动量全章复习教案

时间:2019-05-15 05:36:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《动量全章复习教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《动量全章复习教案》。

第一篇:动量全章复习教案

动 量

提纲挈领 1.动量

冲量(1)动量的概念;(2)冲量的概念.2.动量定理(1)动量定理;(2)用动量定理解释现象.3.动量守恒定律

(1)动量守恒定律的内容;(2)动量守恒定律的理解及应用.4.碰撞

反冲

(1)碰撞的概念及特点;(2)反冲现象的理解.第Ⅰ单元

动量和冲量

动量定理

巩固:夯实基础

一、动量、冲量

1.动量

(1)定义:运动物体的质量和速度的乘积叫做动量,p=mv,动量的单位:kg·m/s.(2)物体的动量表征物体的运动状态,其中的速度为瞬时速度.(3)动量是矢量,其方向与速度v的方向相同.两个物体的动量相同必须是大小相等、方向相同.(4)注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量,动能是标量;动量和动能的关系是: p2=2mEk.2.动量的改变量(1)Δp=pt-p0.(2)动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同,跟动量的方向无关.(3)求动量变化量的方法:①Δp=pt-p0=mv2-mv1;②Δp=Ft.3.冲量

(1)定义:力和力的作用时间的乘积,叫做该力的冲量,I=Ft,冲量的单位:N·s.(2)冲量是过程量,它表示力在一段时间内的累积作用效果.(3)冲量是矢量,其方向由力的方向决定.如果在作用时间内力的方向不变,冲量的方向就和力的方向相同.(4)求冲量的方法:①I=Ft(适用于求恒力的冲量);②I=Δp.二、动量定理

(1)内容:物体所受合外力的冲量,等于这个物体动量的增加量.(2)表达式:Ft=p′-p或Ft=mv′-mv.(3)理解:①动量定理的研究对象是单个物体或可视为单个物体的系统.当研究对象为物体系时,物体系总动量的增量等于相应时间内物体系所受的合外力的冲量.②动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也.当合外力为变力时,F应该是合外力对作用时间的平均值.③动量定理公式中的FΔt是合外力的冲量,也可以是外力冲量的矢量和,是使研究对象动量发生变化的原因.而mv2-mv1是研究对象动量的增量,是它受外力冲量后导致的必然结果.④FΔt=mΔv是矢量式,在应用动量定理时,应该遵循矢量运算的平行四边形定则.由于一般只要求一维的情况,所以在写动量定理表达式时,对于已知量,凡是与正方向同向者取正值,与正方向反向者取负值;对未知量,一般先假设正方向,若计算结果为正,说明实际方向与正方向一致,若计算结果为负,说明实际方向与正方向相反.三、用动量定理解释现象(1)根据F=ma得F=ma=m(2)由F=ptv'vtp'ptpt=,即F=,可见合外力等于物体动量的变化率.可解释两类现象:①当Δp一定时,Δt越短,力F就越大;Δt越长,力F就越小.②当F一定时,Δt越长,动量变化Δp越大;Δt越短,动量变化Δp越小.分析问题时,要弄清变化量和不变量.理解:要点诠释

考点一 对动量的变化量Δp的理解

Δp=p′-p指的是动量的变化量,不能理解为是动量,它的方向可以跟初动量方向相同;也可以跟初动量的方向相反;还可以跟初动量的方向成某一角度,但Δp的方向一定跟合外力的冲量方向相同.考点二 应用I=Δp求变力的冲量

如果物体受到大小或方向改变的力的作用,则不能直接用Ft求变力的冲量,而应求出该力作用下物体动量的变化量Δp,等效代换变力的冲量.例如质量为m的小球用长为R的细绳一端系住,在水平光滑的平面内绕细绳的另一端做匀速圆周运动,速率为v,周期为T,在半个周期的合外力冲量不等于mv2R·

T2,而是大小为2mv.考点三 应用Δp=FΔt求恒力作用下曲线运动中物体动量的变化

在曲线运动中,速度方向时刻在变化,求Δp需要应用矢量运算方法,比较麻烦,如果作用力是恒力,可以求出恒力的冲量等效代换动量的变化.如平抛运动中动量的变化问题.考点四 利用动量定理解题的基本思路

