第一篇:浅谈数学史在数学教学中的作用
浅谈数学史在数学教学中的作用
张永强
内容提要:
“二十一世纪的数学大国”,“中国数学率先赶上世界先进水平”,这是我国数学界和数学教育界的共同愿望。一直以来,中国数学重视基本运算,基本训练,注意培养逻辑思维能力,在国际上,中国学生的成绩也一直名列前茅。但西彦有云:“你可以将马拉到河边,但你无法迫使它喝水。”我们把学生集中在教室里,也并不等于他们进入了主动学习的状态。因此,让学生学习数学,首先应该让他们接受数学,了解数学,了解数学的历史和现状。在我省实施的人教版新教材中,已经把数学史作为一门选修课,在必修中,每部分也都出现了大量的数学史知识做为阅读内容。笔者通过实践证明:数学教学过程中适当向学生介绍一些数学史知识,对数学教学和学生的学习的确能起到潜移默化的作用。
一、提高学习兴趣
数学从表面看来是枯燥无味的,特别是一些成绩相对较差的学生,更是对数学学习失去兴趣。因此,介绍数学史中的一些数学家发现真理的思维的艰辛过程,让学生知道数学家在创造性劳动中同样遇到困难,挫折甚至失败。这样,会对学生增强信心,坚定学生学好数学的信念。另一方面,数学史中一些有趣的、动人的事实,既拓宽了学生的知识面,又增强了学生的学习兴趣。比如,我们在几何中学习“勾股定理”这节内容时,关于这一重要定理,可穿插这样一个小故事:在古希腊,相传毕达哥拉斯发现勾股定理时,“欢欣之情,不可言状”,宰了100头牲畜祭缪斯女神(神话中掌管文艺、科学的女神)以酬谢神的默示。这个典故不但可以加深学生对勾股定理的认识,更激发起学生学习勾股定理的兴趣。像这样的典故、有背景的例子在数学史中非常之多,我们在教学过程中或在数学史课上适当加以应用,对激发学生学习兴趣会有极大帮助。
二、数学教育功能
1、揭示数学真理的特性。
数学不同于其他学科,特别是数学真理,它不同于其他科学真理的最大特征,是它的结论必须经过严格的逻辑证明。数学的对象是形象化的思想材料,它的结论是否正确,一般不能像物理等学科那样,借助于可重复的实验来检验。而主要用严格的逻辑推理来证明,而且一旦由推理证明了结论,那么这个结论也就是正确的。
2、提示数学的认知规律。
现代心理学家发现了一个能够体现数学认知功能的“遗传法则”:数学发展的历史顺序,通常也是学习数学的大致顺序,数学家们体验过的困难之处,也大致是学生学习中的难点。而数学家们常通过归纳、类比和猜想等直觉思维去发现重要的结论,然后才考虑它们的证明,因此,向学生介绍这些数学史知识,可让学生了解数学家发现真理的思维过程,从而揭示数学认知规律和思考问题的方法。
三、对学生起到思想教育的作用。
1、培养学生辩证唯物主义观点。
“培养学生良好的个性品质和初步的辩证唯物主义观点”这是《数学教学大纲》结合数学的特点对学生思想教育方面作出的规定,事实上,数学史中可以个用于说明唯物辩证法的例子真是举不胜举。恩格斯在《自然辩证法》一书中说“数学是从人的需要产生的,但是,正如同在其他领域中一样,从现实世界中抽象出来的规律,在一定的发展阶段上就和现实世界相脱离,并且与现实世界对立。”数学的发展就是这样遵循辩证法规律的。向学生展示这样的规律,对培养其唯物主义观点有莫大的帮助。
2、培养学生爱国主义精神。
数学家阿基米德的故事是表现爱国精神的一个典范。阿基米德诞生在西西里的叙拉古城,年轻时曾去亚历山大城学习,后来返回叙拉古,毕生从事科学研究。公元前214——前212年,罗马侵略军围攻叙拉古,阿基米德设计的城防装置曾使兵临城下的敌人长期受阻。不料由于内奸的破坏,叙拉古城最终陷落。这时阿基米德依然在专心致志地思考沙盘上的几何图形,当他突然发现一个罗马兵出现在他面前,只说了一句“不要动我的图!”就被那士兵刺死了。他虽然丧身罗马兵刀下,但是他的杰出的科学成就和爱国主义精神,二千多年来一直为人们所景仰。在建设数学大厦的过程中,中国数学也作出了巨大的贡献。中国古典数学是数学中的珍品,它的成就可同希腊数学相媲美,如祖冲之对圆周率的计算结果为
3.1415926<<3.1415927。这在当时世界上是最好的结果,而且这一纪录在世界上保持了1000年之久,其子祖暅子承父业,进一步钻研,创造性地发现了球体的体积计算公式V=R,完成了其父未竞事业,这种家庭历代成员对数学的贡献,为后世学者树立了榜样。此外,中国数学在十进位值计数法,分数运算,正负数概念及计算,线性方程组解法及高次方程的数值解法等很多方面都曾在世界处于领先地位。这充分说明中华民族是一个擅长数学的民族。在教学过程中适当地颂扬这些中国古典数学的伟大成就或某些科学家的爱国主义精神,有利于培养学生的爱国主义情感。
3、培养学生献身科学事业的高贵品质。
为了求解一个数学问题,数学家常常几代人前仆后继,表现出坚韧不拔的精神。上文提到的祖冲之就是一个很好的例子。自从意大利数学家于16世纪发现三次、四次方程的求根公式后,许多优秀科学家投身到寻求五次方程根式解的研究。但经过200多年的奋斗,依然没有成功。为此挪威科学家阿贝尔更是贡献出了自己年轻而宝贵的生命,年轻时代爱读拉格朗日和高斯著作的阿贝尔不断钻研高次方程的解法,读大学时,他认为自己已经发现了如何用代数方程解五次方程,但不久就纠正了这种想法,他在1824年的论文《论代数方程,证明一般五次方程的不可解性》中,证明了用根式解五次方程是不可以的。但他的天才发现却遭到冷遇,去欧洲大陆谋求教职的努力失败,在贫困交加中死去,时年27岁。一些大的数学家诸如阿基米德、刘徽、欧拉、高斯和牛顿等等,都具有十分高尚的品德和献身科学事业的情怀。这些都是不失时机的对学生进行思想教育的生动素材。
四、起到美学教育的作用。
数学家孜孜不倦地研究数学,和他们对美的追求是分不开的。数学中充满着美的因素,数学美是数学科学的本质力量的感性与理性的呈现。古今中外有不少数学家都用像诗一般的语言赞颂过数学美。
普洛克拉斯早有断言:哪里有数学,哪里就有美。
罗素认为:数学,如果正确地看它,不但拥有真理,而且也具有至高的美,正像雕刻的美是一种冷而严肃的美,这种美不是投合我们天性的微弱方面,这种美没有绘画或音乐的装饰。它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术才能显示出那种完美的境地。
