2008线性代数 教学计划

时间:2019-05-15 05:55:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2008线性代数 教学计划》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2008线性代数 教学计划》。

第一篇:2008线性代数 教学计划

《线性代数》教学计划

Linear Aigebra

课程性质:必修

适用专业:理工,经管,医药,农林等专业

总学时数:32学时 学分数:2

一、内容简介

内容包括:行列式,矩阵,线性方程组的基本理论及解法,向量的线性相关性与线性空间,特征值与特征向量的概念与计算,矩阵的相似对角阵及用正交变换化对称矩阵为对角阵的方法,化二次型为标准形。

二、本课程的地位、作用、目的和任务

线性代数是高等学校理工科和经济学科等有关专业的一门重要基础课。它不但是其它数学课程的基础,也是各类工程及经济管理课程的基础。由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已经成为科技人员常遇到的课题,因此本课程所介绍的方法广泛地应用各个学科,这就要求学生具备本课程有关的基本知识,并熟练地掌握它的方法。

线性代数是以讨论有限维空间线性理论为主的课程,具有较强的抽象性与逻辑性。通过本课程的学习,使学生获得应用科学中常用的矩阵方法、线性方程组等理论及其有关基本知识,并具有熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力,从而为学习后继课程及进一步扩大数学知识面奠定必要的数学基础。

三、本课程与其它课程的关系

本课程的先修课是高等数学中的“空间解析几何与向量代数”部分。作为基础课,它是许多后继课,如计算方法、数理统计、运筹学以及其他专业基础课和专业课的基础。

随着对教学内容的改革,本课程可以与高等数学中的某些部分结合起来讲授,如向量代数;又可在多元函数的微分学中介绍其部分应用,如二次型的正定性。

四、本课程的基本要求、课时分配,教学计划

通过本课程的学习,要求学生熟练掌握行列式的计算,矩阵的初等变换,矩阵秩的定义和计算,利用矩阵的初等变换求解方程组及逆阵,向量组的线性相关性,利用正交变换化对称矩阵为对角形矩阵等有关基础知识,并具有熟练的矩阵运算能力和利用矩阵方法解决一些实际问题的能力,从而为学习后继课及进一步扩大知识面奠定必要的数学基础。

教学计划具体如下: 第一章 行列式(5学时)

1.了解行列式的定义,掌握行列式的性质。

2.掌握行列式的计算,知道克莱姆法则。

第二章 矩阵(7学时)

1.了解矩阵的定义,掌握常见的特殊矩阵及其性质; 2.掌握矩阵的线性运算、乘法运算、转置运算及其规律;

3.了解逆矩阵的概念、掌握逆矩阵的性质及其求逆方法; 4.了解分块矩阵及其运算。

3.理解矩阵秩的概念,掌握矩阵秩的计算;

4.熟练掌握矩阵的初等变换;了解初等矩阵的性质及与初等变换的关系;

5.熟练掌握用初等变换求逆矩阵。

第三章 线性方程组(2学时)

1.理解线性方程组的基本概念

2.熟练掌握方程组的求解过程(高斯消元法)

3.熟练掌握线性方程组解的理论,理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

第四章 向量的线性相关性(8学时)

1.n维向量的概念;

2.了解向量组的线性相关、线性无关的定义及有关结论;

3.了解等价向量组、最大无关组与秩的概念,会求向量组的最大无关组与秩;

4.理解齐次线性方程组的基础解系、通解的概念; 5.理解非齐次线性方程组解的结构及通解的概念; 6.掌握用初等变换法求线性方程组的通解;

7.线性空间的概念与基本性质,线性空间的维数、基与向量的坐标。第五章 相似矩阵(6学时)

1.理解特征值、特征向量的概念及性质,掌握特征值、特征向量的计算法; 2.了解相似矩阵的概念与性质,理解矩阵可对角化的条件; 3.了解内积定义,标准正交基,正交矩阵。

4.了解实对称矩阵的特征值特征向量性质,掌握实对称矩阵正交对角化方法。

第六章 二次型(4学时)

1.掌握用正交变换化二次型为标准形的方法; 2.知道二次型的秩、惯性律、规范形;