(1)明确研究对象和研究过程,研究对象可以是一个物体,也可以是几个物体组成的系统,系统内各物体可以是保持相对静止的,也可以是相对运动的.研究过程可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施给研究对象的力.所有外力之和为合外力.研究对象内部的相互作用力(内力)不影响系统的总动量,因此不必分析内力.如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和.(3)规定正方向.由于力、冲量、速度、动量都是矢量,在一维的情况下,列表达式前要先规定一个正方向,往往可选合外力方向为正方向,和此方向相同的矢量取正值,反之取负值.(4)写出研究对象的初、末动量和合外力的冲量,根据动量定理列式求解.诱思:实例点拨

【例1】(2006山东潍坊高三期中)如图5-1-1所示,铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉在地上的P点.若以速度2v抽出纸条,则铁块落地点为()

图5-1-1 A.仍在P点

B.P点左边

C.P点右边不远处

D.P点右边原水平位移的两倍处 解析:前后分别以v和2v的速度将纸条从铁块下抽出,二者间均为滑动摩擦力,但前一次所用时间较第二次要长,所以前一次摩擦力对铁块的冲量较第二次要大,所以,第二次动量变化小,即铁块获得的速度要小,故后一次铁块落在P点的左边.答案:B 点评:解答本题关键是利用动量定理解释两类现象时,分析清楚作用力、时间及动量变化量的情况.【例2】质量为m的小球从h高处自由下落,与地面碰撞时间为Δt,地面对小球的平均作用力为F.取竖直向上为正方向,在小球与地面碰撞过程中()A.重力的冲量为mg(2hg+Δt)

B.地面对小球作用力的冲量为F·Δt C.合外力对小球的冲量为(mg+F)·Δt

D.合外力对小球的冲量为(mg-F)·Δt 解析:在小球与地面碰撞过程中,取竖直向上为正方向,重力的冲量为-mgΔt,合外力对小球的冲量为(F-mg)Δt,故正确选项应为B.答案:B 点评:冲量是一个矢量,也是一个过程量,要弄清它的方向及它是哪个过程中力对时间的累积.【例3】 高压采煤水枪出水口的截面积为S,水的射速为v,射到煤层上后,水速度减为零.若水的密度为ρ,求水对煤层的冲力.解析:取一小段时间的水为研究对象,它在此时间内速度由v变为零,煤对水产生了力的作用,即水对煤冲力的反作用力.设在Δt时间内,从水枪射出的水的质量为Δm,则Δm=ρSv·Δt,2以Δm为研究对象,它在Δt时间内动量变化为:Δp=Δm(0-v)=-ρSvΔt.设F为水对煤层的冲力,F′为煤层对水的反冲力,以F的方向为正方向,根据动量定理有:F′Δt=Δp=-ρSv2Δt,故F′=-ρSv.根据牛顿第三定律知:F′=-F,所以F=ρSv.答案:ρSv2

点评:这是一类变质量问题,一般要选取一段短时间内的流体为研究对象,然后表示出研究对象的质量,分析它的受力及动量的变化,根据动量定理列方程求解.【例4】(2004广东高考)一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回.已知反弹速度的大小是入射速度大小的3

422,求在碰撞中斜面对小球的冲量大小.图5-1-2 小球在碰撞斜面前做平抛运动,如图5-1-2所示.设刚要碰撞斜面时小球速度为v,由题意,v的方向与竖直方向的夹角为30°,且水平分量仍为v0,如右图.由此得v=2v0

① 碰撞过程中,小球速度由v变为反向的理,斜面对小球的冲量为I=m(由①②得I=答案:I=72723434v,碰撞时间极短,可不计重力的冲量,由动量定

v)+mv

mv0.mv0

点评:应用动量定理列方程时,一定要选取好正方向,注意动量定理表达式的矢量性,另外,在碰撞时间极短的情况下,往往可以忽略重力产生的冲量,其他情况重力的冲量能否忽略要视题目具体情况而定.【例5】 科学家设想在未来的航天事业中利用太阳帆来加速星际飞船,“神舟”五号飞船在轨道上运行的期间,地面指挥控制中心成功地实施了飞船上太阳帆板展开的试验.设该飞船所在地每秒每单位面积(m2)接收的光子数为n,光子平均波长为λ,太阳帆板面积为S,反射率为100%,光子动量p=h解析:动量为p的光子垂直打到太阳帆板上再反射,动量的改变量 ,设太阳光垂直射到太阳帆板上,飞船总质量为m,求飞船的加速度.Δp=p末-p初=p-(-p)=2p