不仅这些,亚里士多德,庞加莱,及我国数学家徐利治等,都对数学美有着同样深刻的感触。既然如此,我们在数学史课上使可结合具体的能够展现实现美的例子印度学生欣赏实现美,提高学生的美学欣赏能力。比如以下几种常见的数学美:
1、曲线美如正弦曲线如图
2、公式美如tan18°+tan36°+tan54°+tan72°
该式本身有一种和谐美,四个正切值排列整齐,角度每次增加18°,且首末两项及距首末等远的两项角度之和为90°,因此化简时必须利用这种和谐关系而采用重新组合的策略。
3、图形美如黄金分割
线段的黄金分割早已引起人们的注意,主要是由此而构成的长方形给人“匀称美”的感觉,黄金分割比w=„„被誉为“人间最巧的比例”。一些名画的主题,电影的画面主题大都放在画面的0.618处,给人以舒适的美感。
4、对称美上述正弦曲线就是轴对称图形,能给人以舒适的美感。杨辉三角更组成美丽的对称图案:
121
1331
14641
15101051
„„
从数学发展的历史来看,对美的追求曾在一定的程度上促进了数学的发展。教学过程中适当的让学生欣赏这些数学美,不仅能激发学生的求知欲,又能使学生的思维目的性得到应有的锻炼,达到美育的效果。
事实证明:在教学过程中,贯穿一些必要的数学史知识,对提高学生的数学素养,甚至对整个数学教育都能起到很好的作用。特别在我们这类生源不优的学校,数学史知识对学生来讲是一笔巨大的精神财富,因此我们在教学过程中应该积极的加以运用。
第二篇:数学史在数学教育中的作用
数学史在数学教育中的作用
【摘要】在数学课堂教学中,给学生适当介绍数学史对学生的培养起到很重要的作用。数学专业的学生为例探讨了数学史对课堂教学中的作用。
【关键词】课堂教学
数学史
数学教育
【基金项目】河套学院教学研究项目(HTXYJY15006);河套学院教学研究项目(HTXYJY16001)。
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)35-0115-02
一、引言
数学史在人才培养中的作用越来越被人们所重视。通过查阅“数学史与人才培养”研究的相关文章,发现研究者较少关注数学史在人才培养中的作用,重复性研究较多;研究方法缺乏科学性;研究缺少数学史家与一线数学教师的合作;研究对象缺乏对学生认知发展的关注。许多人对数学史在人才培养中的作用缺少基本的认识和了解,认为数学史教育无足轻重。另一方面,由于绝对主义数学观的影响,数学教育中单纯强调数学的严谨性和抽象性,注重形式演绎的现象非常严重。不仅数学专业教材中缺少对数学发现过程、数学理论形成过程的探究与剖析,而且在各专业数学课堂教学上,“公理、定义、定理、证明”的逻辑展开,呈现给学生的只是已失去生动性和创造性的一些结论和严谨的、完美的推理证明过程。如果把数学仅视作一套概念体系、一种研究活动过程、一些方法、技术和结果,数学教育就只能成为一种简单的、静态的过程反映,而根本的危害是不利于创造型专业人才的培养。
二、数学史与数学教育
数学史与数学教学的关系是当今国际上数学教育研究的热点问题之一。随着国内外HPM研究的逐步深入,其理论与实践日趋完善。当前,我国正在积极推进基础教育改革,数学新课程标准也提出对数学的文化价值加以关注。义务教育数学课程标准(2011)指出:“数学文化作为教材的组成部分,应渗透在整套教材中。为此,教材可以适时地介绍有关背景知识,包括数学在自然与社会中的应用,以及数学发展史的有关材料,帮助学生了解在人类文明发展中数学的作用,激发学习数学的兴趣,感受数学家治学的严谨,欣赏数学的优美”。长期以来,我国数学教学强 调解题教学,数学史在人才培养中没有得到应有的重视,从而忽视了培养学生从整体、宏观认识数学思想体系、文化内涵和美学价值。
三、数学史与课堂教学
数学教科书舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是研究数学史在人才培养中的作用。如果在数学课堂教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。通过数学史渗透课堂,可以使数学专业的学生在接受数学专业训练的同时,获得人文科学方面的修养,其它专业的学生通过数学史的学习可以了解数学概貌。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
数学史是学习数学、认识数学的工具。人们要弄清数学概念、数学思想和方法的发展过程,增长对数学的通识,建立数学的整体意识,就必须运用数学史作为补充和指导。特别是,现代数学的体系犹如“茂密繁盛的森林”,使人“站在外面窥不见它的全貌,深入内部又可能陷身迷津”,数学史的作用就是指引方向的“路标”,给人以启迪和明鉴。
数学史与数学哲学、科学哲学、社会文化史都有密切的联系。数学与人类思想的革新,数学与其他科学技术,数学与社会进步等关系,有助于深刻理解数学的文化内涵。对于培养“学、才、识”兼备的数学专业人才有重要意义。“学、才、识”即知识、能力以及见识和思想,其中“识”更是引导知识和能力走向何方的根本性问题。如果数学教育只停留在数学理论本身的学习上,甚至对数学理论的实质也没有深入探究,学生就不可能理解依托于数学知识体系之上的数学思想和信仰,贯穿于数学研究活动中的科学精神和数学的美感及鉴赏能力,与数学的社会功能密切相关的伦理准则等数学文化的底蕴,更不会形成“才”与“识”。因此,课堂教学中融入数学史是以“素质教育”为目标的数学教育的内在要求,它对于培养学生的人文主义精神以及数学观念、数学能力、数学整体意识有特殊意义。
四、数学史与人才培养
(一)数学史在学习专业知识中的作用