3.掌握二次型和对应矩阵的正定性及其判别方法。

五、考核方式:平时作业和期末闭卷考试

六、教材《线性代数》,方卫东,吴洪武,华南理工大学出版社,广州,2008.2,第一版。

七、本课程的教学方式

本课程的特点是理论性强,逻辑性强,其教学方式应注重启发式、引导式,讲授时应注意以矩阵作为教学的主线,将其它的内容与矩阵有机联系起来。

八、执行大纲时应注意的问题

1、如果条件允许,可以安排一定学时的数学实验课,用MATLAB语言实现一些繁琐的计算,如矩阵求逆、线性方程组求解等。

2、本课程的概念较多,讲授时需注意前后概念之间的联系。

第二篇:线性代数心得体会

线性代数心得体会

本学期选修了田亚老师《线性代数精讲》的课程,而且这个学期我们的课程安排中也是有线性代数的,正好和选修课相辅相成,让我的线性代数学的更好。

本来这门学修课是准备面向考研生做近一步拔高的,但是有很多同学没有学过线性代数,或者说像我们一样是正在学习线性代数的,所以老师还是很有耐心的从基础开始讲,适当的增加一些考研题作为提高,这样就都可以兼顾大家。

线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下, 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。

我觉得线代是一门比较费脑子的课,因为这门课中的概念、运算法则很多,而且大多都很抽象,所以一定要注重对基本概念的理解与把握,应整理清楚不要混淆,正确熟练运用基本方法及基本运算。而且,线代作为一门数学,各知识点之间有着千丝万缕的联系,其前后连贯性很强,所以学习线代一定要坚持,循序渐进,注意建立各个知识点之间的联系,形成知识网络。除此之外,代数题的综合性与灵活性也较大,所以我们在平时学习中一定要注重串联、衔接与转换。一定要掌握矩阵、方程组和向量的内在联系,遇到问题才能左右逢源,举一反三,化难为易。

在此我要感谢田亚老师细心、认真的教育和无微不至的照顾。田老师大一时教我们高数,从那时起就是这样认真,负责,上课准备的很充分,讲课也很细致,有问题也会耐心、认真的为我们讲解。本学期选修田老师的课还是很开心的,一是讲课方式比较熟悉,二是田老师的课确实讲的细致有条理。除了讲授课本的知识以外,田老师还会讲一些有关考研,人生规划之类的事情,我觉得这对激励我们努力学习有很大的帮助。

线代本身作为数学,其实是比较枯燥乏味的,所以如果在选修课中能加入一些比较有趣味性的东西,那讲课效果应该更好。

微风细雨,润物无声。再次感谢田老师本学期的教诲。老师辛苦了!

第三篇:线性代数心得体会

浅谈线性代数的心得体会

系别:XXX系 班级:XXX班 姓名:XXX

线性代数心得

姓名:XXX 学号:XXX 通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用。

在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。但是线性代数教学却对线性代数的应用涉及太少,课本上涉及最多的应用只有算解线性方程组,但这只是线性代数很初级的应用。而线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为天书,足见这门课给同学们造成的困难。我认为,每门课程都是有章可循的,线性代数也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线性代数主要研究三种对象:矩阵、方程组和向量。这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易。

线性代数课程特点比较鲜明:概念多、运算法则多内容相互纵横交错正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大,线性代数的概念多比如代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,矩阵的秩,线性组合与线性表示,线性相关与线性无关等。

线性代数中运算法则多比如行列式的计算,求逆矩阵,求矩阵的秩,求向量组的秩与极大线性无关组,线性相关的判定,求基础解系,求非齐次线性方程组的通解等。

应用到的东西才不容易忘,比如高等数学。因为高等数学在很多课程中都有广泛的应用,比如在开设的大学物理和机械设计课中。所以要尽可能地到网上或图书馆了解线性代数在各方面的应用。也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理。

线性代数作为数学的一门,体现了数学的思想。数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

通过思想方法上的联系和内容上的关系,线性代数中的内容以及线性代数与高等数学甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎了。

在线性代数的学习中,注重知识点的衔接与转换,努力提高综合分析能力。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

第四篇:线性代数教学大纲

《线性代数》课程教学大纲

一.课程基本信息

开课单位:数理学院

课程编号:05030034a

英文名称:linear algebra

学时:总计32学时,其中理论授课28学时,习题课4学时。学分:2.0学分

面向对象:全校工科专业

教材:

《线性代数》,同济大学教学教研室 编著,高等教育出版社,2007年5月 第五版

主要教学参考书目或资料:

1.线性代数》,奕汝书 编著,清华大学出版社

2.《线性代数》,武汉大学数学系

3.《线性代数辅导》,胡元德等 编著,清华大学出版社 4.《线性代数试题选解》(研究生试题选),魏宗宣 编著

二.教学目的和任务

线性代数是高等学校理工科有关专业的一门重要基础课。它不但是其它数学课程的基础,也是各类工程课程的基础。为适应培养面向21世纪人才的需要,要求学生比较系统理解线性代数的基本概念,基本理论,掌握线性代数的基本计算方法.要求较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。本课程所讲的理论和方法,早已被广泛应用于各个学科和各个领域。它是建立在多维空间多元素基础上的,在计算机日益普及的今天,它作用更能充分发挥出来。所以本课程的社会地位和作用也日益显得突出和重要。工科大学生必须具备本课程的知识,才能更好地适应社会主义建设的需要。

通过本课程的学习,应使学生获得在应用科学中常用的矩阵方法,线性方程解法、二次型理论等实用性极强的基础知识,使学生能用这些方法解决一些实际问题,提高学生解决实际问题能力。同时,也为学生今后扩大知识面打下必要的数学基础。

三.教学目标与要求

通过对这门课的学习,使学生了解行列式、矩阵、向量组的定义和性质,掌握行列式的计算,矩阵的初等变换,矩阵秩的定义和计算,利用矩阵的初等变换求解方程组及逆矩阵、向量组的线性相关性,利用正交变换化对称矩阵为对角形矩阵等有关基础知识,并具有熟练的矩阵运算能力和利用矩阵方法解决一些实际问题的能力,从而为学习后继课及进一步扩大知识面奠定必要的数学基础。

四.教学内容、学时分配及其基本要求

第一章 n阶行列式(6学时)

(一)教学内容

1、二阶与三阶行列式

2、全排列及逆序数

3、n阶行列式定义

4、对换

5、行列式性质

6、行列式按行列展开

7、克莱姆法则

(二)基本要求

1、知道n阶行列式定义,了解行列式性质,熟练掌握二、三阶行列式计算法。

2、了解按行(列)展开行列式的方法,掌握四阶和四阶以上行列式的计算法。

3、掌握用克莱姆法(Gramer法则)解线性方程组的方法。第二章 矩阵及其运算(4学时)

(一)教学内容

1、矩阵

2、矩阵的运算

3、逆矩阵

4、矩阵分块法

(二)基本要求

1、理解矩阵概念,知道单位阵、对角阵、对称阵、三角阵、正交阵等常用矩阵及其性质。

2、熟练掌握矩阵加法、乘法、转置、方阵行列式的运算及其运算规律。

3、理解逆矩阵概念及逆阵存在的充要条件,掌握逆矩阵的求法。

4、掌握分块矩阵的运算和分块对角阵的性质及其应用。第三章 矩阵的初等变换与线性方程组(6学时)

(一)教学内容

1、矩阵的初等变换

2、初等矩阵

3、矩阵的秩

4、线性方程组的解

(二)基本要求

1、掌握矩阵的初等变换和初等方阵的基本理论及其应用。

2、理解矩阵秩的概念,会求矩阵的秩,知道满秩矩阵的性质。

3、掌握利用系数矩阵的秩和增广矩阵的秩的大小比较及与未知元个数n的关系判别线性方程组有无解;有多少组解(即解的存在性与唯一性的判别)的基本方法

第四章 向量组的线性相关性(8学时)

(一)教学内容

1、向量组及其线性组合

2、向量组的线性相关性

3、向量组的秩

4、线性方程组的解的结构

5、向量空间

6、习题课

(二)基本要求

1、理解n维向量的概念并掌握其运算规律。

2、理解向量组的线性相关、线性无关的概念。

3、了解向量组线性相关、线性无关的几个重要性质。

4、理解向量组的秩的概念,会求向量组的秩和最大无关组,并会用最大无关组表示其余的向量。

5、了解n维向量空间中的空间、基、维数、坐标等概念,会求基,会用基来线性表示所属空间的其余向量。

第五章 相似矩阵及二次型(8学时)