① 此处设末动量方向为正方向,由动量定理FΔt=Δp

② 由牛顿第三定律知,太阳帆板上受到的光压力F′=F=的加速度a=答案:2nhSmFm2nhS,由牛顿第二定律:F=ma可得飞船=2nhSm.点评:动量定理在现代科技的相关问题中有重要应用,应在复习中引起重视.【例6】(2005天津高考理综)如图5-1-3所示,质量mA为4.0 kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量mB为1.0 kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12 N·s的瞬时冲量I作用开始运动,当小物块滑离木板时,木板的动能EkA为8.0 J,小物块的动能EkB为0.50 J,重力加速度取10 m/s2.求:

图5-1-3(1)瞬时冲量作用结束时木板的速度v0;(2)木板的长度L.解析:(1)设水平向右为正方向,有I=mAv0

① 代入数据解得v0=3.0 m/s

②(2)设A对B、B对A、C对A的滑动摩擦力的大小分别为FAB、FBA和FCA,B在A上滑行的时间为t,B离开A时A和B的速度分别为vA和vB,分别对A、B应用动量定理,有(FBA+FCA)t=mAvA-mAv0

③ FABt=mBvB

④ 其中FAB=FBA

FCA=μ(mA+mB)g

⑤ 设A、B相对于C的位移大小分别为sA和sB,分别对A、B应用动能定理,有-(FBA+FCA)sA=12mAvA-

12mAv0

2FABsB=EKb

⑦ 动量与动能之间的关系为

mAvA=2mAEkA

⑧ mBvB=2mBEkB ⑨ 木板A的长度L=sA-sB

⑩ 代入数据解得L=0.50 m.答案:(1)3.0 m/s(2)0.50 m 点评:应用动量定理解题时要注意各量的方向性及其符号的正负.

第二篇:七年级数学勾股定理全章复习

勾股定理全章复习

一、复习要求:

1.体验勾股定理的探索过程;已知直角三角形的两边长,会求第三边长。

2.会用勾股定理知识解决简单问题;会用勾股定理逆定理判定直角三角形。

3.会用勾股定理解决有关的实际问题。

二、知识网络:

三、知识梳理:

1、勾股定理

(1)重视勾股定理的三种叙述形式:

①在直角三角形斜边上的正方形等于直角边上的两个正方形(《几何原本》).

②直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积.

③直角三角形斜边长度的平方,等于两个直角边长度平方之和.

从这三种提法的意义来看,勾股定理有“形的勾股定理”和“数的勾股定理”之分。

(2)定理的作用:

①已知直角三角形的两边,求第三边。

②证明三角形中的某些线段的平方关系。

③作长为的线段。

勾股定理揭示的是平面几何图形本身所蕴含的代数关系。利用勾股定理探究长度为,„„的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示、相互交融,加深对无理数概念的直观认识。

(3)勾股定理的证明:

经典证法有:①欧几里得证法②赵爽《勾股圆方图注》证法③刘徽《青朱出入图》证法④美国总统加菲的证明⑤印度婆什迦罗的证明⑥面积法证明;除此之外,还有文字证明、拼图证明和动态证明。(4)勾股定理的应用:

勾股定理只适用于直角三角形,首先分清直角及其所对的斜边。当已知中没有直角时,可作辅助线,构造直角三角形后,再运用勾股定理解决问题。求线段的长度,常常综合运用勾股定理和直角三角形的其它性质,等腰三角形的性质,轴对称的性质来解决。

2、勾股定理的逆定理

(1)勾股定理的逆定理的证明方法,也是学生不熟悉的,引导学生用所学过的全等三角形的知识,通过

构造一个三角形与直角三角形全等,达到证明的目的。

(2)逆定理的作用:判定一个三角形是否为直角三角形。

(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。要注意叙述及书写格式。

运用勾股定理的逆定理的步骤:

①首先确定最大的边(如c)

②验证:

是否具有相等关系:,则△ABC是以∠C为90°的直角三角形。时,△ABC是锐角三角形; 时,△ABC是钝角三角形。

(4)通过总结归纳,记住一些常用的勾股数。如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,4l;„„以及这些数组的倍数组成的数组。勾股数组的一般规律:

丢番图发现的:式子

毕达哥拉斯发现的:

柏拉图发现的:,,(,的整数)

(的正整数)(的整数)

3、注意总结直角三角形的性质与判定。

(1)直角三角形的性质:

角的关系:直角三角形两锐角互余。

边的关系:直角三角形斜边大于直角边。

直角三角形两直角边的平方和等于斜边的平方。

直角三角形斜边的中线等于斜边的一半。

边角关系:直角三角形中,30°的角所对的直角边等于斜边的一半。

双垂图中的线段关系。

(2)直角三角形的判定:

①有一个角是直角的三角形是直角三角形。

②有两个角互余的三角形是直角三角形。

③两边的平方和等于第三边的平方的三角形是直角三角形。(最长的边的平方等于另外两边的平方和的三角形是直角三角形)

4、已知直角三角形的两边长,会求第三边长。

设直角三角形的两直角边为a,b,斜边长为c,由勾股定理知道:得:,。变形,因此已知直角三角形的任意两边,利用勾股定理可求出第三条边。

5、当直角三角形中含有30°与45°角时,已知一边,会求其它的边。

(1)含有30°的直角三角形的三边的比为:1:1:2:3,则三边

的比为1::2)。

:2。(一个三角形的三个内角的比为

(2)含有45°的直角三角形的三边的比为:1:1:

(3)等边三角形的边长为,则高为,面积为。

6、典型方法的总结:

(1)斜三角形转化为直角三角形

(2)图形的割、补、拼接

(3)面积法与代数方法证明几何问题

四、例题分析

1.如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠,D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△如图乙.这时AB与

(1)求

(2)求线段

(3)若把三角板

相交于点O,与AB相交于点F. 的度数: 的长.

绕着点C顺时针再旋转30°得,这时点B在的内部、外部、还是边上?证明你的判断.

解:(1)∵ ∠2=15°,∠

=90°,∴ ∠1=75°.又∵ ∠B=45°,∴

(2)连结

又∵

又∵

∴。,. ,,.,∵

又∵

在(3)点B在,∴,∴ 中,内部。

于点。。

理由如下:设BC(或延长线)交

∵,在中,又∵,即,∴ 点B在内部。

2.如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.

(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.

(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.

解:(1)猜想:AP=CQ

证明:在△ABP与△CBQ中,∵ AB=CB,BP=BQ,∠ABC=∠PBQ=60°

∴ ∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ

∴ △ABP≌△CBQ ∴ AP=CQ

(2)由PA:PB:PC=3:4:5 可设PA=3a,PB=4a,PC=5a

连结PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°

∴ △PBQ为正三角形 ∴ PQ=4a

于是在△PQC中,∵

∴ △PQC是直角三角形

3.如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.

(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?

(2)试比较立体图中∠BAC与平面展开图中的大小关系?

解:(1)在平面展开图中可画出最长的线段长为

如图(1)中的∵

∴,在中,由勾股定理得:

。.

答:这样的线段可画4条(另三条用虚线标出).

(2)∵ 立体图中∠BAC为平面等腰直角三角形的一锐角,∴ ∠BAC=45°.

在平面展开图中,连接线段

又∵

由勾股定理的逆定理可得

又∵

∴ △,为等腰直角三角形. ∴

.,为直角三角形.,由勾股定理可得:。

所以∠BAC与相等.

第三篇:一元一次方程全章复习教学设计

一元一次方程全章复习教学设计

教学目标

知识与技能:

1、一元一次方程的概念、解的定义、等式的性质等基本知识的灵活应用。

2、掌握解方程的基本步骤,能根据方程的特点灵活应用解方程的基本步骤。

3、能对实际应用问题进行正确地分析,从而正确解决应用题。

数学思考:

掌握解决有关基本知识点的问题的方法是:牢牢抓住概念、定义、性质等基本知识的特征去解决。能应用表格法、图形法对实际应用问题进行分析,从而正确解决应用题。正确理解并应用整体思想、数形结合思想、分类思想去解决问题。

解决问题:

1、先编好导学案,学生在独立完成。

2、分配好学习小组展示的内容,3、小组交流讨论导学案的内容,并注意如何在展示中把别人讲懂。

4、小组讲解展示、其他同学补充讲解、老师点拨、引导或规范。

情感与态度:

还课堂于学生,让学生积极主动参与数学的学,体会学生自己才是学习的主体感受团队的巨大力量,体验成功的喜悦。激发学习数学的热情,从而学会有用的数学。教学重难点

教学重点:

1、根据方程的具体特点灵活应用解方程的基本步骤。

2、应用表格法、图形法等方法对实际应用问题进行分析,找出等量关系,列出方程,从而正确解决应用题。

3、整体思想、数形结合思想、分类思想在解决问题中的应用。

教学难点:

1、应用表格法、图形法等方法对实际应用问题进行分析,找出等量关系,列出方程,从而正确解决应用题。

2、整体思想、数形结合思想、分类思想在解决问题中的应用。教学设计:

一、引导学生复习下列知识;

1.一元一次方程的概念、解的定义、等式的性质

2、解方程的基本步骤及灵活应用。

(1)去分母(应注意:___________)

(2)去括号(应注意:____________)

(3)移项(应注意:___________)

(4)合并同类项

(5)系数化为1

3、实际问题与一元一次方程

(1)列方程解应用题的基本步骤:___________________________

(2)会用表格法、图形法等对实际应用问题进行分析,找出等量关系,列出方程。

4、基本数学思想应用的体现

设计意图:

学生已经学完了全章的知识,使学生对全章知识有一个全面认识和理解,理解数学方法、数学思想的应用,在交流讨论中小组每个成员互相补充,对全章知识进行归纳,知识进行联系,学生在交流讨论展示中成长,学会相互帮助,使他们养成学后归纳反思的良好习惯。导学案分四个展示一个思考,并提出了一些小问题,便于引导学生思考。应用变式题开拓学生思维,提升学生能。

导学案设计:

一元一次方程全章复习

展示一:

基本知识点及练习

1、下列方程中,是一元一次方程的为()

y2y32xy2y4 2A、2x-y = 1

B、C、D、22、如果方程(m-1)xx2m + 2 =0是表示关于x的一元一次方程,那么m的值是()

A.m = 1或-1

B.m1

C.m = -

1D.m = 1 ♥ 一元一次方程的定义是:__________________________________________.ax3、如果方程2x+1=3的解也是方程2-3=0的解,那么a的值是()

A.7

B.C.3D.以上都不对

♥ 一元一次方程的解是:_____________________________________________.4、根据等式的性质,下列各式变形正确的是()

由12xy33得x=2y

B、由3x-2=2x+2得x=4 C、由2x-3 =3x得x=3

D、由3x-5=7得3x=7-5 ♥ 等式的性质1:文字叙述是_________________________________________.符号语言是________________________________________.♥ 等式的性质2:文字叙述是__________________________________________.符号语言是__________________________________________.5、某商品的进价是500元,标价为750元,商店要求以利润率不低于5% 的售价打折出售,则售货员最低可以打多少折出售此商品?设最低可以打x折,列方程得__________________.♥ 列方程解应用题的步骤有:_________________________________________.展示二:

解方程基本步骤的灵活应用

6、解下列方程:

2311x59x1(x1)4x222 ① x-6 = 1

② 324

讨论交流:

1、解方程的基本步骤有:____________________________________________.2、解第(1)个方程你认为有什么需要提醒大家的吗?________________

3、认真观察分析第(2)个方程的特点,说说你有几种解法,你认为怎样解更简便?有什么需要提醒大家的吗?_______________________________.________________________________________________________________

展示三:

典型应用(要求:用表格法分析,然后写出解答过程,讲解要简洁清楚。)

7、某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆只坐35人。请你求出该校初三年级学生的总人数。

8、用铝片制作听装饮料瓶,每张铝片可制作瓶身16个或制作瓶底43个,一个瓶身与两个瓶底配成一套,现有150张铝片,用多少张铝片制瓶身,多少张铝片制瓶底,正好可以制成配套的饮料瓶?

展示四:

行程问题及变式练习(要求:用线段图分析,写出解答过程,讲解要简洁清楚。)

9、一艘快艇从A码头到B码头顺流行驶,同时一艘游船从B码头出发顺流而下.已知,A、B两码头相距140千米,快艇在静水中的平均速度为65千米/小时,游船在静水中的平均速度为25千米/小时,水流速度为5千米/小时.快艇出发几小时追上游船?