专业知识与历史知识总是互补的。就是说,不仅研究、学习历史需要具备一定的专业知识,而且学习专业知识也同样需要用历史知识帮助分析和思考。著名数学家赫尔曼?外尔认为:“如果不知道远溯古希腊各代前辈所建立和发展的概念、方法和结果,我们就不可能理解近50年来数学的目标。”如果教材是根据现代数学的分科来编写,并主要是按照公理化的思想方法而不是知识的发生过程编排体系,就会使学生在学习数学知识时,常常知其然而不知其所以然,尤其会对数学概念的发展过程,定理证明的发现过程以及数?W各分支之间的联系知之甚少。因此,让学生了解各门课程的发展历史是促进各科学习的必要途径。具体地,数学史的作用可以概括为:(I)对数学给出一个整体框架,对数学有一个整体图景,能认识到各分支之间的相互关系。(II)对数学问题、概念、理论和方法的来龙去脉有一定认识。对引入它们的动机与产生的后果有所了解,以上两点使我们对于某分支在整个数学中的定位能够初步理解。(III)总结历史上的经验、教训,借鉴解决问题的各种途径、方向。(IV)对数学发展趋势有一定的估计和预测。向学生介绍一些数学家的生平或者历史上数学进展中的曲折历程,以及在教学中提供一些历史上的真实“问题”,还可以激发学生的学习兴趣,促进专业课程教学。
(二)数学史在提高数学素养中的作用
随着人类社会由工业社会向信息社会的转化,人才观以及成才观也都在发生深刻变化。社会进步对数学工作者的需求主要并不是他们能利用数学的运算去要求解答,而是借助他们能在复杂错综的境遇中,去找寻有条理的分析,有助于最后的决策,即他们的数学素养。数学素养包括知识、才能和思想三个方面,即数学科学知识、数学能力和数学思想素养。这三个方面彼此联系,层次由低到高。形成数学素养的关键是要在知识传授、才能培养以及有目的、有计划的素质教育中让学生理解数学中蕴涵的精神、思想、观念、意识等内容,并培养他们运用数学的思想和方法去处理数学问题和现实问题的意识。而数学的思想和方法、数学研究中的科学精神以及数学的美,首先是从数学的发展史中总结归纳出来的。因此,学习数学史对于深刻理解数学的内容、思想、方法、语言及其应用,对于提高数学素养,具有重要的现实意义。
(三)数学史在教师的培养中的作用
面向21世纪的基础教育改革对教师素质提出了更高的要求,使得教师培养成为一项具有深远意义的工作。虽然目前对于数学教师的素质构成还处于研究探讨之中,但可以肯定的是,数学教师与数学研究人员、工程技术人员在知识、能力以及观念、意识等方面是不尽相同的。数学教师必须认识到数学是一门有着悠久历史的科学,具有突出的文化功能,在社会中有广泛的应用,并与其他学科有密切的关系。数学教师所具备的数学科学知识应该充满着与历史、文化以及现实世界的丰富关系;数学教师不仅需要了解数学的过去,也要接触数学的现在;数学教师不仅要学习数学的科学体系,更要学习数学科学的研究方法,包括数学思维模式与数学思想方法等。数学教师还必须树立正确的数学观,因为不同的数学观会通过教学对学生产生不同的影响。
五、结论
数学史在课堂教学中使学生领会数学内容的教育价值、数学的应用、各科的联系与交叉。数学思想及数学发现的过程对于开设数学课程的学生至关重要。研究数学史在人才培养中的作用,让每一位专任教师充分认识在课堂教学中渗透数学史的重要性以及提高数学课的教学质量的重要性。从而提高教师的教学及教研水平和学生的综合素质。
参考文献:
[1]梁宗巨.世界数学通史[M].辽宁教育出版社,2001.[2]李迪.中外数学史教程[M].福建教育出版社,1993.[3]徐利治.漫谈数学学习和研究方法[M].大连理工大学出版社,1989.[4]张奠宙.数学教育经纬[M].江苏出版社,2003.[5]曲建民.谈谈数学史教学[J].长春大学学报,2006(3).[6]高夯.现代数学与中学数学[M].北京师范大学出版社,2010.[7]徐利治.数学史与数学教育的结合[J].数学教育学报,1994(5).[8]郭华明.浅谈德国大学特色教学法[J].中国地质教育,2006(3).作者简介:
李权(1978-),男,内蒙古科左中旗人,本科,讲师,研究方向:数学教学与控制论。
第三篇:数学史在数学概念教学中的价值和作用
数学史在数学概念教学中的价值和作用
现在教师将数学史应用于概念教学的一般方法为:利用数学课本中的阅读材料,选取比较有意思的科学家的小故事讲讲,或者是“宣读”一下有关的数学史资料.有极少的教师关注数学史中对学生认知的帮助,但是对数学史如何应用于概念教学的认知没有形成有效的策略.数学史素养不仅仅是教师掌握的数学史知识的量,更重要的是教师在教学中自然流露出的“历史感”, 这种“历史感”贯穿整个教学过程中,而不是数学史资料的“宣读”.教师对数学史的少运用还有一个原因是“时间紧迫,难以讲授”,其实这是对数学史的误解,数学史存在三种形态,我们运用的是数学史的教育形态,即将所教概念在历史的脉络中重新整理,用新角度来讲授,使数学史恰如其分地流露在数学教育中.台湾师范大学洪万生教授指出教师应用数学史至少可以分为三个层次: 第一,说故事;第二,在历史脉络中比较数学家所提供的不同方法,拓宽学生的视野,培养全方位的认知能力和思考弹性;第三,从历史的角度注入数学活动的文化意义,在数学教育过程中实践多元文化关怀的理想.据此,在概念教学中应用数学史也相应的分为三种层面: 1.情感层面——激发学习兴趣 情感层面是指在概念教学通过历史上发生的小故事、科学家的传记、趣题等内容提高学生学习的兴趣.例如,坐标系概念的教学中可以从讲故事着手: 传说中有这么一个故事:有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩.他就拼命琢磨,通过什么样的办法才能把“点”和“数”联系起来.突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝.蜘蛛的“表演”,使笛卡尔思路豁然开朗.他想,可以把蜘蛛看作一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙脚作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3,2,1,也可以用空间中的一个点 P来表示它(如图 1).同样,用一组数(a, b)可以表示平面上的一个点,平面上的一个点也可以用一组两个有顺序的数来表示(如图2).于是在蜘蛛的启示下,笛卡尔创建了直角坐标系.无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人.这个有趣的传说,就像瓦特看到蒸汽冲起开水壶盖发明了蒸汽机,牛顿被苹果砸了后发现了万有引力一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感.2.认知层面——促进对概念的理解
