说激发了我对数学的热爱,让我不再惧怕高数。

3、数学思想方法培养的载体

数学教育的根本目的在于培养数学能力,即运用数学解决实际问

题和进行发明创造的本领,而这种能力和本领,不仅表现在对数学知识的记忆,而且更主要地反映在数学思想方法的素养.正如日本数学家米山国藏[2]曾指出:科学工作者所需要的数学知识,相对地说是不够的,而数学的精神、思想与方法却是绝对必需的,数学知识可以记忆一时,但数学思想方法却永远发挥作用,可以受益终生,是数学能力之所在。在数学学习中经常有这样的现象,很多大学生虽然能记住大量的数学公式,对教材中的诸多定义、定理也很熟悉,也做了一定量的数学习题,可是遇到一个看起来比较新颖的

题目时,还是感到束手无策,没有解题思路.其实问题的症结就在于,学生平时只知道做题,不注意其中数学的思想方法.事实上,数学的学习主要是数学思想方法的学习和掌握,培养学生解决数学问题和猜想的主要思想和方法对于培养数学创新精神有着十分重要的意义.数学能力的培养与数学问题的解答很重要的一点是引导学生学习、体会与运用数学思想方法.由于数学教材中编写的内容主要是经过严格论证的结论,而不写这些结论产生的过程,很少反映人们是怎样去想的.而数学史的学习恰恰可以弥补这方面的不足,作为一种史料,本着精确、尊重事实的态度,它详细地记载和介绍了各类数学事件以及数学定理产生的前因后果,方便于学生查阅并了解知识的来龙去脉,掌握某类数学事实或定理,更好地感受多种数学思想方法的魅力。

4、人文思想教育的参考

在传统数学教学中,数学史与爱国主义教育是密不可分的,而在利用数学史进行爱国主义教育时,往往又是言必称中国人的某项成就

比国外早多少年,其实这是把数学教育德育功能简单化了。数学是全人类的共同财富,从来不是某一个国家、民族或个人的专利,每一种文化都有自己的数学,各个国家和民族应该彼此借鉴,互相学习,共同提高。

从目前我国文理分科的现状,导致我们的教育所培养的人才已经越来越不适应当今社会自然科学与社会科学高度渗透的时代要求来看,数学史作为一门文理交叉的学科,又恰好弥补和沟通文理科方面的弱势,在人文教育方面数学史具有不可替代的作用。

例如:(1)给船制作帆布,每块帆布1000平方腕尺,帆高与宽之比为1比1.5.问帆高为多少?(1腕尺= 20英寸)(答案:25.8腕尺)

(2)一位先生劳动一天,得工钱4元,每周付伙食费8元;10周后他挣得144元;求他空闲的天数和劳动的天数.(答案:14天空闲,56天工作)

数学史的教学,既可使数学类专业的学生在接受数学专业训练的同时,获得人文科学方面的修养;也可以使文科或其它专业学生了解数学的面貌,获得理性思维方面的修养。此外,也可以使学生更好地感知到,人文教育不仅仅是由人文课程来承担的,数学课程不但能承担人文教育的作用,而且还可能起到某种特殊的作用,这种特殊作用也是不能被替代的。

5、爱国情怀的培养

数学是璀璨夺目的中国古代文化的重要组成部分,古代伟大的数

学贡献不仅是当今进行爱国注意教育的绝佳材料,而且古代数学家实事求是,敢于坚持真理、勇于攀登高峰的高尚品德,也可以激励后人振兴中华,为实现中华民族伟大复兴的而奋斗的自强精神。中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。现在的数学已经世界大同,已不可能用中国古代的方法去学习数学。不过应该给学生的数学学习作一个有益的补充,让学生在学习数学的时候能够知道,这些数学知识我们的先人都已经知晓。对中国古代数学的创造过程的了解可以使我们从前人的探索与奋斗中汲取营养,获得鼓舞,增强信心。结语:

第五篇:数学史在数学概念教学中的价值和作用

数学史在数学概念教学中的价值和作用

现在教师将数学史应用于概念教学的一般方法为:利用数学课本中的阅读材料,选取比较有意思的科学家的小故事讲讲,或者是“宣读”一下有关的数学史资料.有极少的教师关注数学史中对学生认知的帮助,但是对数学史如何应用于概念教学的认知没有形成有效的策略.数学史素养不仅仅是教师掌握的数学史知识的量,更重要的是教师在教学中自然流露出的“历史感”, 这种“历史感”贯穿整个教学过程中,而不是数学史资料的“宣读”.教师对数学史的少运用还有一个原因是“时间紧迫,难以讲授”,其实这是对数学史的误解,数学史存在三种形态,我们运用的是数学史的教育形态,即将所教概念在历史的脉络中重新整理,用新角度来讲授,使数学史恰如其分地流露在数学教育中.台湾师范大学洪万生教授指出教师应用数学史至少可以分为三个层次: 第一,说故事;第二,在历史脉络中比较数学家所提供的不同方法,拓宽学生的视野,培养全方位的认知能力和思考弹性;第三,从历史的角度注入数学活动的文化意义,在数学教育过程中实践多元文化关怀的理想.据此,在概念教学中应用数学史也相应的分为三种层面: 1.情感层面——激发学习兴趣 情感层面是指在概念教学通过历史上发生的小故事、科学家的传记、趣题等内容提高学生学习的兴趣.例如,坐标系概念的教学中可以从讲故事着手: 传说中有这么一个故事:有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩.他就拼命琢磨,通过什么样的办法才能把“点”和“数”联系起来.突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝.蜘蛛的“表演”,使笛卡尔思路豁然开朗.他想,可以把蜘蛛看作一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙脚作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3,2,1,也可以用空间中的一个点 P来表示它(如图 1).同样,用一组数(a, b)可以表示平面上的一个点,平面上的一个点也可以用一组两个有顺序的数来表示(如图2).于是在蜘蛛的启示下,笛卡尔创建了直角坐标系.无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人.这个有趣的传说,就像瓦特看到蒸汽冲起开水壶盖发明了蒸汽机,牛顿被苹果砸了后发现了万有引力一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感.2.认知层面——促进对概念的理解

认知层面是指在历史脉络中比较数学家们所提供的不同方法,拓宽学生的视野,提高学生对概念的理解.在教学中教师要总结知识发展的规律,概念发明和发现的方法.例如:在函数概念的教学中我们可以遵循历史的足迹,比较函数概念在各个时期的变化,找到它们的区别与联系.有些数学概念是已有概念的扩充,若能揭示概念的扩充规律,便可以水到渠成地引入新概念.例如复数概念的教学中可以先回顾已经历过的几次数集扩充的事实:正整数→自然数→非负有理数→有理数→实数.然后教师提出问题:上述数集扩充的原因及其规律如何? 分析如下:实际问题的需要使得在已有的数集内有些运算无法进行,数集的扩充过程体现了如下规律:(1)每次扩充都增加规定了新元素;(2)在原数集内成立的运算规律,在数集扩充后的更大范围内仍然成立;(3)扩充后的新数集里能解决原数集不能解决的问题.有了上述准备后,教师提出问题:负数不能开平方的事实说明实数集不够完善,因而提出将实数集扩充为一个更为完整的数集的必要性.那么,怎样解决这个问题呢?教师呈现数学史上复数概念的产生遇到的困难和科学家们的解决思路,借鉴上述规律,为了扩充实数集,引入新元素i,并作出两条规定.这样学生对i的引入不会感到疑惑,对复数集概念的建立也不会觉得突然,使学生的思维很自然地步入知识发生和形成的轨道中,为概念的理解和进一步研究奠定基础.3.文化层面——体会概念中蕴含的文化

文化层面是指从历史的角度注入数学概念一定的文化意义,主要是讲概念的价值和意义.例如坐标系概念可以从以下方面介绍:(1)在学科中的意义

直角坐标系的创建,在代数和几何上架起了一座桥梁.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究.笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何.他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的.比如,我们把圆看成是一个动点对定点O做等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的.我们把点看作是形成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩.把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法.笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何.在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数.(2)历史上的评价

恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学.” 以上三个应用的层面,在教学中都要有所涉及,但侧重点不同.从概念教学目的考虑,应以认知层面为主,以文化层面和情感层面为辅.下面谈谈采取怎样的策略融入数学史使数学概念教学能有效地达到对数学概念的认知层面.1.问题策略——设置问题,激发学习动机