5变式①

一艘快艇从A码头到B码头顺流行驶,快艇出发7小时后,游艇从B码头开往A码头,已知,A、B两码头相距140千米,快艇在静水中的平均速度为65千米/小时,游船在静水中的平均速度为25千米/小时,水流速度为5千米/小时.两艇相遇时距B码头多远?

变式②

一艘快艇从A码头到B码头顺流行驶,同时一艘游船从B码头出发顺流而下.已知,A、B两码头相距140千米,快艇在静水中的平均速度为65千米/小时,游船在静水中的平均速度为25千米/小时,水流速度为5千米/小时.

(1)请计算两船出发航行30分钟时相距多少千米?

(2)如果快艇到达B码头后立即返回,试求两船在航行过程中需航行多少时间恰好相距100 千米? 问1:快艇与游艇在什么情况下距离最近?:______________________________.问2:快艇与游艇之间的距离的变化过程是怎样的? ______________________.问3: 快艇与游艇距离最近时,最短距离是__________,此时两艇已行驶了多少时间?_________.问4:你认为快艇与游艇之间的距离会在几种情况下相距100千米______________________________________________________________________________________________________.到此,首先请你分情况用线段图分析第(2)问的数量关系,然后写出完整的解答过程。

思考题:

销售 与 分类

10、元旦节那天,某商场对某品牌的鞋开展优惠活动,具体做法如下:标价500元以内的鞋7折销售;标价500元及500元以上的鞋先8折,8折后每满200元送60元现金.

(1)购买一双标价为450元的鞋应付款___________元,标价为550元应付款___________元。(2)刘老师买了一双标价不足750元的鞋实际付款336元,问这双鞋的原价多少元?

(如果你做第(2)问感觉被卡住了,请你用文字写出是什么卡住了你。便于课堂上与其他同学交流。)

第四篇:动量守恒教案

动量守恒定律

(教案)杜茂文

教学目标:

一、知识目标

1、理解动量守恒定律的确切含义.

2、知道动量守恒定律的适用条件和适用范围.

二、能力目标

1、运用动量定理和牛顿第三定律推导出动量守恒定律.

2、能运用动量守恒定律解释现象.

3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).

三、情感目标

1、培养实事求是的科学态度和严谨的推理方法.

2、使学生知道自然科学规律发现的重大现实意义及对社会发展的巨大推动作用. 重点难点:

重点:理解和基本掌握动量守恒定律. 难点:对动量守恒定律条件的掌握. 教学过程:

动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律.

(-)系统

为了便于对问题的讨论和分析,我们引入几个概念.

1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取.

2.内力:系统内各个物体间的相互作用力称为内力.

3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力.

内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力.

(二)相互作用的两个物体动量变化之间的关系

【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B两滑块相互作用后的速度,测出两滑块的质量mA\mB和作用后的位移SA和SB比较mASA和mBSB.

1.实验条件:以A、B为系统,外力很小可忽略不计.

2.实验结论:两物体A、B在不受外力作用的条件下,相互作用过程中动量变化大小相等,方向相反,即△pA=-△pB或△pA+△pB=0

【注意】因为动量的变化是矢量,所以不能把实验结论理解为A、B两物体的动量变化相同.

(三)动量守恒定律

1.表述:一个系统不受外力或受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.

2.数学表达式:p=p’,对由A、B两物体组成的系统有:mAvA+mBvB= mAvA’+mBvB’

(1)mA、mB分别是A、B两物体的质量,vA、vB、分别是它们相互作用前的速度,vA’、vB’分别是它们相互作用后的速度.

【注意】式中各速度都应相对同一参考系,一般以地面为参考系.

(2)动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算. 3.成立条件

在满足下列条件之一时,系统的动量守恒

(1)不受外力或受外力之和为零,系统的总动量守恒.

(2)系统的内力远大于外力,可忽略外力,系统的总动量守恒.

(3)系统在某一方向上满足上述(1)或(2),则在该方向上系统的总动量守恒.

4.适用范围

动量守恒定律是自然界最重要最普遍的规律之一,大到星球的宏观系统,小到基本粒子的微观系统,无论系统内各物体之间相互作用是什么力,只要满足上述条件,动量守恒定律都是适用的.