认知层面是指在历史脉络中比较数学家们所提供的不同方法,拓宽学生的视野,提高学生对概念的理解.在教学中教师要总结知识发展的规律,概念发明和发现的方法.例如:在函数概念的教学中我们可以遵循历史的足迹,比较函数概念在各个时期的变化,找到它们的区别与联系.有些数学概念是已有概念的扩充,若能揭示概念的扩充规律,便可以水到渠成地引入新概念.例如复数概念的教学中可以先回顾已经历过的几次数集扩充的事实:正整数→自然数→非负有理数→有理数→实数.然后教师提出问题:上述数集扩充的原因及其规律如何? 分析如下:实际问题的需要使得在已有的数集内有些运算无法进行,数集的扩充过程体现了如下规律:(1)每次扩充都增加规定了新元素;(2)在原数集内成立的运算规律,在数集扩充后的更大范围内仍然成立;(3)扩充后的新数集里能解决原数集不能解决的问题.有了上述准备后,教师提出问题:负数不能开平方的事实说明实数集不够完善,因而提出将实数集扩充为一个更为完整的数集的必要性.那么,怎样解决这个问题呢?教师呈现数学史上复数概念的产生遇到的困难和科学家们的解决思路,借鉴上述规律,为了扩充实数集,引入新元素i,并作出两条规定.这样学生对i的引入不会感到疑惑,对复数集概念的建立也不会觉得突然,使学生的思维很自然地步入知识发生和形成的轨道中,为概念的理解和进一步研究奠定基础.3.文化层面——体会概念中蕴含的文化
文化层面是指从历史的角度注入数学概念一定的文化意义,主要是讲概念的价值和意义.例如坐标系概念可以从以下方面介绍:(1)在学科中的意义
直角坐标系的创建,在代数和几何上架起了一座桥梁.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究.笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何.他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的.比如,我们把圆看成是一个动点对定点O做等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的.我们把点看作是形成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩.把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法.笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何.在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数.(2)历史上的评价
恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学.” 以上三个应用的层面,在教学中都要有所涉及,但侧重点不同.从概念教学目的考虑,应以认知层面为主,以文化层面和情感层面为辅.下面谈谈采取怎样的策略融入数学史使数学概念教学能有效地达到对数学概念的认知层面.1.问题策略——设置问题,激发学习动机
问题策略是指为了丰富学生在概念学习中的体验,将数学史中数学概念的形成过程、形式化的数学概念以及一些相关的材料转化成数学问题,形成问题情境,在问题的探究中“学数学、做数学、用数学”,最终构建概念的心理表征.动机来源于需要,而推动数学发展的原始动力就是数学问题.正是有了形形色色的数学问题,才产生了丰富多彩的数学概念,因此,概念教学的起点应是问题.我们平时所有的教科书是按演绎体系来编排的,即概念→定理→问题解决,反映了一种静止的数学观,但历史的真实面目并非如此,这是教学法的违背.真正的数学教育应遵循数学发展渐进系统化的过程,教学生像数学家那样“再创造”的方法去学习.重要的是,教科书的编写人员应将一些历史概况和数学思想变迁的重要例子写进教材,而学生通过解题讨论不同的猜想和过程,对自己的概念形成和难点及重要的观念的改变做进一步的了解也同样很重要.数学史的应用必须问题化.这可以从两方面下手:其一,把概念生成过程问题化.一个概念是如何引入的?必要性和重要性何在?这些问题往往也是区分概念的本质特征和非本质特征的关键所在.因此教学中应尽可能把知识的发生过程转化为一系列带有探究性的问题,真正使有关材料成为学生思考的对象.其二,把形式化的数学材料转化为蕴含概念本质特征、贴近学生生活的、适合学生探究的问题.通过学生动手操作,把数学拉到学生的身边,使数学变得亲切,把学生引向概念本质.2.有指导的再创造策略——追溯历史,重建数学概念
有指导的再创造策略是指利用数学史料进行课堂设计让学生经历数学知识的形成与应用,自主地生成概念.再创造策略可以使学生更好地理解数学概念形成过程,体会蕴含在其中的思想方法,追寻数学发展的历史足迹,增强学好数学的愿望和信心.特别是对于抽象数学概念的教学,要特别关注概念的形成的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式.弗赖登塔尔说得好:“我们不应该遵循发明者的足迹,而是经过改良同时有更好的引导作用的历史过程.”在教学过程中,学生应当有机会经历与数学事件的历史发展相类似的探究过程,但此时并不是真正地去创造,而是在教师的引导下获得知识.学生沿着历史发展的路径,了解某部分的数学概念的来龙去脉,在此过程中他们的学习也包含了再创造、再发现的意义.有指导的再创造策略的应用要求教师的课堂设计应当具有一定的开放性,为学生提供“提出问题、探索问题”的空间,培养学生勤于思考的习惯、坚忍不拔的意志和勇于创新的精神.信息技术为数学实验提供了可能,教师应尽可能地使用科学计算器、计算机及软件、互联网以及各种数学教育技术平台,支持和鼓励学生用现代信息技术学习数学、开展课题研究,改进学习方式,提高学生的创新意识和实践能力.
