一元一次方程的应用(教案)

时间:2019-05-15 05:49:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元一次方程的应用(教案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元一次方程的应用(教案)》。

第一篇:一元一次方程的应用(教案)

一元一次方程的应用

1:理解题意: 求出12x1中x的值。

32:公式的变形: 已知梯形的面积公式S

实际问题中的应用:(销售中的盈亏问题)

一、创设情景,揭示课题

商场服装打折时,经常会有7折8折之类的促销活动,请问7折是什么意思?对你有吸引力吗?打折是不是就亏了呢?

总结:打折不一定就亏了,这只是商家的一种促销手段,那商家在销售中是盈还是亏呢?今天我们就这个问题一起来讨论。

首先我们通过三个问题一起来探究了解一下进价、标价、售价、利润、利润率、打折这些基本概念,看看它们之间到底有什么关系:

问题:①安踏运动鞋每双标价是300元,打八折后,售价是多少元?

②进价为90元的篮球,卖了120元,利润是多少?利润率是多少?

③某商场将进价为1980元的电视按标价的八折出售仍获利10%,则电视的标价是多少?

售价=标价×

15abh中,S60,b36,h,求a的值。22折扣数 10利润=售价-进价

利润率=利润售价进价=

售价=进价×(1+利润率)进价进价

二、同类训练:

例:某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%。卖这两件衣服总的是盈利还是亏损,还是不盈不亏?

先由学生估算,再通过准确的计算进行判断(指名学生进行演板)

说明:在解答此题时,大家很容易理解为不盈不亏,其原因是一件盈利25%,另一件亏损25%,好像持平,其表面看起来不盈不亏,其实每件衣服盈利率的标准量不同。我们通过列出两个方程,进行综合分析,得到了正确的结论。

三、巩固练习

1、某商品的每件销售利润是72元,进价是120元,则该商品的售价是多少元?

2、某种商品零售价为每件900元,为了适应市场竞争,商店决定按售价9折降价并让利48元销售,仍可获利20%,则这种商品进货价是每件多少元?

3、某地生产的一种蔬菜,在市场上直接销售,每吨的利润为1000元,经粗加工后销售,每吨的利润可达4500元,经精加工后销售,每吨的利润涨至7500元。当地一家公司收购这种蔬菜140吨,该公司加工厂的生产能力是如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨。但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕。为此,公司研制了三种方案:

方案一:将蔬菜全部进行精加工。

方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜在市场上直接销售。方案三:将一部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好用15天完成。你认为选择哪种方案获利最多?为什么?

第二篇:一元一次方程的应用

关于一元一次方程解的练习题

一、选择题

1.解方程6x+1=-4,移项正确的是()

A.6x=4-1B.-6x=-4-1C.6x=1+4D.6x=-4-1

2.解方程-3x+5=2x-1, 移项正确的是()

A.3x-2x=-1+5B.-3x-2x=5-1C.3x-2x=-1-5D.-3x-2x=-1-5

3.下列方程变形正确的是()

A.由-2x=6, 得x=3

B.由-3=x+2, 得x=-3-2

C.由-7x+3=x-3, 得(-7+1)x=-3-3

D.由5x=2x+3, 得x=-1

二、填空题

4.已知2是关于x的方程

5.方程3x-2a=0的一个解,则2a-1的值是.21 x+3=5的解是.2

6.3xn+2-6=0是关于x的一元一次方程,则x=.7.关于x的方程5ax-10=0的解是1,则a=.三、解答题

8.解下列方程.

(1)6x=3x-7(2)5=7+2x

11(3)y-=y-2(4)7y+6=4y-3 22

第三篇:《应用一元一次方程—打折销售》教案1

《应用一元一次方程—打折销售》教案

教学目标

1、整体把握打折问题中的基本量之间的关系:商品利润=商品售价-商品成本价;商品的利润率=利润÷成本×100%.2、探索打折问题中的等量关系,建立一元一次方程.3、进一步经历运用方程解决实际问题的一般步骤.教学重点

1、把握打折问题中的相等关系.2、根据以往的经验,总结出运用方程解决实际问题的一般步骤.教学过程

一、复习提问

列方程解应用题的一般步骤.二、创设问题情境,引入新课

1、用多媒体展示收集的各商场打折销售情景;

2、通过情景剧了解打折销售活动,弄清相关概念及内在联系.讨论分析商品销售中的几个概念:

(1)进价:购进商品时的价格.(有时也叫成本价)(2)售价:在销售商品时的售出价.(有时称成交价,卖出价)(3)标价:在销售时标出的价.(有时称原价,定价)(4)利润:在销售商品的过程中纯收入,即:利润=售价-进价.(5)利润率:利润占进价的百分率,即:利润率=利润÷进价×100%.(6)打折:卖货时,按照标价乘以十分之几或百分之几十,则称将标价进行了几折(或理解为:销售价占标价的百分率).例如某种服装打8折即按标价的百分之八十出售.三、新课讲解

1、主题分析:一家商店将某种服装按成本价提高40%后标价,以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?