(一)教学内容

1、向量的内积,长度及正交性

2、方阵的特征值与特征向量

3、相似矩阵

4、实对称阵的相似对角阵

5、二次型及其标准形

6、用配方法化二次型为标准形

7、正定二次型

8、习题课

(二)基本要求

1、理解矩阵的特征值和特征向量的概念,并掌握其求法。

2、了解相似矩阵的概念和性质。

3、了解矩阵对角化的充要条件,会求实对称阵的相似对角阵。

4、掌握将线性无关向量组正交规范化的施密特(Schmidt)法。

5、掌握二次型及其矩阵表示法。

6、掌握用正交变换法化二次型为标准形。

7、了解惯性定律、二次型的秩、二次型的正定性及其判别法。

五.教学方法及手段

采用启发式教学方法,配合多媒体教学,充分使用现代化教学手段。

六.考核方式及考核方法

考核方式为“闭卷考试”。成绩评定:平时成绩30%+考核成绩70%。

七.其它说明

如果条件允许,可以安排一定学时的数学实验课,用MATLAB语言实现一些繁琐的计算,如矩阵求逆、线性方程组求解等。

(制定人: 徐江 审定人: 章婷芳)

第五篇:线性代数教学大纲

《线性代数》教学大纲

课程名称:《线性代数》 英文名称:Linear Algebra 课程性质:学科教育必修课 课程编号:D121010 所属院部:城市与建筑工程学院 周 学 时:3学时 总 学 时:48学时 学

分:3学分

教学对象(本课程适合的专业和年级): 给排水科学与工程与土木工程专业二年级学生

课程在教学计划中的地位作用:高等学校各专业的一门重要的基础理论课 教学方法:讲授 教学目的与任务

线性代数是讨论代数学中线性关系经典理论的课程,它具有较强的抽象性与逻辑性,是高等学校本科各专业的一门重要的基础理论课。

通过本课程的教学,使得学生在系统地获取线性代数的基本知识、基本理论与基本方法的基础上,初步熟悉和了解抽象的、严格的代数证明方法,理解具体与抽象、特殊与一般的辩证关系,提高抽象思维、逻辑推理的能力,并具有较熟练的运算能力。学会理性的数学思维技术和模式,培养学生的创新意识和能力,能运用所获取的知识去分析和解决问题,并为后继课程的学习和进一步深造打下良好的基础。

课程教材:同济大学数学系编《工程数学线性代数》(第六版),高等教育出版社

参考书目:

1、上海交通大学数学系线性代数课程组编.线性代数(第二版).北京:高等教育出版社,2012.2、吴赣昌主编.线性代数(理工类.第四版).北京:中国人民大学出版社,2011.3、杨刚、吴惠彬主编.线性代数.北京:高等教育出版社,2008.考核形式:考试

编写日期:2018年9月制定

课程内容及学时分配(含教学重点、难点): 第1章 行列式(9学时)(1)教学目的和要求

了解行列式的定义和性质,掌握二、三阶列式的计算法,会计算简单n阶行列式,掌握克拉默法则。(2)主要内容

二阶与三阶行列式定义,并用它们解二元、三元线性方程组。从二阶、三阶行列式概念入手,用展开法引出n阶行列式定义,并介绍从定义出发求简单行列式的值。行列式的性质,并举例如何应用这些性质求行列式的值,行列式按某行(列)展开法则及其结论的推论,克拉默法则及其推论。(3)重点、难点

重点:二阶、三阶行列式的计算,四阶数字行列式的计算。难点:n阶行列式的计算。第2章 矩阵及其运算(9学时)(1)教学目的和要求

熟悉矩阵的概念,了解单位矩阵、对角矩阵及其性质,掌握矩阵的线性运算、乘法、转置及其运算规律,理解逆矩阵的概念,掌握逆矩阵存在的条件与矩阵求逆方法,了解分块矩阵及其运算。(2)主要内容

矩阵的定义、对角阵、单位阵、矩阵的加法及其运算规律,数与矩阵相乘及其运算规律、矩阵与矩阵的相乘及运算规律、矩阵的转置及运算规律、方阵的行列式及性质、逆矩阵定义、可逆条件、公式法求逆矩阵方法、分块矩阵定义及其运算。(3)重点、难点

重点:矩阵加、减、乘、逆的运算、逆矩阵存在条件与求逆矩阵的方法。难点:逆矩阵存在的充要条件。

第3章 矩阵的初等变换与线性方程组(6学时)(l)教学目的和要求

掌握矩阵的初等变换,熟悉矩阵秩的概念并掌握其求法,了解满秩矩阵、初等阵定义及其性质,了解线性方程组的求解方法。(2)主要内容

初等变换、行阶梯形矩阵、等价类、矩阵的秩、两矩阵等价条件、满秩矩阵、齐次线性方程组有非零解条件,非齐次线性方程组有解判别方法、求解方法、初等矩阵定义及性质、求逆矩阵的第二种方法。(3)重点、难点