第四篇:浅谈数学史在中学数学教学中的作用
浅谈数学史在中学数学教学中的作用
石嘴山市第一中学刘园
摘要:
新课程是要有深层次的课程理念和课程制度的创新;新课程观认为课程不仅是知识,同时也是经验,是活动。在新课程理念指导下,中学数学教师也应该更加立体、系统的把数学知识呈献给学生。数学史在中学数学教学中的作用是非常重要的,作为数学教师理解数学史内涵也是必不可少的。数学史对数学教育有多方面的作用,数学史可以优化教学过程、培养科学思维、激发学习兴趣、学习科学方法、树立哲学理念,培养爱国思想等方面有着独特的作用。
关键词:数学史中学数学教学数学美教育作用引言
我作为一名中学数学教师,深刻的体会到中学数学教学面对的尴尬:想学,学不懂;想教,教不会。这大大影响了数学教学质量的提高和创新能力的培养。学生都觉得数学很重要,可是面对生涩难懂的概念,一串串没见过的数学符号,很多学生选择了死记硬背,甚至抄书来强迫自己学习数学知识,久而久之,对学习数学的体会就是枯燥乏味、毫无兴趣。无兴趣,无激情就更谈不到创造力了,最终的结果一定是非常糟糕的。而教师为了讲好数学课也下了很大功夫,查资料,备例题,选方法等等手段都用上了,可是就是有一些学生听不懂,学不会,最后只能回到“题海战术”上,用大量的练习强迫学生“搞懂”,结果也必然是事与愿违。当然以上的问题的产生有多方面的原因,解决的办法也有很多,我认为在教学中利用数学史知识,渗透数学史建立学生正确的数学观是一个很好的解决办法。
我国教育行政管理部门是十分重视数学史教学的。中国数学史已经成为中学数学教材的一个重要组成部分。现行中学数学课本中直接介绍中国数学史的有很多处,涉及数学家、数学名著、数学成就和方法等有几十个地方,并以习题、注释、课文、附录等多种形式出现。
数学史是一门独立的学科,它以数学学科的产生、发展的历史作为研究对象,阐明其历史进程,揭示其一般规律,它既是数学的一个分支,又是学科史的一个分支。中学数学教师对数学史都或多或少的有所了解。为了达到数学学科的教学目标,对数学史的教学应提出明确的要求:要使学生懂得数学来源于实践又反作用于实践,数学知识是相互联系和不断变化发展的,初步形成辩证唯物主义观点。结合有关内容的教学,使学生了解我国国情、社会主义建设成就以及数学史料,提高学生的爱国主义热情和民族自尊心、自信心。数学史的内涵
列宁说: “一种科学的历史是那门科学最宝贵的一部分,科学只能给我们知识,而历史却能给我们以智慧。”
数学史研究大体上分为“内史”和“外史”两个方面。“内史”研究以考查数学理论成果的历史形态为主,包括数学成果产生的年代、最初的形态和后来的演变、创立者的贡献、数学成果的传播等。“外史”研究以考查数学发展与社会生活各方面的关系为主,包括数学发展与哲学、科学技术、经济、军事、宗教等方面的关系,以及数学家生平和思想、数学事业发展、数学教育等方面的问题。从“数学史”的完整定义中我们可以看到它既有知识结论,又记录了数学知识形成的思维过程、活动以及数学的发展、进步等。因此我们说数学史既是一部完整的数学思想史,同时又是一部数学发展史。数学史这种特殊地位,是由数学作为一种文化的特点决定的。中学数学教学中渗透数学史的教育作用
3.1 运用数学史进行新课导入
良好的开头是成功一半,一个精彩的“引课”可以抓住学生的注意力,激发学生的兴趣,增强求知欲。如人教版必修1的第一课就是集合,这是高一学生升入高中后要接触到的第一个数学知识,老师其实没必要在第一天上课就开始讲课本,如果用一节课简要介绍一下历史上的三次数学危机,那一定会达到很好的效果。这三次数学危机包括了无理数的产生过程,同时学生可以了解历史上著名的毕达哥拉斯学派;勾股定理为什么又叫百牛定理、毕达哥拉斯定理的原因;知道莱布尼兹和牛顿的伟大数学贡献;对“无穷”有一个初步的了解;知道微积分诞生的伟大意义;了解集合论的产生以及到现在都没有得到彻底解决的“集合悖论”。由此引出“集合”这个词,让学生知道集合论是数学的基石,而我们的高中数学就是从这里展开的。这样的高中开篇课,一定能激发同学们极大的数学学习热情。
3.2用数学史作为教学结尾
一堂课的结束预示着下堂课的开始,一个好的结尾可以让学生浮想联翩、主动探索,同时激发求知欲。譬如陈景润的老师在讲完整数的性质后说:“自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想是皇冠上的一颗明珠,这是一颗金光闪耀的明珠,你们谁能把它摘到手呢?”正是老师的这番话在陈景润的心里播下了研究哥德巴赫猜想的种子。恰当的运用数学史的知识作为一堂课的结尾,能激起学生的探究欲望,达到“余音绕梁,三日不绝”的效果。
3.3 介绍知识产生的过程