问题策略是指为了丰富学生在概念学习中的体验,将数学史中数学概念的形成过程、形式化的数学概念以及一些相关的材料转化成数学问题,形成问题情境,在问题的探究中“学数学、做数学、用数学”,最终构建概念的心理表征.动机来源于需要,而推动数学发展的原始动力就是数学问题.正是有了形形色色的数学问题,才产生了丰富多彩的数学概念,因此,概念教学的起点应是问题.我们平时所有的教科书是按演绎体系来编排的,即概念→定理→问题解决,反映了一种静止的数学观,但历史的真实面目并非如此,这是教学法的违背.真正的数学教育应遵循数学发展渐进系统化的过程,教学生像数学家那样“再创造”的方法去学习.重要的是,教科书的编写人员应将一些历史概况和数学思想变迁的重要例子写进教材,而学生通过解题讨论不同的猜想和过程,对自己的概念形成和难点及重要的观念的改变做进一步的了解也同样很重要.数学史的应用必须问题化.这可以从两方面下手:其一,把概念生成过程问题化.一个概念是如何引入的?必要性和重要性何在?这些问题往往也是区分概念的本质特征和非本质特征的关键所在.因此教学中应尽可能把知识的发生过程转化为一系列带有探究性的问题,真正使有关材料成为学生思考的对象.其二,把形式化的数学材料转化为蕴含概念本质特征、贴近学生生活的、适合学生探究的问题.通过学生动手操作,把数学拉到学生的身边,使数学变得亲切,把学生引向概念本质.2.有指导的再创造策略——追溯历史,重建数学概念

有指导的再创造策略是指利用数学史料进行课堂设计让学生经历数学知识的形成与应用,自主地生成概念.再创造策略可以使学生更好地理解数学概念形成过程,体会蕴含在其中的思想方法,追寻数学发展的历史足迹,增强学好数学的愿望和信心.特别是对于抽象数学概念的教学,要特别关注概念的形成的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式.弗赖登塔尔说得好:“我们不应该遵循发明者的足迹,而是经过改良同时有更好的引导作用的历史过程.”在教学过程中,学生应当有机会经历与数学事件的历史发展相类似的探究过程,但此时并不是真正地去创造,而是在教师的引导下获得知识.学生沿着历史发展的路径,了解某部分的数学概念的来龙去脉,在此过程中他们的学习也包含了再创造、再发现的意义.有指导的再创造策略的应用要求教师的课堂设计应当具有一定的开放性,为学生提供“提出问题、探索问题”的空间,培养学生勤于思考的习惯、坚忍不拔的意志和勇于创新的精神.信息技术为数学实验提供了可能,教师应尽可能地使用科学计算器、计算机及软件、互联网以及各种数学教育技术平台,支持和鼓励学生用现代信息技术学习数学、开展课题研究,改进学习方式,提高学生的创新意识和实践能力.

下载数学史在数学教育中的作用word格式文档
下载数学史在数学教育中的作用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈数学史在中学数学教学中的作用

    浅谈数学史在中学数学教学中的作用 石嘴山市第一中学刘园 摘要:新课程是要有深层次的课程理念和课程制度的创新;新课程观认为课程不仅是知识,同时也是经验,是活动。在新课程理念......

    谈数学史在教学中的作用

    谈数学史中的课堂价值【内容摘要】美妙的故事是人们喜闻乐见的世界语,学习的动力不仅源自于规律的神奇,亦源于先驱者的各种传奇,数学解题有时只是一种娱乐,精彩的数学家的人文故......

    数学教学中的数学史教育

    数学教学中的数学史教育 数学史是研究数学概念、数学方法和数学思想起源与发展、及其与社会、经济和一般文化联系的一门学科,它反映了数学发展的脉络与本质。数学史的价值表......

    浅谈数学史教学在高等数学课堂中的作用

    浅谈数学史教学在高等数学课堂中的作用摘要:数学史是研究数学的发生、发展过程及其规律的一门学科,在高数教学中有机地融入数学史的内容可以培养学员的兴趣,提高教学效果。本文......

    数学史在中学数学教学中的运用和作用

    数学史在中学数学教学中的运用和作用 摘要:随着数学教学改革的逐步深入,数学史也越来越受到数学教育教学工作者的重视。中学数学新课程标准中将数学史列为中学数学学习阶段的......

    数学史与数学教育

    第三节 数学史与数学教育 数学是历史地形成的。只有懂得历史,才能深刻理解数学。法国伟大的数 学家亨利·庞加莱曾说: “如果我们想要预测数学的未来,那么适当的途径是研究这门......

    小学数学中的数学史(模版)

    小学数学中的数学史 摘要:数学史融入小学数学是一种趋势与必然,小学数学教材各版本都不同程度地选入了一些数学史料作为背景知识。义务教育阶段小学数学教材中的数学史主要体......

    浅谈数学史在初中数学课堂教学中的意义

    浅谈数学史在初中数学课堂教学中的意义 【摘 要】数学史不仅向人们展现了数学的发展历程,而且还蕴含着历代数学家严谨治学、勇于探索的精神。在初中数学教学中融入数学史,不仅......