重点:矩阵初等变换、求矩阵秩、利用初等变换求逆矩阵。难点:含参数的线性方程组的求解。第4章 向量组的线性相关性(12学时)(1)教学目的和要求

熟悉n维向量的概念,熟悉向量组线性相关、线性无关的定义,了解有关向量组线性相关、线性无关的重要结论,了解向量组的最大无关组与向量组的秩的概念,了解n维向量空间、子空间基底、维数等概念,理解齐次线性方程组的基础解系及通解等概念,理解非齐次线性方程组的解的结构及通解等概念,掌握用行初等变换求线性方程组通解的方法。(2)主要内容

n维向量及例子、线性组合、线性表示、向量组等价、线性相关、线性无关的概念及重要结论、最大线性无关组、有关秩的重要结论、向量空间、基、维数、齐次线性方程组的性质、基础解系概念及求法、非齐次性方程组的解的性质、解的结构.用行初等变换求线性方程组通解的方法。(3)重点、难点

重点:线性相关性、最大线性无关组、用行初等变换求线性方程组的通解的方法。难点:线性相关性证明。

第5章 相似矩阵及 二次型(12学时)(1)教学目的和要求

熟悉矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量,了解相似矩阵的概念、性质及矩阵对角化的充要条件,会求与实对称矩阵相似的对角形矩阵,了解把线性无关的向量组正交规范化的施密特(Smidt)方法,了解正交矩阵概念及性质,了解二次型及其矩阵表示,了解二次型的秩的概念,会用正交变换法化二次型为标准型,了解二次型的正定性及其判别法。(2)主要内容

向量内积、正交向量组及性质、施密特正交化过程、规范正交基、正交变换、特征值、特征向量、特征方程、特征多项式、特征值、特征向量的性质、相似矩阵、相似变换、相似矩阵的性质、方阵的对角化条件、对称矩阵特征值性质、对称矩阵的对角化、二次型定义及矩阵表示、二次型的秩、二次型可化为标准型、配方法化二次型为标准到举例、正定二次型概念及判定。(3)重点、难点

重点:矩阵的特征值与特征向量、对称矩阵化为对角矩阵。难点:矩阵可对角化的有关结论。

下载2008线性代数 教学计划word格式文档
下载2008线性代数 教学计划.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线性代数学习心得

    怎样学好线性代数? 感觉概念好多,非常讨厌。 满意答案: 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在......

    线性代数学习心得

    线性代数学习心得 各位学友好! 首先让我们分析一下线性代数考试卷(本人以1999年上半年和下半年为例) 我个人让为,先做计算题,填空题,然后证明题,选择题等(一定要坚持先易后难的原......

    《线性代数A》教学大纲

    《线性代数A》教学大纲 课程中文名称:线性代数A 课程性质: 必修 课程英文名称:Linear Algebra A 总学时:48学时, 其中课堂教学48学时 先修课程:初等数学 面向对象:全校理工科学......

    线性代数教案

    第一章线性方程组的消元法与矩阵的初等变换 教学目标与要求 1. 了解线性方程组的基本概念 2. 掌握矩阵的三种初等变换 教学重点 运用矩阵的初等变换解一般的线性方程组 教学......

    线性代数心得体会

    矩阵——1张神奇的长方形数表 关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具 在本学期的线性代数课程的第二章中,我接触了矩阵的相关概念,发现其不仅能够在数学中......

    线性代数总结

    线性代数总结 [转贴 2008-05-04 13:04:49] 字号:大 中 小 线性代数总结 一、课程特点特点一:知识点比较细碎。 如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆......

    线性代数证明题

    4. 设A、B都是n阶对称矩阵,并且B是可逆矩阵,证明:AB1B1A是对称矩阵. A、B为对称矩阵,所以ATA,BTB TTT11111证明:因为(AB1B1A)T(AB1)T(B1A)T(B)AA(B)BAABABBA则矩阵5. 设T1 AB1B1A......

    线性代数试卷

    厦门理工学院继续教育学院20 第 学期期末试卷 线性代数(考试时间:120分钟) 专业 姓名 层次形式 成绩 一、选择题(每小题4分,共16分) 1. A,B为三阶方阵,矩阵X满足AXABXBBXAAXBE则 ( )......