数学的根源深扎在过去,如果我们不去追溯古今数学思维的演变及进化,就难以理解数学何以成为现在这样子,就可能片面的认为数学就是单纯的知识、技巧的堆砌,是单纯的逻辑推导的一个完整的体系。为此,我们有必要让我们的学
生更多地去了解知识产生的过程,让他们在教师的指导下,亲自经历知识的源与流,从数学家的废纸篓里寻找知识地源泉,感受数学思想地熏陶和方法地冶炼。这样,他们才能吸取数学知识地原汁,掌握数学知识这座宝殿的精华,提高能力和素质,成为知识的主人。如在讲授函数概念的时候,可先介绍通过瑞士数学家约翰.伯努利对函数概念进行了扩张,把“由变数X和常数所构成的式子,叫做X的函数”,再后来欧拉将可以“解析表示的量”称为函数,以后又经历了多次扩张,才得到如今中学教材中函数的概念。只有学生了解了函数经过多次扩张的发展史,才能更进一步认识和掌握它。
3.4 运用数学史开展研究性学习
研究性学习是以“培养学生具有永不满足、追求卓越的态度,培养学生发现问题、提出问题、从而解决问题的能力”为基本目标;以学生从学习生活和社会生活中获得的各种课题或项目设计、作品的设计与制作等为基本的学习载体;以在提出问题和解决问题的全过程中学习到的科学研究方法、获得的丰富且多方面的体验和获得的科学文化知识为基本内容;以在教师指导下,以学生自主采用研究性学习方式开展研究为基本的教学形式的课程。我们可以设计《数学史和数学人物》这样的课题,让学生在研究过程中自主、自由地接受数学文化的熏陶,这必将对培养学生的数学素养和学习兴趣起到极大的作用。
3.5 开展丰富多彩的课外活动
很多数学老师同时也肩负着班主任工作,我们可以利用数学史来开展丰富多彩的课外活动,譬如主题班会设计为“中国数学家对世界的贡献”;班级开设“数学角”;定期举办班级趣味数学知识竞赛;教师可以开设“数学信箱”,让同学们把感兴趣的数学问题以电子邮件的方式发送给教师,然后教师引导同学们开展小组探究等。这些活动具有一定的计划性和多样性,在课外活动时同学们没有压力,身心放松,在愉快的环境中获得知识更能收到切实的效果,而且课外活动时同学们可以自己动手收集资料,化被动学习为主动学习,培养学生主动的学习习惯,同时对其他学科的学习也是有帮助的。数学史对中学生学习的意义
4.1 激发学生学习数学的动机
1972年8月24日,美国数学家魏尔德在全美数学教师协会大会演讲中说:“大家都知道一项最困难的问题,是学生自认对数学没有任何需要,愤恨被迫学习数学,假如他能够精神自主的话就不要学习数学。处理这类情形,只强调数学的技术是不够的,对有能力欣赏数学在历史上所扮演的角色的学生,如果老师还不能使学生们被数学所吸引,这位教师就不应再任教了”。在魏尔德看来,数学史素养对一个数学教师来说是不可或缺的,因此他大力提倡在大学中开设数学史课程。
以下故事对激发学生学习的兴趣是有利的。
法布尔与牛顿二项式定理的故事:法国著名昆虫学家法布尔(J.H.Fabre, 1823~1915)师范毕业后被分配到乡下一个条件十分简陋的、全校教师只能挤在一张校长餐桌上吃饭的学校教书。尽管读师范时学过一些平面几何知识,但作为文科生的他,数学知识、特别是代数知识依然相当贫乏。用他自己的话说,开一个平方根,证明一个球表面积公式,已经是科学的顶点了。打开一张对数表,立即头晕目眩。可是有一天,一个报考桥梁工程专业的年龄与他相仿的不速之客登门造访。原来,这位年轻人的考试科目中有数学,为了通过这场考试,他希望法
布尔能辅导他学代数。真是病急乱投医。法布尔先是吃惊,接着是犹豫;但最后,不知从哪儿来的勇气,他竟然答应人家了:后天开始上课。
自己不懂游泳,却要教别人游泳,怎么办?勇敢的办法是自己先跳进海里!这样,在濒临淹死的时候也许会产生一股强大的求生力量。可是,法布尔不光对代数一窍不通,而且连一本代数书都没有:他想跳进代数学的深渊,可是连深渊都没有。他想去买一本,可是囊中羞涩,况且他那里可不是巴黎,想买就能买到的。离上课只有24小时。
有了。有位教自然科学课的先生,是学校领导层的人物,尽管在学校里他有两个单间,但平时住城里,也算是上流社会的人物了。法布尔猜想他房间里必有代数书;但由于人家高高在上,又怎敢开口言借?只有一个办法:偷。如果那时中国作家鲁迅已经写出小说《孔乙己》来该多好,这样法布尔也许就不会责备自己了。正逢休假日,四顾无人,法布尔幸运地用自己房间的钥匙打开了那城里度假的主人的房间。天从人愿!双腿有些发抖的小偷从书柜里搜索出三指厚的一本代数书来。
神不知鬼不觉,法布尔回到了自己的房间。他急切地打开书本,一页又一页地翻看着,了无兴趣。大半本书翻过去了,突然,他的眼光停在了一个章名上:“牛顿二项式”。誉满全球的17世纪英国大科学家牛顿,他的二项式是怎会回事?强烈的好奇心促使法布尔拿起笔,一边看,一边在纸上写字母的排列和组合,整整一个下午在排列和组合中度过。不可思议,法布尔竟然完全搞懂了!