(四)由动量定理和牛顿第三定律可导出动量守恒定律

设两个物体m1和m2发生相互作用,物体1对物体2的作用力是F12,物体2对物体1的作用力是F21,此外两个物体不受其他力作用,在作用时间△Vt 内,分别对物体1和2用动量定理得:F21△Vt =△p1;F12△Vt =△p2,由牛顿第三定律得F21=-F12,所以△p1=-△p2,即: △p=△p1+△p2=0或m1v1+m2v2= m1v1’+m2v2’.

【例1】如图所示,气球与绳梯的质量为M,气球的绳梯上站着一个质量为m的人,整个系统保持静止状态,不计空气阻力,则当人沿绳梯向上爬时,对于人和气球(包括绳梯)这一系统来说动量是否守恒?为什么?

【解析】对于这一系统来说,动量是守恒的,因为当人未沿绳梯向上爬时,系统保持静止状态,说明系统所受的重力(M+m)g跟浮力F平衡,那么系统所受的外力之和为零,当人向上爬时,气球同时会向下运动,人与梯间的相互作用力总是等值反向,系统所受的外力之和始终为零,因此系统的动量是守恒的.

【例2】如图所示是A、B两滑块在碰撞前后的闪光照片部分示意图,图中滑块A的质量为0.14kg,滑块B的质量为0.22kg,所用标尺的最小刻度是0.5cm,闪光照相时每秒拍摄10次,试根据图示回答:

(1)作用前后滑块A动量的增量为多少?方向如何?(2)碰撞前后A和B的总动量是否守恒?

【解析】从图中A、B两位置的变化可知,作用前B是静止的,作用后B向右运动,A向左运动,它们都是匀速运动.mAvA+mBvB= mAvA’+mBvB’(1)vA=SA/t=0.05/0.1=0.5(m/s);

vA′=SA′/t=-0.005/0.1=-0.05(m/s)

△pA=mAvA’-mAvA=0.14*(-0.05)-0.14*0.5=-0.077(kg·m/s),方向向左.

(2)碰撞前总动量p=pA=mAvA=0.14*0.5=0.07(kg·m/s)碰撞后总动量p’=mAvA’+mBvB’

=0.14*(-0.06)+0.22*(0.035/0.1)=0.07(kg·m/s)p=p’,碰撞前后A、B的总动量守恒.

【例3】一质量mA=0.2kg,沿光滑水平面以速度vA=5m/s运动的物体,撞上静止于该水平面上质量mB=0.5kg的物体B,在下列两种情况下,撞后两物体的速度分别为多大?

(1)撞后第1s末两物距0.6m.(2)撞后第1s末两物相距3.4m.

【解析】以A、B两物为一个系统,相互作用中无其他外力,系统的动量守恒. 设撞后A、B两物的速度分别为vA’和vB’,以vA的方向为正方向,则有: mAvA=mAvA’+mBvB’; vB’t-vA’t=s(1)当s=0.6m时,解得vA’=1m/s,vB’=1.6m/s,A、B同方向运动.

(2)当s=3.4m时,解得vA’=-1m/s,vB’=2.4m/s,A、B反方向运动.

小结:(根据课堂实际加以总结)

第五篇:动量冲量教案

我们的理念:一切为了孩子,让孩子快乐学习。

动量

冲量

教学目标:

1.理解和掌握动量及冲量概念;

2.理解和掌握动量定理的内容以及动量定理的实际应用; 3.掌握矢量方向的表示方法,会用代数方法研究一维的矢量问题。教学重点:动量、冲量的概念,动量定理的应用 教学难点:动量、冲量的矢量性 教学过程:

一、动量和冲量 1.动量

按定义,物体的质量和速度的乘积叫做动量:p=mv

(1)动量是描述物体运动状态的一个状态量,它与时刻相对应。(2)动量是矢量,它的方向和速度的方向相同。

(3)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。2.动量的变化:

ppp

由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

(1)若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。(2)若初末动量不在同一直线上,则运算遵循平行四边形定则。3.冲量

按定义,力和力的作用时间的乘积叫做冲量:I=Ft

(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

教育是一项良心工程

我们的理念:一切为了孩子,让孩子快乐学习。

(2)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

(3)高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

(4)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。本题用冲量求解,比先求末动量,再求初、末动量的矢量差要方便得多。当合外力为恒力时往往用Ft来求较为简单;当合外力为变力时,在高中阶段只能用Δp来求。