想一想:这15元的利润是怎么来的? 完成书中145页相关问题.2、例题分析:商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1800元.商品的原价是多少?

教师引导学生完成.四、巩固新知 让学生完成课本146页随堂练习及习题5.7第2、3两题,做完后小组讨论交流,教师对其中出现的问题进行及时的指导.课堂小结

1、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润=售价-成本价”“利润率=利润÷成本价×100%”来寻找商品销售中的相等关系.2、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤.

第四篇:一元一次方程教案

一元一次方程(1)公开课教案

授课:张福仁 地点:七年级 教学目标:

1.知识与技能

(1)通过观察,归纳一元一次方程的概念.

(2)根据方程解的概念,会估算出简单的一元一次方程的解.

2.过程与方法.

通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

3.情感态度与价值观

鼓励学生进行观察思考,发展合作交流的意识和能力.

重、难点与关键

1.重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,•列出简单的一元一次方程,并会估计方程的解.

2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.

3.关键:找出能表示实际问题的相等关系.

教具准备 投影仪.

教学过程

一、情境导入:

1、德国世界杯足球赛场为长方形足球场,周长为310米,长和宽之 差 为25米,足球场长与宽分别是多少米?

提问:你会用算术方法解决这个问题吗?不妨试试列式。

提问:设球场长度为X米宽度用含x的式子表示为 米.根据“长方形周长=(长 + 宽)×2”,你能列出方程吗?

2、青藏铁路格尔木至拉萨段全长共1142千米,途中经过冻土路段和非冻土路段.若列车在冻土路段的速度为每小时80千米,非冻土路段的速度为每小时110千米,全程行驶时间为12小时,你能算出列车经过的冻土路段有多少千米吗?

提问:设列车经过的冻土路段为X千米,非冻土路段行驶路程为 千米,可得到方程?

提问:分析数量关系,找相等关系是关键,试试看,你能找到吗?

相等关系:冻土路程+非冻土路程=全程 冻土行驶时间+非冻土行驶时间=全程行驶时间

学生讨论完成。

二、新课:

观察前面得到的两个方程有什么共同特点?

答:

1、只含有一个未知数

2、这未知数的指都为

1含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程

“ 一元”是指一个未知数;

“一次”是指未知数的指数是一次.

比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.

有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.

列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,•然后根据问题中的相等关系,写出含有未知数的等式即方程.

例1:根据下列问题,设未知数并列出方程.

(1)用一根长 24cm 的铁丝围成一个正方形,正方形的边长是多少?

分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

分析:设再经过x月这台计算机的使用时间达到规定的检测时间,•根据每月再使用150小时,那么x月共使用150x小时.

能表示这个问题的相等关系是什么?

相等关系是:已使用的时间1700小时+还可以使用的时间150x小时=规定的检测时间2450小时.

从而列出方程:1700+150x=2450.

找出表达问题意义的相等关系是列出方程的关键.

以上分析过程可归纳为:

分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).

列方程是解决实际问题的一种重要方法,利用方程可以解出未知数.

填空1、4×()=24 2、2 ×()-1=

5如:方程 1、4x=24 2、2x-1=5当x为何值时,等号左右两边相等?

通过观察可知:

1、当x=6时;

2、当x=3时:

像这样,能使方程左右两边的值相等的未知数的值,叫做方程的解

巩固练习:

1.环形跑道 400cm ,沿跑道多少周,可以跑3 000m ?

设沿跑道跑x周,可以跑 3000m,根据相等关系──x周共长 3000m .

所以列方程:400x=3000,2.如果设买甲种铅笔x枝,那么买乙种铅笔(20-x)枝,买甲种铅笔用去0.3x元,乙种铅笔用去0.6(20-x)元,相等关系是:

两种铅笔共用了9元钱,由此可列方程.