这下,他可以从容地应付明天的数学课了。这真是与众不同的课,人家从头开始,而法布尔则几乎是从末尾开始。他时而耐心地讲授,时而和那忠实而认真的学生进行讨论,第一次课成功了。牛顿二项式定理大大增加了法布尔的自信心。法布尔继续向更多的代数知识点发起冲击,壁炉里的火光伴着他熬了一夜又一夜。在知难而进的老师和认真忠实的学生共同努力下,他们最后啃完了代数课本。那年轻人如愿以偿,通过了考试。那本代数书被偷偷地放回了原处。后来法布尔继续向解析几何发起冲击,最后拿到了数学学士学位。
这则故事说明,数学并不是部分人的专利,只要付出努力,基础数学是可以学好的。这样的故事对树立学生的学习自信心是有好处的。
另外,阿贝尔22岁证明了一般五次以上代数方程不存在求根公式;伽罗瓦18岁的时候创建群论;施泰纳出身农家,14岁还没有学过写字,18岁正式开始读书,后来经过自己的努力在30岁的时候成为了19世纪伟大的几何学家等等这些实例都是激发学生学习数学动机的良好材料。
4.2 有助于帮助学生培养正确的数学思维方式
现行的数学教材都是经过反复推敲,语言十分精炼简洁。为了保持知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。这样虽然有利于学生接受知识,但是容易是学生认为数学知识就是现有定义,接着总结出性质,定理,然后用来解决问题的错误观点。数学史的学习,可以让学生在学习系统的数学知识的同时,对数学知识的产生过程有一个比较清晰的认识,从而培养学生正确的数学思维方式。譬如,传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”,“求抛物线弓形面积”等思想的启发下,经过创造得到的。而且经过说学家们的不断补充、完善下,经过几十年才逐步成熟起来的。通过这种创造过程的了解,使学生体验到一种活的、真正的数学思维过程,而不是单纯的教师传授的知识。在这种不断学习、不断探索、不断研究的过程中逐渐形
成正确的数学思维方式。
4.3 学习数学史可以培养学生美学修养
我国当代数学家徐利治教授指出:“数学教育与教学的目标之一,应当让学生获得对数学美的审美能力,从而既有利于他们对数学学科的爱好,也有利于增长他们的创造发明能力。”这就是说在数学教育中应遵循美的原则,使学生更好的感知、理解数学美。数学是美的,无数数学家都被这种美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是书等数学中的一个大家都比较熟悉的简洁而深刻的定理,有着极为广泛的应用,两千年来它激起了无数人对它的兴趣,意大利著名画家达.芬奇、印度国王Bhaskara、第20任美国总统Carfield等都给出过它的证明。1940年,美国数学家鲁米斯在他所著《毕达哥拉斯命题艺术》的第二版中收集了它的370中证明方法,充分展现了这个定理的无穷魅力。黄金分割同样优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究。同时,在感受和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高。这种美感充分的激发和调动了学生的求知欲和创造欲,有效地培养了学生的审美创造能力,这是德育教育的一个新的突破口。
4.4 有助于树立爱国主义思想,弘扬民族精神
美国史学家纳贝尔说:“中国许多世纪以来,一直是人类文明和科学的巨大中心。”英国科学史学家李约瑟指出:“在人类了解自然和控制自然方面,中国人是有过贡献的,而且贡献是伟大的。”我们应该让学生知道中华民族为人类科学技术的发展和进步所作出的伟大贡献,教师如果在教学中能结合这些知识进行讲解,不仅能培养学生的民族自豪感、社会责任感,还能使他们树立为祖国和家乡的繁荣富强而努力学习的志向。讲课时,在介绍数学家时要注意介绍中国古代和近代数学家,宣传我国古代的科学技术成绩曾遥遥领先于世界的辉煌成就,大力颂扬为祖国为人类科学进步,勇攀高峰、艰苦创业的中国数学家的事迹,教育学生向他们学习。小结
综上所述,数学史在中学数学教学中是非常重要的,数学史教育在促进学生智力、能力和非智力因素的全面发展,形成辩证唯物主义世界观和培养良好的道德品质的过程中所起的作用不可忽视。教师应充分发挥数学史在数学教育中的作用,促进数学史与中学数学教育的融合,提高学生数学学习的兴趣,加深学生对数学的理解,感受数学家的严谨的态度和锲而不舍的精神,数学史知识的运用必然会推动中学数学教育的巨大发展。
参考文献:
【1】中华人民共和国教育部制定 普通高中数学课程标准(实验)人民教育出版社.2003
【2】李迪.中国数学史简编M沈阳:辽宁人民出版社.1984
【3】卢鄂.数学没学概论.辽宁人民出版社.1994
【4】李俨.杜石然.中国古代数学简史.北京:中华书局.