二、动量定理 1.动量定理

物体所受合外力的冲量等于物体的动量变化。既I=Δp

(1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。(2)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

(3)现代物理学把力定义为物体动量的变化率:FP(牛顿第二定律的动量形式)。

t(4)动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。点评:要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量” 等于动量的变化量。这是在应用动量定理解题时经常出错的地方,要引起注意。

2.动量定理的定性应用 3.动量定理的定量计算

利用动量定理解题,必须按照以下几个步骤进行:

(1)明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过

教育是一项良心工程

我们的理念:一切为了孩子,让孩子快乐学习。

程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析。只分析研究对象以外的物体施给研究对象的力。所有外力之和为合外力。研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和。(3)规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。

(5)根据动量定理列式求解。

动量守恒定律及其应用

教学目标:

1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题.

2.掌握应用动量守恒定律解决问题的一般步骤.

3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点:

动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点:

应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学过程

一、动量守恒定律 1.动量守恒定律的内容

一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

m2v2

即:m1v1m2v2m1v1教育是一项良心工程

我们的理念:一切为了孩子,让孩子快乐学习。

2.动量守恒定律成立的条件

(1)系统不受外力或者所受外力之和为零;

(2)系统受外力,但外力远小于内力,可以忽略不计;

(3)系统在某一个方向上所受的合外力为零,则该方向上动量守恒。(4)全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。3.动量守恒定律的表达形式

m2v2,即p1+p2=p1/+p2/,(1)m1v1m2v2m1v1m1v2 m2v1(2)Δp1+Δp2=0,Δp1=-Δp2 和4.应用动量守恒定律解决问题的基本思路和一般方法

(1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。

(2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。

(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初 动量和末动量的量值或表达式。

注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。(4)确定好正方向建立动量守恒方程求解。

二、动量守恒定律的应用 1.碰撞

(1)弹簧是完全弹性的:(2)弹簧不是完全弹性的:(3)弹簧完全没有弹性:

教育是一项良心工程

我们的理念:一切为了孩子,让孩子快乐学习。

2.子弹打木块类问题

子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。

3.反冲问题

在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。

4.爆炸类问题

5.某一方向上的动量守恒 6.物块与平板间的相对滑动

教育是一项良心工程

下载动量全章复习教案word格式文档
下载动量全章复习教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    冲量动量教案

    备课稿 ——陈诚 一、教学目标 1.理解冲量和动量的概念,知道它们的单位和定义。 2.理解冲量和动量的矢量性,理解动量变化的概念。知道运用矢量运算法则计算动量变化,会正确计算......

    动量 冲量 教案

    动量 冲量教案 清华附中教师 潘天俊 教学目标 1.理解动量及动量的定义式P=mv。知道动量是矢量,知道在国际单位制中,动量的单位是kg·m/s 2.理解冲量及冲量的定义式I=Ft。知道......

    人教版高中物理第二册教案:电场全章复习课1

    全章复习课(2课时) 第1课时 一、教学目标: 1.加深理解电场强度、电势、电势差、电势能、电容等重点概念。 2.在熟练掌握上述概念的基础上,能够分析和解决一些物理问题。 3.通过复......

    【精品教案】八年级上册第十一章三角形全章复习

    讲义 一、检查作业及讲评 二、课前热身 三、内容讲解 知识点一、三角形相关概念 1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条......

    高考物理《冲量、动量和动量定理》复习教案

    冲量、动量和动量定理 一、要点 【 要点一 冲量 】 1.下列说法中正确的是 ( ) A.一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同......

    全等三角形全章教案(5篇)

    第十二章 全等三角形 12.1 全等三角形 1.了解全等形及全等三角形的概念. 2.理解全等三角形的性质. 重点 探究全等三角形的性质. 难点 掌握两个全等三角形的对应边、对应角的寻找规......

    第四章几何图形初步全章教案

    精品文档 你我共享 通过这次学习,我的体会主要有以下几方面: 一、更新了教育观念,掌握了较多的技能 现代的教师应成为学生潜在品质的开发者;成为教育教学的研究者;成为学生的心理......

    动量 动量定理公开课教案

    动量动量定理 第六节 动量 动量定理 [教学目标] 1.理解动量和冲量的定义; 2.了解动量定理并理解其矢量性和普遍性; 3.会利用动量定理定性分析和定量计算一些简单的实际问题。 [教......