0.3x+0.6(20-x)=93、方程 的解为()

A、-3 B、12 C、-12 D、4、方程x=3是下列哪个方程的解?()

A、3x+9=0 B、x=10-4x

C、x(x-2)=3 D、2x-7=125、x=1 000和2 000中哪一个是

方程0.52-(1-0.52)x=80的解?

小结:本节课学了哪些内容?哪些方法?

作业:P83: 5、6、7

第五篇:一元一次方程教案

3.1一元一次方程教案

上课人:周艳

一、教学目标

知识目标:掌握方程、一元一次方程的及其解的概念,理解等式的基本性质,并利用等式的基本性质解一元一次方程。

能力目标:通过列方程培养学生的抽象思维能力;通过求方程的解培养学生从“未知”向“已知”转化的数学思想。

情感目标: 让学生初步感受到数学方程与现实世界的密切联系,认识到方程是刻画现实世界的一种有效的数学模型;在自主观察,探索,发现的过程中培养学生的探索精神,体会成功的乐趣。

二、教学重点和难点

教学重点:理解一元一次方程的概念,会运用等式的基本性质解简单的一元一次方程。

教学难点:利用等式的性质解一元一次方程。

三、教学过程

(一)联系实际,创设情境

1、今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

提问学生:能够用算术方法得出答案吗?如果不能,那应该用什么方法解决?(引入方程的概念,引导学生回顾小学学过的方程的概念)在小学里我们已经知道,像这样含有未知数的等式叫做方程。[选一选]:下列各式中,哪些是方程?

⑴ 5x=0;

⑵ 42÷6=7;

⑶ y2=4+y;

⑷ 3m+2=1-m; ⑸ 1+3x; 注意:关于

2、在参加2008年北京奥运会的中国代表队中,羽毛球运动员有19人,比跳水运动员的2倍少1人,参加奥运会的跳水运动员有多少人?

设参加奥运会的跳水运动员有x人,根据题意得:2x-1=19

3、王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍? 设再过x年,王玲的年龄是(12+x)岁,他爸爸的年龄为(36+x)岁,根据题意得:36+x=2(12+x)

(通过以上实际问题,进一步回顾小学已经学过的方程的概念和列方程)

(二)观察归纳,建构新知:

[议一议]:观察以上你所列的方程,这些方程之间有什么共同的特点?

(学生进行观察与思考,并用自己的语言进行描述,然后进行小组交流。教师在学生发言的基础上,给出一元一次方程的概念。)

在原有方程概念的基础上,鼓励学生观察、归纳自我建构新的概念—— 一元一次方程。

提示:上述所列的方程中,方程的两边都是__式,只含有__个未知数,并且未知数的指数是__次,这样的方程叫做一元一次方程。(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。)

最后总结提出:要成为一元一次方程需要几个条件? [做一做]:⒈下列各式中,哪些是一元一次方程?

⑴ 7x=9;

⑵ y2=4+y;

⑶ 3m+2=1-m;

⑷ x-=-; ⑸ xy=1;

⒉你能写出一个一元一次方程吗?

(让学生回答,教师在黑板上板书,其他学生帮忙纠正)点评:1.方程是含有未知数的等式,方程一定是等式,但等式不一定是方程;

2.方程中未知数可以不止一个,未知数的次数也可以不是1,但一元一次方程是只含有一个未知数,并且未知数的指数是一次,另外方程的两边必须都是整式.(三)交流对话,自主探索

在小学里我们还知道,使方程左右两边的值相等的未知数的值叫做方程的解。你们知道“创设情境”第2、3题的方程的解吗?(方程的解的概念和解方程的概念)你们是怎么得到的?

(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)强调:我们知道x能取0,1,2,3,4,5,6,7, 8, 9, 10, 11。把这些值分别代入方程左边的代数式,求出代数式的值,就可以知道x=10和x=12是2、3方程的解。这种尝试检验的方法是解决问题的一种重要的思想方法。课本介绍了用尝试,检验的方法求解,以让学生经历尝试,检验的过程,体验尝试作为问题解决的策略的重要性,在这一过程中,学生还能获得不少其他方面的收获,如进一步认识方程的解的意义,体会为什么要先确定x的尝试取值范围,如何确定x的尝试取值范围等。

[做一做]:

⒈判断下列t的值是不是方程2t+1=7-t的解:

⑴ t=-2;