第五篇:谈数学史在教学中的作用
谈数学史中的课堂价值
【内容摘要】美妙的故事是人们喜闻乐见的世界语,学习的动力不仅源自于规律的神奇,亦源于先驱者的各种传奇,数学解题有时只是一种娱乐,精彩的数学家的人文故事,既拉近了与学生的心理距离,更让学生树立了健康的科研观。
【关键词】数学史 世界语 传奇 兴趣 感悟
不断在教学上探索创新,以提高学生对学科的兴趣,这是现阶段教育研究想努力突破的瓶口。而在数学的实际教学中,提高学生兴趣却有的一条有效的老路,那就是会讲数学史的故事.充份认识数学史的课堂价值,让好奇在学生心灵中不断绽放,让探索者的高贵品质渗透求知者的灵魂,这就是数学故事的课堂价值。以下是对数学史在教学中应用的浅谈。
美妙的故事是人们最喜闻乐见的世界语,也是干枯的历史藤络上的最艳美的花朵。众所皆知,哥白尼是死于日心说,那么,有没有数学家因真理而亡呢?笔者曾向学生讲述数学家希巴斯的故事——伟大的贵族毕达哥拉斯认为,世界上只存在两种数---整数与分数,而分数即是两个整数的比,两种数统称有理数.也就是说,他认为除了有理数以外,不可能存在另类的数。首先发现无理数的著名数学家希巴斯,就是毕达哥拉斯的一位学生。他惊讶地发现边长为1的正方形,其对角线长度不可能是整数或分数。这让毕达哥拉斯大吃一惊,因为无法接受存在“另类数”的事实,他要求学生严守秘密。可希巴斯坚持真理,并将发现公诸于众,行动很勇敢结果很悲惨,希巴斯被怒不可遏的哥派门徙们掷进了大海。故事帮助学生们牢记了整数和分数就是有理数,无理数则是无限不循环的小数的定义。
学习的动力不仅源于规律的神奇,亦源自先驱们的各种传奇。如能穿越时空,回到两千多年前的埃及,我们都能获得法老的黄金大奖,这又是什么故事?巨富又巨无聊的古埃及法老想知道它的金字塔到底有多高,埃及人全然无解,法老因此设立了黄金大奖。一个希腊的女数学家赢了奖金,她计算塔高的方法很简单——杆高:杆影长=塔高:塔影长,只要有阳光就行了。这个故事能帮助学生迅速理解了成比例线段的概念。
苏霍姆林斯基认为,人类认知过程的本身,就是一个激发兴趣,最令人惊叹的奇异过程,美妙的故事不应省略不讲,略而不讲是剥夺学生的真正乐趣。勾股定理在西方称为毕达哥拉斯定理。勾股定理也称作百牛定理。传说毕达哥拉斯是客厅散步时发现的勾股定理,他本人当时也惊呆了,以为自己发现了神创造自然规律的秘密,因而激动万分,决定杀一百头牛来祭神并大宴众宾,故勾股定理也被称为百牛定理。故事能让学生们入迷,还能让他们津津有味地重演定理的发现过程。
数学掌故会告诉学生,研究问题有时和下棋打牌一样,也是一种娱乐。在八零年的高考题中,有一道要求证明勾股定理的考题。实际上,勾股定理的证明方法繁多,有纪录的就有两百多种,其中最富传奇色彩的是美国总统Garfield的证明方法,据说是他在白宫花园中喝下午茶时发现的,这种方法成了现在数学课本上的一道习题.解数学题一向是Garfield总统繁忙公务之余的消遣,据说爱因斯坦也有同样的爱好,目的是防止大脑提前老化,保持思维的敏捷性。
讲授直角坐标系的应用时,不能不提发明人笛卡尔的故事,据说是他在观看苍蝇受困蛛网的现象时,灵感乍现发明了直角坐标系,这使得运动进入了数学,古典数学完成了现代数学的华丽转身,他也因此被尊为现代数学之父。笛卡尔一生对人类社会有许多的贡献,但最重要的是在数学方面。例如:他是第一个使用开头的一些字母表示常量,用靠近结尾的一些字母表示变量的。我们所熟悉的代数中的 x、y就是来出自笛卡尔。
关于数学概率也有精采的故事——二次大战时,美国用大量的海船往欧洲运送战略物资,却遭到德国海军潜艇的袭击,损失惨重。美国军方请了数学家帮忙计算海船与潜艇相遇的概率,发现如果运送物资的海船集中分时段航行,而不是随机出航,就能大大降低被潜艇发现的概率。数学家的计算,帮助盟军大大减少损失,加速了纳粹帝国的覆灭。
在课堂教学中,兴趣会让学生们全身心的投入,从而大大提升听课效率。学生之所以对数学有点麻木不仁,一是教学内容相对枯燥了,即使是有一些生活化的问题也远离学生的兴趣点;二就是学生畏难的情绪,数学太难了,数学家简直是神人,怎能想出这么高深的东西?因此,教师可以用精彩的人文故事,将数学家拉近他们的同时,又给畏难的学生树立的信心,也建立了正确的科研观。当学生们知道,函数的简单概念并非是天生的,大数学家欧拉曾先后给出了三个定义,但没一个揭示了函数的本质。大数学家也这样搞笑啊?这足以极大地增强学生的自信心。数学圣殿的矗立非朝夕之功,无数大家都是从无知到博学,奋斗终身才有所成就.对学生来讲,对人格品质的感悟,比理解一个概念或一个定理更富有价值,这就是数学史的课堂价值!
教师们不必抱怨数学科的枯燥乏味,金庸小说的魅力不在于高深的武功秘籍和神秘的独家练气法,而是在于作者笔下的传奇故事以及侠之大者的迷人魅力。永远不要忘记激发学生的兴趣,金庸妙笔下的黄容小龙女,她们伴随的不是大侠郭靖和杨过大侠,而是我们这此少趣寡乐的读者们。
参考文献:
[1] 《古今数学思想》.M·克莱因
[2 《数学大师启示录》 陈诗谷 葛孟曾
[3] 《给教师的建议》苏霍姆林斯基