⑵ t=2.注意:检验过程要注意格式的书写规范,不能直接将数值代入方程.如(1)不能这样写:把t=-2代入原方程,得-4+1=7-(-2),-3=9,所以t=-2不是原方程的解.这样写不对的原因在于未检验之前尚不知t=-2是否原方程的解,也就不知t=-2时方程两边是否相等,这样就不能用等号连接.在初学阶段,要求学生写出解的检验过程是有必要的,这能加深学生对方程解的认识。作业检验过程的表述可以模仿范例。追问:你能否写出一个一元一次方程,使它的解是t=-2? ⒉解方程:⑴ x-2=8;

⑵ 5y=8.(让学生思考解法,只要合理均以鼓励。)

除了这些方法,还有没有其它的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。

(四)理解性质,应用巩固

实验:1.如果天平两边同时增加或减少相同质量的砝码,那么天平还保持平衡吗?

2.如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?

归纳等式的性质:

⒈等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。即:如果a=b,那么a+c=b+c,a-c=b-c ⒉等式的两边都乘以(或除以)同一个不为零的数(除数不为0),所得结果仍是等式。

即:a=b,那么ac=ab,a/c=b/c(c不等于0)3.如果a=b,那么b=a(对称性)4.如果a=b,b=c,那么a=c(传递性)

例1.利用等式的性质解下列方程:

2x-1=19 解:两边都加上1得,2x=19+1(等式基本性质1)

即 2x=20 两边都除以2,得

x=10(等式基本性质2)

检验:把x=10分别代入原方程的两边,得

左边=2*10-1=19 右边=19 左边=右边 所以x=10是原方程的解。

例⒉解下列方程:(按照例一解题步骤进行作答)

⑴ 5x=50+4x;

⑵ 8-2x=9-4x.(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式,这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)

提示:为了使含未知数的项都集中到等式的左边,应对方程做怎样的变形?依据是什么?为了使常数项集中到等式的右边,又应对方程作怎样的变形?依据是什么?渗透化归的思想。

[做一做]:

课堂检测

1.判断下列各式是不是方程,是的打“√”,不是的打“x”.①-2+5=3()② 3x-1=7()③ m=0()④x﹥3()

⑤x+y=8()

⑥S=ab()

⑦2a +b()2.x=3是下列哪个方程的解?()

A.3x-1-9=0

B.x=10-4x C.x(x-2)=3

D.2x-7=12

3.利用等式性质解方程:4x-15=13

(五)总结反思,布置作业

必做题: 第87页:1----2

第88页:1----2

选做题: 第89页:82 [说一说]:通过上面的学习,你有什么收获?另外你有什么感触或疑惑?

总结理清知识脉络,强化重点

 方程的概念  一元一次方程的概念  方程的解和解方程的概念  等式的基本性质

 运用等式的基本性质解一元一次方程

下载一元一次方程的应用(教案)word格式文档
下载一元一次方程的应用(教案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元一次方程教案

    一元一次方程讲学稿 执笔:苏阳 审核: 教学目标: 1.了解什么是方程,什么是一元一次方程; 2.经历把“实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效地模型,认识......

    一元一次方程的应用感想

    《一元一次方程的应用》的授课感想 高颖 一、以学生为主体,教学面向全体学生,体现了学生的自主。 1、 能让学生做的都让学生做,从引例、例题到习题的解决大都由学生自己完成。......

    一元一次方程的应用—销售中的盈亏教案

    一元一次方程的应用——销售中的盈亏问题 【设计说明】: 一、方程对学生来说,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数......

    七年级数学一元一次方程的应用教案(共5篇)

    一、课题 §3.4一元一次方程的应用 立仓中学————徐赞 二、教学目标 1. 知识与技能 (1)使学生了解如何列一元一次方程求解数字的问题; (2)进一步培养学生分析问题和解决问题......

    一元一次方程的应用教学设计

    一元一次方程的应用 ——行程问题应用题(2) 教学目标: ⑴通过学生参与的运动会3000米项目比赛的研究,使学生体验并理解环形跑道上的行程问题的基本数量关系,能够根据题意正确......

    一元一次方程的应用教学反思

    一元一次方程的应用教学反思 反思一:一元一次方程的应用>教学反思《一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。在教学中应如何突......

    《一元一次方程的应用》教学设计

    《一元一次方程的应用》教学设计 教学目标 1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题; 2.培养学生观察能力,提高他们分析问题......

    解一元一次方程教案

    解一元一次方程(二)——去括号与分母 一、教学目的和要求: 1、知识目标 (1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;......